

+1
Maths

LONDON KRISHNAMOORTHI MATRIC. HR. SEC. SCHOOL, ORATHANADU

Samy Sir Ph: 7639147727

2022-2023

VOLUME - 1

CHAPTER 1 SETS, RELATIONS AND FUNCTIONS

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

2 MARKS

- **1.** Find the number of subsets of *A* if $A = \{x: x = 4n + 1, 2 \le n \le 5, n \in N\}$. (EG 1.1)
- **2.** If $X = \{1,2,3,....,10\}$ and $A = \{1,2,3,4,5\}$, find the number of sets $B \subseteq X$ such that $A B = \{4\}$. **(E.g. 1.4)**
- **3.** If n(p(A)) = 1024, $n(A \cup B) = 15$ and n(p(B)) = 32, then find $n(A \cap B)$. (Ex. 1.1. 6)
- **4.** If $n(A \cap B) = 3$ and $n(A \cup B) = 10$, then find $n(p(A \triangle B))$. (Ex. 1.1. 7)
- **5.** Write the following in roster form.(*i*) $\{x \in \mathbb{N}: x^2 < 121 \text{ and } x \text{ is a prime}\}$. **(EX 1.1 1)**
- **6.** For a set A, $A \times A$ contains 16 elements and two of its elements are (1,3) and (0,2). Find the elements of A. **(Ex. 1.1. 8)**
- 7. Let A and B be two sets such that n(A) = 3 and n(B) = 2. If (x, 1), (y, 2), (z, 1) are in $A \times B$, find A and B, where x, y, z are distinct elements. **(Ex. 1.1. 9)**
- **8.** Let $X = \{a, b, c, d\}$ and $R = \{(a, a), (b, b), (a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it (i) reflexive (ii) symmetric (iii) transitive (iv) equivalence (Ex. 1.2. 2)
- 9. Let $A = \{a, b, c\}$ and $R = \{(a, a), (b, b), (a, c)\}$. Write down the minimum number of ordered pairs to be included to R to make it (i) reflexive (ii) symmetric (iii) transitive (iv) equivalence (Ex. 1.2. 3)
- 10. Check whether the following for one-to-oneness and ontoness.

(i)
$$f: \mathbb{R} \to \mathbb{R}$$
 defined by $f(x) = \frac{1}{x}$. (ii) $f: \mathbb{R} - \{0\} \to \mathbb{R}$ defined by $f(x) = \frac{1}{x}$. (EG 1.16)

- **11.** If $f: [-2,2] \rightarrow B$ is given by $f(x) = 2x^3$ then find B so that f is onto. **(EG 1.19)**
- **12.** Check whether the following functions are one-to-one and onto. (i) $f: \mathbb{N} \to \mathbb{N}$ defined by f(n) = n + 2. (ii) $f: \mathbb{N} \cup \{-1,0\} \to \mathbb{N}$ defined by f(n) = n + 2. (E.g. 1.14)
- **13.** Check the following functions for one-to-oneness and ontoness. (*i*) $f: \mathbb{N} \to \mathbb{N}$ defined by $f(n) = n^2$. (*ii*) $f: \mathbb{R} \to \mathbb{R}$ defined by $f(n) = n^2$. (E.g. 1.15)
- **14.** Find the domain of $f(x) = \frac{1}{1-2\cos x}$. (E.g. 1.22)
- **15.** Let $f = \{(1,2), (3,4), (2,2)\}$ and $g = \{(2,1), (3,1), (4,2)\}$. Find $g \circ f$ and $f \circ g$. **(EG 1.25)**
- **16.** Let $f = \{(1,4), (2,5), (3,5)\}$ and $g = \{(4,1), (5,2), (6,4)\}$. Find $g \circ f$. Can you find $f \circ g$? **(EG 1.26)**
- **17.** Let f and g be the two functions from \mathbb{R} to \mathbb{R} defined by f(x) = 3x 4 and $g(x) = x^2 + 3$. Find $g \circ f$ and $f \circ g$. (E.g. 1.27)
- **18.** Find the domain of $\frac{1}{1-2\sin x}$. (Ex. 1.3. 6)
- **19.** Find the largest possible domain of the real valued function $f(x) = \frac{\sqrt{4-x^2}}{\sqrt{x^2-9}}$. **(Ex. 1.3. 7)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

20. Graph the functions $f(x) = x^3$, $g(x) = \sqrt[3]{x}$ on the same coordinate plane. Find $f \circ g$ and graph it on the plane as well. **(Ex. 1.4. 3)**

3 MARKS

- 1. In a survey of 5000 persons in a town, it was found that 45% of the persons know Language A, 25% know Language B, 10% know Language C, 5% know Languages A and B, 4% know Languages B and C, and 4% know Languages A and C. If 3% of the persons know all the three Languages, find the number of persons who knows only Language A. (EG 1.2)
- **2.** Prove that $(A \cup B' \cup C) \cap (A \cap B' \cap C') \cup ((A \cup B \cup C') \cap (B' \cap C')) = B' \cap C'$. **(EG 1.3)**
- 3. P.T. $((A \cup B' \cup C) \cap (A \cap B' \cap C')) \cup ((A \cup B \cup C') \cap (B' \cap C')) = B' \cap C'$. (E.g. 1.3)
- **4.** If *A*, *B* are two sets, $n(B A) = 2n(A B) = 4n(A \cap B)$ and if $n(A \cup B) = 14$, then find n(p(A)). (E.g. 1.5)
- **5.** Two sets have m and k elements. If the total number of subsets of the first set is 112 more than that of the second set, find the values of m and k. **(EG 1.6)**
- **6.** If n(A) = 10 and $n(A \cap B) = 3$, find $n((A \cap B)' \cap A)$. (E.g. 1.7)
- 7. If $A = \{1,2,3,4\}$ and $B = \{3,4,5,6\}$, find $n((A \cup B) \times (A \cap B) \times (A \triangle B))$. (EG 1.8)
- **8.** If $A \times A$ has 16 elements, $S = \{(a, b) \in A \times A : a < b\}$, (-1,2) and (0,1) are two elements of S, then find the remaining elements of S. **(Ex. 1.1. 10)**
- **9.** Check the relation $R = \{(1,1), (2,2), (3,3), \dots, (n,n)\}$ defined on the set $S = \{1,2,3,\dots,n\}$ for the three basic relations. **(E.g. 1.10)**
- **10.** Discuss the following relations for reflexivity, symmetricity and transitivity: (v) On the set of natural numbers the relation R defined by "xRy if x + 2y = 1". **(EX 1.2 1)**
- **11.** Let *P* be the set of all triangles in a plane and *R* be the relation defined on *P* as *aRb* if *a is similar to b*. P.T. *R* is an equivalence relation. **(Ex. 1.2. 4)**
- **12.** On the set of natural numbers let R be the relation defined by aRb if 2a + 3b = 30. Write down the relation by listing all the pairs. Check
- a. (i) reflexive (ii) symmetric (iii) transitive (iv) equivalence (Ex. 1.2. 5)
- **13.** On the set of natural numbers let R be the relation defined by aRb if $a + b \le 6$. Write down the relation by listing all the pairs. Check (i) reflexive (ii) symmetric (iii) transitive (iv) equivalence (Ex. 1.2. 7)
- **14.** Let $A = \{a, b, c\}$. What is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A? **(Ex. 1.2. 8)**
- **15.** If $f: \mathbb{R} \to \mathbb{R}$ is defined as $f(x) = 2x^2 1$, find the pre-images of 17, 4 and -2. (E.g. 1.18)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **16.** Find the range of the function $f(x) = \frac{1}{1-3\cos x}$. (E.g. 1.23)
- **17.** Find the range of the function $\frac{1}{2\cos x-1}$. (Ex. 1.3. 8)
- **18.** Show that the relation xy = -2 is a function for a suitable domain. Find the domain and the range of the function. (Ex. 1.3. 9)
- **19.** Write the steps to obtain the graph of the function $y = 3(x-1)^2 + 5$ from the graph $y = x^2$. (Ex. 1.4. 4)

5 MARKS

- **1.** By taking suitable sets A, B, C, verify the results:(i) $A \times (B \cap C) = (A \times B) \cap (A \times C)$. $(ii)(B-A) \cap C = (B \cap C) - A = B \cap (C-A)$. (Ex. 1.1. 4 (i),(v))
- **2.** In the set \mathbb{Z} of integers, define $mRn\ if\ m-n\ is\ a\ multiple\ of\ 12$. Prove that R is an equivalence relation. (E.g. 1.13)
- **3.** In the set Z of integers, define mRn if m n is divisible by 7. Prove that R is an equivalence relation. (Ex. 1.2. 9)
- Find the largest possible domain for the real valued function $f(x) = \frac{\sqrt{9-x^2}}{\sqrt{x^2-1}}$. (E.g. 1.24)
- 5. Write the values of f at -4,1,-2,7,0 if $f(x) = \begin{cases} -x+4 & if -\infty < x \le -3 \\ x+4 & if -3 < x < -2 \\ x^2-x & if -2 \le x < 1 \end{cases}$ (EX 1.3 2)

 6. Write the values of f at -3,5,2,-1,0 if $f(x) = \begin{cases} x^2+x-5 & if x \in (-\infty,0) \\ x^2+3x-2 & if x \in (3,\infty) \\ x^2 & if x \in (0,2) \\ x^2-3 & otherwise \end{cases}$
- 7. If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 2x 3 P.T f is a bijection and find its inverse. **(E.g. 1.30)**
- If $f: \mathbb{R} \to \mathbb{R}$ is defined by f(x) = 3x 5, P.T f is a bijection and find its inverse. **(Ex. 1.3. 12)**
- The formula for converting from Fahrenheit to Celsius temperatures is $y = \frac{5x}{9} \frac{160}{9}$. Find the inverse of this function and determine whether the inverse is also a function. (Ex. 1.3. 19)
- **10.** A simple cipher takes a number and codes it, using the function f(x) = 3x 4. Find the inverse of this function, determine whether the inverse is also a function and verify the symmetrical property about the line y = x. (by drawing the lines). (EX 1.3 - 20)
- **11.** Draw the graph of $y = 2\sin(x 1) + 3$. (Ill. 4)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **12.** For the curve $y = x^3$ given in the Figure, draw
- **13.** (i) $y = -x^3$ (ii) $y = x^3 + 1$ (iii) $y = x^3 1$ (iv) $y = (x + 1)^3$ with the same scale. **(EX 1.4 1)**
- **14.** From the curve $y = \sin x$, graph the functions (i) $y = \sin(-x)$ (ii) $y = -\sin(-x)$ (iii) $y = \sin(\frac{\pi}{2} + x)$ which is $\cos x$ (iv) $y = \sin(\frac{\pi}{2} x)$ which is also $\cos x$. (Ex. 1.4. 5)
- **15.** From the curve y = |x|, draw (i) y = |x 1| + 1 (ii) y = |x + 1| 1 (iii) y = |x + 2| 3. (Ex. 1.4. 7)

CHAPTER 2 BASIC ALGEBRA

2 MARKS

- 1. Find a positive number smaller than $\frac{1}{2^{1000}}$. Justify. (EX 2.1 5)
- 2. Solve $\left| \frac{2}{x-4} \right| > 1, x \neq 4$. (EG 2.15)
- 3. Solve for x: (iii) $\left| 3 \frac{3}{4}x \right| \le \frac{1}{4}$. (Ex. 2.2. 1(iii))
- **4.** Solve $\frac{1}{|2x-1|}$ < 6. **(Ex. 2.2. 2)**
- 5. Solve $-3|x| + 5 \le -2$ and graph the solution set in a number line. (Ex. 2.2. 3)
- **6.** Solve the following system of linear inequalities. $3x 9 \ge 0$, $4x 10 \le 6$. (EG 2.8)
- **7.** A girl *A* is reading a book having 446 pages and she has already finished reading 271 pages. She wants to finish reading this book within a week. What is the minimum number of pages she should read per day to complete reading the book within a week? **(EG 2.9)**
- **8.** Solve 23x < 100 when (i) x is a natural number, (ii) x is an integer. (EX 2.3 2)
- 9. Solve $-2x \ge 9$ when (i) x is a real number, (ii) x is an integer, (iii) x is a natural number. **(EX 2.3 2)**
- **10.** If a and b are the roots of the equation $x^2 px + q = 0$, find the value of $\frac{1}{a} + \frac{1}{b}$. (EG 2.10)
- **11.** Find the complete set of values of a for which the quadratic $x^2 ax + a + 2 = 0$ has equal roots. **(EG 2.11)**
- **12.** Construct a quadratic equation with roots 7 and -3. (Ex. 2.4. 1)
- **13.** Write $f(x) = x^2 + 5x + 4$ in completed square form. **(EX 2.4 10)**
- **14.** Solve $-x^2 + 3x 2 \ge 0$. (Ex. 2.5. 2)
- **15.** Find a quadratic polynomial f(x) such that, f(0) = 1, f(-2) = 0 and f(1) = 0. **(E.g. 2.16)**
- **16.** Solve $x = \sqrt{x + 20}$ for $x \in R$. (E.g. 2.21)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **17.** Rationalize the denominator of $\frac{\sqrt{5}}{\sqrt{6}+\sqrt{2}}$. (**EG 2.32**)
- **18.** Find the square root of $7 4\sqrt{3}$. **(EG 2.33)**
- **19.** Evaluate $\left(\left((256)^{\frac{-1}{2}}\right)^{\frac{-1}{4}}\right)^3$. **(Ex. 2.11. 2)**
- **20.** Simplify and hence find the value of *n*: $\frac{3^{2n}9^23^{-n}}{3^{3n}} = 27$. (Ex. 2.11. 4)
- **21.** Find the radius of the spherical tank whose volume is $\frac{32\pi}{3}$ units. **(Ex. 2.11. 5)**
- **22.** Find the logarithm of 1728 to the base $2\sqrt{3}$. (E.g. 2.34)
- **23.** If the logarithm of 324 to base a is 4, then find a. (EG 2.35)
- **24.** Compute $\log_9 27 \log_{27} 9$. (Ex. 2.12. 2)
- **25.** Prove $\log_{a^2} a \log_{b^2} b \log_{c^2} c = \frac{1}{8}$. (Ex. 2.12. 8)
- **26.** Solve $\log_{5-x}(x^2 6x + 65) = 2$. (Ex. 2.12. 12)

3 MARKS

- 1. Prove that $\sqrt{3}$ is an irrational number. (Ex. 2.1. 2)
- **2.** Find the number of solutions of $x^2 + |x 1| = 1$. (EG 2.12)
- 3. Solve: (i) $\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$ (ii) $\frac{5-x}{3} < \frac{x}{2} 4$. (Ex. 2.3. 4)
- **4.** To secure *A* grade one must obtain an average of 90 marks or more in 5 subjects each of maximum 100 marks. If one scored 84,87,95,91 in first four subjects, what is the minimum mark one scored in the fifth subject to get *A* grade in the course? **(EX 2.3 5)**
- **5.** Find all pairs of consecutive odd natural numbers both of which are larger than 10 and their sum is less than 40. **(Ex. 2.3. 7)**
- **6.** If x = -2 is one root of $x^3 x^2 17x = 22$, then find the other roots of equation. **(Ex. 2.6. 2)**
- 7. Find the real roots of $x^4 = 16$. (Ex. 2.6. 3)
- 8. Construct a cubic polynomial function having zeros at $x = \frac{2}{5}$, $1 + \sqrt{3}$ such that f(0) = -8. (EG 2.17)
- 9. Prove that ap + q = 0 if $f(x) = x^3 3px + 2q$ is divisible by $g(x) = x^2 + 2ax + a^2$. (EG 2.18)
- **10.** The equations $x^2 6x + a = 0$ and $x^2 bx + 6 = 0$ have one root in common. The other root of the first and the second equations are integers in the ratio 4: 3. Find the common root. **(E.g. 2.22)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **11.** Solve $\frac{x+1}{x+3} < 3$. (EG 2.24)
- **12.** Factorize: $x^4 + 1$. (Hint: Try completing the square.) **(EX 2.7 1)**
- **13.** Resolve into partial fractions: $\frac{1}{x^2-a^2}$ (EX 2.9 1)
- **14.** Resolve into partial fractions: $\frac{x}{(x-1)^3}$ (EX 2.9 4)
- **15.** Resolve into partial fractions: $\frac{1}{x^4-1}$ (EX 2.9 5)
- **16.** $\left(x^{\frac{1}{2}} + x^{-\frac{1}{2}}\right)^2 = \frac{9}{2}$, then find the value of $\left(x^{\frac{1}{2}} x^{-\frac{1}{2}}\right)$ for x > 1. (EX 2.11 3)
- 17. Simplify $\frac{1}{3-\sqrt{8}} \frac{1}{\sqrt{8}-\sqrt{7}} + \frac{1}{\sqrt{7}-\sqrt{6}} \frac{1}{\sqrt{6}-\sqrt{5}} + \frac{1}{\sqrt{5}-2}$ (EX 2.11 7)
- **18.** If $x = \sqrt{2} + \sqrt{3}$ find $\frac{x^2 + 1}{x^2 2}$. (Ex. 2.11. 8)
- **19.** Solve $x^{\log_3 x} = 9$. (EG 2.38)
- **20.** Compute $\log_3 5 \log_{25} 27$. (EG 2.39)
- **21.** Prove $\log \frac{75}{16} 2 \log \frac{5}{9} + \log \frac{32}{243} = \log 2$. (E.g. 2.36)
- **22.** If $\log_2 x + \log_4 x + \log_{16} x = \frac{7}{2}$, find the value of x. (E.g. 2.37)
- **23.** Solve $\log_8 x + \log_4 x + \log_2 x = 11$. (EX 2.12 3)
- **24.** Solve $\log_4 2^{8x} = 2^{\log_2 8}$. (Ex. 2.12. 4)
- **25.** If $a^2 + b^2 = 7ab$, show that $\log \frac{a+b}{3} = \frac{1}{2}(\log a + \log b)$. (Ex. 2.12. 5)
- **26.** Prove that $\log 2 + 16 \log \frac{16}{15} + 12 \log \frac{25}{24} + 7 \log \frac{81}{80} = 1$. (EX 2.12 7)
- **27.** P.T. $\log a + \log a^2 + \log a^3 + \dots + \log a^n = \frac{n(n+1)}{2} \log a$. (Ex. 2.12. 9)
- **28.** Solve $\log_2 x 3 \log_{\frac{1}{2}} x = 6$. (Ex. 2.12. 11)

5 MARKS

- **1.** A manufacturer has 600 litres of a 12 percent solution of acid. How many litres of a 30 percent acid solution must be added to it so that the acid content in the resulting mixture will be more than 15 percent but less than 18 percent? **(Ex. 2.3. 6)**
- **2.** If one root of $k(x-1)^2 = 5x 7$ is double the other root, S.T. k = 2, -25. **(Ex. 2.4. 4)**
- **3.** If the difference of the roots of the equation $2x^2 (a+1)x + a 1 = 0$ is equal to their product, then prove that a = 2. (Ex. 2.4. 5)
- **4.** Find the condition that one of the roots of $ax^2 + bx + c$ may be (*i*) negative of the other, (*iii*) thrice the other, (*iii*) reciprocal of the other. **(Ex. 2.4. 6)**

PREPARED BY SAMI SIR, Ph. 7639147727

(VOLUME-1)

- **5.** If the equations $x^2 ax + b = 0$, $x^2 ex + f = 0$ have one root in common and if the second equation has equal roots, then prove that ae = 2(b + f). (Ex. 2.4. 7)
- **6.** Use the method of undetermined coefficients to find the sum of 1+2+3+....+(n-1)+n, $n \in \mathbb{N}$ (E.g. 2.19)
- 7. Find all values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)} < 0$. (Ex. 2.8. 2)
- 8. Solve $\frac{x^2-4}{x^2-2x-15} \le 0$. (Ex. 2.4. 3)
- **9.** Resolve into partial fractions: $\frac{x}{(x^2+1)(x-1)(x+2)}$. **(Ex. 2.9. 3)**
- **10.** Resolve into partial fractions: $\frac{1}{x^4-1}$. (Ex. 2.9. 5)
- **11.** Resolve into partial fractions: $\frac{6x^2-x+1}{x^3+x^2+x+1}$ (**EX 2.9 10**)
- **12.** Resolve into partial fractions: $\frac{2x^2+5x-11}{x^2+2x-3}$ (**EX 2.9 11**)
- **13.** Resolve into partial fractions: $\frac{7+x}{(1+x)(1+x^2)}$ (EX 2.9 12)
- **14.** Solve the linear inequalities and exhibit the solution set graphically: $2x + y \ge 8$, $x + 2y \ge 8$, $x + y \le 6$. **(Ex. 2.10. 7)**

CHAPTER 3 TRIGONOMETRY

2 MARKS

- **1.** Find a coterminal angle with measure of θ such that $0^{\circ} \le \theta < 360^{\circ}(i)$ 525° $(ii) 270^{\circ}(ii) 450^{\circ}$. **(EX 3.1. 2)**
- What must be the radius of a circular running path, around which an athlete must run 5 times in order to describe 1 km? (EX 3.2. 3)
- **3.** Find the degree measure of the angle subtended at the centre of circle of radius 100 *cm* by an arc of length 22 *cm*. **(EX 3.2. 5)**
- **4.** What is the length of the arc intercepted by a central angle of measure 41° in a circle of radius $10 \ ft$? (EX 3.2. 6)
- **5.** An airplane propeller rotates 1000 times per minute. Find the number of degrees that a point on the edge of the propeller will rotate in 1 second.
- 6. (EX 3.2. 9)
- 7. If $\cos \theta = \frac{1}{2} \left(a + \frac{1}{a} \right)$, show that $\cos 3\theta = \frac{1}{2} \left(a^3 + \frac{1}{a^3} \right)$. (EX 3.5. 3)
- **8.** P.T. $32(\sqrt{3}) \sin \frac{\pi}{48} \cos \frac{\pi}{48} \cos \frac{\pi}{24} \cos \frac{\pi}{12} \cos \frac{\pi}{6} = 3$. (EX 3.5. 11)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **9.** Express each of the following as a sum or difference
 - (i) $\sin 4x \cos 2x$ (ii) $\sin 5\theta \sin 4\theta$. (EX 3.6. 1)
- **10.** Show that $\sin 12^{\circ} \sin 48^{\circ} \sin 54^{\circ} = \frac{1}{8}$. (EX 3.6. 3)
- **11.** Prove that $\frac{\sin 4x + \sin 2x}{\cos 4x + \cos 2x} = \tan 3x$. (EX 3.6. 8)
- **12.** Find the general solution of $\sin \theta = \frac{-\sqrt{3}}{2}$. (E.g. 3.43)
- **13.** Solve the following equations for which solutions lies in the interval $0^{\circ} \le \theta < 360^{\circ}$, $2\cos^2 x + 1 = -3\cos x$. (**EX 3.8. 2(ii))**
- **14.** In a $\triangle ABC$, if $\alpha = 2\sqrt{2}$, $b = 2\sqrt{3}$ and $C = 75^{\circ}$, find the other side and the angles. **(E.g. 3.66)**
- **15.** Find the area of the triangle whose sides are 13 cm, 14 cm, 15 cm. (E.g. 3.67)
- **16.** If the sides of a $\triangle ABC$, are a = 4, b = 6 and c = 8, then show that $4 \cos B + 3 \cos C = 2$. **(EX 3.10. 2)**

3 MARKS

- **17.** If $a \cos \theta b \sin \theta = c$ S.T. $a \sin \theta + b \cos \theta = \pm \sqrt{a^2 + b^2 c^2}$. (EX 3.1. 3)
- **18.** If $\sec \theta + \tan \theta = p$, obtain the values of $\sec \theta$, $\tan \theta$ and $\sin \theta$ in terms of p. (EX 3.1. 9)
- **19.** Eliminate θ from the equations $a \sec \theta c \tan \theta = b$ and $b \sec \theta + d \tan \theta = c$. **(EX 3.1. 12)**
- **20.** In a circle of diameter 40 *cm*, a chord is of length 20 *cm*. Find the length of the minor arc of the chord. **(EX 3.2. 4)**
- **21.** If in two circles, arcs of the same length subtend angles 60° and 75° at the centre, find the ratio of their radii. **(EX 3.2. 7)**
- **22.** A circular metallic plate of radius 8 *cm* and thickness 6 *mm* is melted and molded into a pie (a sector of the circle with thickness) of radius 16 *cm* and thickness 4 *mm*. Find the angle of the sector. **(EX 3.2. 11)**
- **23.** Show that $\sin^2 \frac{\pi}{18} + \sin^2 \frac{\pi}{9} + \sin^2 \frac{7\pi}{18} + \sin^2 \frac{4\pi}{9} = 2$. (EX 3.3. 6)
- **24.** Find $\cos(x y)$, given that $\cos x = \frac{-4}{5}$ with $\pi < x < \frac{3\pi}{2}$ and $\sin y = \frac{-24}{25}$ with $\pi < y < \frac{3\pi}{2}$. **(EX** 3.4. 3)
- 25. Find a quadratic equation whose roots are sin 15° and cos 15°. (EX 3.4. 7)
- **26.** S.T. $\cos^2 A + \cos^2 B 2\cos A\cos B\cos(A+B) = \sin^2(A+B)$. **(EX 3.4. 18)**
- **27.** If $\cos(\alpha \beta) + \cos(\beta \gamma) + \cos(\gamma \alpha) = \frac{-3}{2}$, then prove that $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$. **(EX 3.4. 19)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **28.** If $\theta + \phi = \alpha$, $\tan \theta = k \tan \phi$, then P.T. $\sin(\theta \phi) = \frac{k-1}{k+1} \sin \alpha$. **(EX 3.4. 25)**
- **29.** If A + B + C = 2s, then prove that $\sin(s A)\sin(s B) + \sin s\sin(s C) = \sin A\sin B$. **(EX 3.7. 2)**
- **30.** If $\triangle ABC$ is a right triangle and if $\angle A = \frac{\pi}{2}$, then prove that (i) $\sin^2 B + \sin^2 C = 1$ (ii) $\cos B \cos C = -1 + 2\sqrt{2}\cos\frac{B}{2}\sin\frac{C}{2}$. (EX 3.7. 5)
- **31.** In $\triangle ABC$, we have $\cos A = \frac{b^2 + c^2 a^2}{2bc}$. **(Th. 3.3)**
- **32.** The Government plans to have a circular zoological park of diameter 8 *km*. A separate area in the form of a segment formed by a chord of length 4 *km* is to be allotted exclusively for a veterinary hospital in the park. Find the area of the segment to be allotted for the veterinary hospital. **(Eg. 3.56)**

5 MARKS

- **33.** If $x = \sum_{n=0}^{\infty} \cos^{2n}\theta$, $y = \sum_{n=0}^{\infty} \sin^{2n}\theta$ and $z = \sum_{n=0}^{\infty} \sin^{2n}\theta \cos^{2n}\theta$, $0 < \theta < \frac{\pi}{2}$ then show that xyz = x + y + z. **(EX 3.1. 7)**
- **34.** If $\tan^2\theta = 1 k^2$ show that $\sec \theta + \tan^3\theta \csc \theta = (2 k^2)^{\frac{3}{2}}$. Also, find the values of k for which this result holds. **(EX 3.1. 8)**
- **35.** Prove that $(1 + \tan 1^\circ)(1 + \tan 2^\circ)(1 + \tan 3^\circ) \dots (1 + \tan 44^\circ)$ is a multiple of 4. **(EX 3.1.** 5)
- **36.** Show that $\cos \frac{\pi}{15} \cos \frac{2\pi}{15} \cos \frac{3\pi}{15} \cos \frac{4\pi}{15} \cos \frac{5\pi}{15} \cos \frac{6\pi}{15} \cos \frac{7\pi}{15} = \frac{1}{128}$. **(EX 3.6. 4)**
- **37.** If $A + B + C = 180^\circ$, prove that, $\tan \frac{A}{2} \tan \frac{B}{2} + \tan \frac{B}{2} \tan \frac{C}{2} + \tan \frac{C}{2} \tan \frac{A}{2} = 1$. (EX 3.7. 1(v))
- **38.** If $A + B + C = 180^\circ$, prove that, $\sin A + \sin B + \sin C = 4\cos\frac{A}{2}\cos\frac{B}{2}\cos\frac{C}{2}$. (EX 3.7. 1(vi))
- **39.** If x + y + z = xyz, then prove that $\frac{2x}{1-x^2} + \frac{2y}{1-y^2} + \frac{2z}{1-z^2} = \frac{2x}{1-x^2} \frac{2y}{1-y^2} \frac{2z}{1-z^2}$. (EX 3.7. 3)
- **40.** If $A + B + C = \frac{\pi}{2}$, prove that, $\sin 2A + \sin 2B + \sin 2C = 4 \cos A \cos B \cos C$ (EX 3.7. 4(i))
- **41.** In any triangle, the lengths of the sides are proportional to the sines of the opposite angles. That is, in $\triangle ABC$, $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C} = 2R$ where R is the circumradius of the triangle. **(Th. 3.1)**
- **42.** In $\triangle ABC$, we have (i) $\tan \frac{A-B}{2} = \frac{a-b}{a+b} \cot \frac{C}{2}$ (ii) $\tan \frac{B-C}{2} = \frac{b-c}{b+c} \cot \frac{A}{2}$ (iii) $\tan \frac{C-A}{2} = \frac{c-a}{c+a} \cot \frac{B}{2}$. (Th. 3.2)

CHAPTER 4 COMBINATORICS AND MATHEMATICAL INDUCTION

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

2 MARKS

- 1. How many licence plates may be made using either two distinct letters followed by four digits or two digits followed by 4 distinct letters where all digits or letters are distinct? (E.g. 4.10)
- 2. Find the total number of outcomes when 5 coins are tossed once. (E.g. 4.13)
- **3.** How many numbers are there between 100 and 500 with the digits 0, 1, 2, 3, 4, 5 ? if (*i*) repetition of digits allowed (*ii*) the repetition of digits is not allowed. **(EX 4.1. 6)**
- **4.** Count the numbers between 999 and 10000 subject to the condition that there are (*i*) no restriction. (*ii*) no digit is repeated. (*iii*) at least one of the digits is repeated. (**EX 4.1. 8**)
- 5. If the letters of the word *GARDEN* are permuted in all possible ways and the strings thus formed are arranged in dictionary order, then find the ranks of the words (i) *GARDEN* (ii) *DANGER*. (EX 4.2. 16)
- **6.** Find the number of strings that can be made using all letters of the word *THING*. If these words are written as in a dictionary, what will be the 85th string? **(EX 4.2. 17)**
- 7. If the letters of the word *FUNNY* are permuted in all possible ways and the strings thus formed are arranged in the dictionary order, find the rank of the word *FUNNY*. (EX 4.2. 18)
- **8.** If ${}^{n}P_{r} = 11880$ and ${}^{n}C_{r} = 495$, Find n and r. (E.g. 4.47)
- **9.** Prove that $^{24}C_4 + \sum_{r=0}^4 {}^{28-r}C_3 = {}^{29}C_4$. (E.g. 4.48)
- **10.** Prove that ${}^{2n}C_n = \frac{2^n \times 1 \times 3 \times \dots (2n-1)}{n!}$. **(EX 4.3. 7)**
- **11.** Prove that $n \times {}^{n-1}C_{r-1} = (n-r+1) \times {}^nC_{r-1}$. (EX 4.3. 8)
- **12.** Prove that the sum of first n positive odd numbers is n^2 . (E.g. 4.62)

3 MARKS

- **13.** How many strings of length 6 can be formed using letters of the word FLOWER if (i) either starts with F or ends with R? (ii) neither starts with F nor ends with R? (E.g. 4.9)
- **14.** How many 4 digit even numbers can be formed using the digits 0,1,2,3 and 4, if repetition of digits are not permitted? **(E.g. 4.12)**
- **15.** Prove that $\frac{(2n)!}{n!} = 2^n (1.3.5 \dots (2n-1))$. (E.g. 4.24)
- **16.** How many numbers are there between 1 and 1000 (both inclusive) which are divisible neither by 2 nor by 5? **(EX 4.1. 11)**
- 17. In how many ways 5 boys and 4 girls can be seated in a row so that no two girls are together. (E.g. 4.32)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **18.** 4 boys and 4 girls form a line with the boys and girls alternating. Find the number of ways of making this line. **(E.g. 4.33)**
- **19.** If the letters of the word *TABLE* are permuted in all possible ways and the words thus formed are arranged in the dictionary order, find the ranks of the words (*i*) *TABLE*, (*ii*) *BLEAT*. (E.g. 4.35)
- **20.** If $^{n-1}P_3$: $^nP_4 = 1$: 10 find n. (EX 4.2. 1)
- **21.** If ${}^{10}P_{r-1} = 2 \times {}^{6}P_{r}$ find r. (EX 4.2. 2)
- **22.** Prove: ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$. (Pr. 4)
- **23.** If $^{n+2}C_7$: $^{n-1}P_4 = 13:24$ find n. (E.g. 4.50)
- **24.** If $^{n+1}C_8$: $^{n-3}P_4 = 57$: 16, find the value of n. (EX 4.3. 6)
- 25. A polygon has 90 diagonals. Find the number of its sides? (EX 4.3. 25)
- **26.** Using the induction, S.T. for any integer, $n \ge 2$, $3^n > n^2$. (E.g. 4.68)

5 MARKS

- 27. Find the sum of all 4 digit numbers that can be formed using the digits 1, 2, 4, 6, 8. (E.g. 4.43)
- **28.** How many strings are there using the letters of the word *INTERMEDIATE*, if (*i*) The vowels and consonants are alternative (*ii*) All the vowels are together (*iii*) Vowels are never together (*iv*) No two vowels are together. **(EX 4.3. 14)**
- **29.** Find the sum of all 4 —digit numbers that can be formed using digits 1, 2, 3, 4, and 5 repetitions not allowed? **(EX 4.3. 19)**
- **30.** Find the number of strings of 5 letters that can be formed with the letters of the word *PROPOSITION*. (E.g. 4.58)
- **31.** By the principle of mathematical induction, prove that, for all integers $n \ge 1$, $1^2 + 2^2 + 3^2 + \dots + n^2 = \frac{n(n+1)(2n+1)}{6}$. **(E.g. 4.65)**
- **32.** Prove that $3^{2n+2} 8n 9$ is divisible by 8 for all n > 1. (E.g. 4.66)
- **33.** Prove that the sum of the first n non-zero even numbers is $n^2 + n$. (EX 4.4. 3)
- **34.** Using the Mathematical induction, show that for any natural number $n \ge 2$,

$$\left(1 - \frac{1}{2^2}\right) \left(1 - \frac{1}{3^2}\right) \left(1 - \frac{1}{4^2}\right) \dots \dots \left(1 - \frac{1}{n^2}\right) = \frac{n+1}{2n}$$
. (EX 4.4. 5)

35. Using the Mathematical induction, show that for any natural number n,

$$\frac{1}{1.2.3} + \frac{1}{2.3.4} + \frac{1}{3.4.5} + \dots + \frac{1}{n.(n+1).(n+2)} = \frac{n(n+3)}{4(n+1)(n+2)}.$$
 (EX 4.4. 7)

36. Using the Mathematical induction, show that for any natural number n, $x^{2n} - y^{2n}$ is divisible by x + y. (EX 4.4. 10)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **37.** By the principle of mathematical induction, prove that, for $n \ge 1$, $1^2 + 2^2 + 3^2 + \dots + n^2 > \frac{n^3}{3}$. (**EX 4.4. 11**)
- **38.** Use induction to prove that $5^{n+1} + 4 \times 6^n$ when divided by 20 leaves a remainder 9, for all natural numbers n. **(EX 4.4. 13)**
- **39.** Use induction to prove that $10^n + 3 \times 4^{n+2} + 5$ is divisible by 9, for all natural numbers n. **(EX 4.4. 14)**

CHAPTER 5 BINOMIAL THEOREM, SEQUENCES AND SERIES

2 MARKS

- 1. Evaluate 98⁴. (E.g. 5.2)
- **2.** Find the middle term in the expansion of $(x + y)^6$. (E.g. 5.3)
- 3. Find the middle terms in the expansion of $(x + y)^7$. (E.g. 5.4)
- **4.** Find the last two digits of the number 7^{400} . (E.g. 5.11)
- **5.** If *n* is a positive integer, show that, $9^{n+1} 8n 9$ is always divisible by 64. **(EX 5.1. 9)**
- **6.** In the binomial expansion of $(a + b)^n$, the coefficients of the 4^{th} and 13^{th} terms are equal to each other, find n. **(EX 5.1. 13)**
- 7. Show that the sum of $(m+n)^{th}$ and $(m-n)^{th}$ term of an AP. is equal to twice the m^{th} term. (EX 5.3. 7)
- **8.** Expand $(1+x)^{\frac{2}{3}}$ up to four terms for |x| < 1. (E.g. 5.21)
- **9.** Expand $\frac{1}{(1+3x)^2}$ in powers of x. Find a condition on x for which the expansion is valid. **(E.g. 5.22)**
- **10.** Write the first 6 terms of the exponential series (i) e^{5x} (ii) e^{-2x} (iii) $e^{\frac{x}{2}}$. (EX 5.4. 5)
- **11.** Write the first 4 terms of the logarithmic series (i) $\log(1 + 4x)$ (ii) $\log\left(\frac{1-2x}{1+2x}\right)$. (EX 5.4. 6)
- **12.** Find the coefficient of x^4 in the expansion of $\frac{3-4x+x^2}{e^{2x}}$. (EX 5.4. 9)

3 MARKS

- **13.** Using Binomial theorem, prove that $6^n 5n$ always leaves remainder 1 when divided by 25 for all positive integer n. (E.g. 5.10)
- **14.** Expand: (i) $(2x^2 3\sqrt{1 x^2})^4 + (2x^2 + 3\sqrt{1 x^2})^4$. (EX 5.1. 1(ii))
- **15.** Find the constant term of $(2x^3 \frac{1}{3x^2})^5$. **(EX 5.1. 7)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **16.** If a and b are distinct integers, prove that a b is a factor of $a^n b^n$ whenever n is a positive integer. **(EX 5.1. 12)**
- **17.** Prove that $c_0^2 + c_1^2 + c_2^2 + \dots + c_n^2 = \frac{(2n)!}{(n!)^2}$. **(EX 5.1. 16)**
- **18.** Find the sum up to *n* terms of the series: $1 + \frac{6}{7} + \frac{11}{49} + \frac{16}{343} + \dots$ (E.g. 5.16)
- **19.** Find the sum up to the 17^{th} term of the series $\frac{1^3}{1} + \frac{1^3 + 2^3}{1 + 3} + \frac{1^3 + 2^3 + 3^3}{1 + 3 + 5} + \dots$ (EX 5.2. 2)
- **20.** Compute the sum of first n terms of $1 + (1 + 4) + (1 + 4 + 4^2) + (1 + 4 + 4^2 + 4^3) + \dots$ (EX 5.2. 4)
- **21.** Find the value of n, if the sum to n terms of the series $\sqrt{3} + \sqrt{75} + \sqrt{243} + \dots$ is $435\sqrt{3}$. **(EX 5.2. 6)**
- **22.** Expand $\frac{1}{(3+2x)^2}$ in powers of x. Find a condition on x for which the expansion is valid. **(E.g.** 5.23)
- **23.** Find $\sqrt[3]{65}$. **(E.g. 5.24)**
- **24.** Find $\sqrt[3]{1001}$ approximately. **(EX 5.4. 2)**

5 MARKS

- **25.** The 2^{nd} , 3^{rd} and 4^{th} terms in the binomial expansion of $(x + a)^n$ are 240, 720 and 1080 for a suitable value of x. Find x, a and a. (E.g. 5.7)
- **26.** If the coefficients of three consecutive terms in the expansion of $(a + x)^n$ are in the ratio 1: 7: 42, then find n. **(EX 5.1. 14)**
- **27.** In the binomial coefficients of $(1 + x)^n$, the coefficients of the 5^{th} , 6^{th} and 7^{th} terms are in *AP* Find all values of n. **(EX 5.1. 15)**
- **28.** If AM and GM denote the arithmetic mean and the geometric mean of two nonnegative numbers, then $AM \ge GM$. The equality holds if and only if the two numbers are equal. **(Th. 5.2)**
- **29.** If GM and HM denote the geometric mean and the harmonic mean of two nonnegative numbers, then $GM \ge HM$. The equality holds if and only if the two numbers are equal. **(Th. 5.3)**
- **30.** The *AM* of two numbers exceeds their *GM* by 10 and *HM* by 16. Find the numbers. **(EX 5.2. 8)**
- **31.** If the roots of the equation $(q r)x^2 + (r p)x + p q = 0$ are equal, then show that p, q and r are in AP. **(EX 5.2. 9)**

- **32.** If a, b, c are respectively the p^{th} , q^{th} and r^{th} terms of a GP, S.T. $(q r) \log a + (r p) \log b + (p q) \log c = 0$. (EX 5.2. 10)
- **33.** Find the general term and sum to n terms of the sequence $1, \frac{4}{3}, \frac{7}{9}, \frac{10}{27}, \dots \dots \dots$ (EX 5.3. 5)
- **34.** Prove that $\sqrt[3]{x^3+7} \sqrt[3]{x^3+4}$ is approximately equal to $\frac{1}{x^2}$ when x is large. **(E.g. 5.25)**
- **35.** Prove that $\sqrt[3]{x^3+6} \sqrt[3]{x^3+3}$ is approximately equal to $\frac{1}{x^2}$ when x is sufficiently large. **(EX 5.4. 3)**
- **36.** Prove that $\sqrt{\frac{1-x}{1+x}}$ is approximately equal to $1-x+\frac{x^2}{2}$ when x is very small. **(EX 5.4. 4)**
- **37.** If p q is small compared to either p or q, then show that

$$\sqrt[n]{\frac{p}{q}} \simeq \frac{(n+1)p+(n-1)q}{(n-1)p+(n+1)q}$$
. Hence find $\sqrt[8]{\frac{15}{16}}$. **(EX 5.4. 8)**

38. Find the value of $\sum_{n=1}^{\infty} \frac{1}{2n-1} \left(\frac{1}{9^{n-1}} + \frac{1}{9^{2n-1}} \right)$. **(EX 5.4. 10)**

CHAPTER 6 TWO DIMENSIONAL ANALYTICAL GEOMETRY

2 MARKS

- **1.** Find the locus of a point P moves such that its distances from two fixed points A(1,0) and B(5,0) are always equal. **(E.g. 6.3)**
- **2.** If θ is a parameter, find the equation of the locus of a moving point, whose coordinates are $(a \sec \theta, b \tan \theta)$. (E.g. 6.4)
- **3.** Find the equation of the straight line passing through (-1,1) and cutting off equal intercepts, but opposite in signs with the two coordinate axes. **(E.g. 6.14)**
- **4.** The length of the perpendicular drawn from the origin to a line is 12 and makes an angle 150° with positive direction of the x —axis. Find the equation of the line. **(E.g. 6.16)**
- **5.** Find the nearest point on the line 2x + y = 5 from the origin. **(E.g. 6.24)**
- **6.** Find the equation of the bisector of the acute angle between the lines 3x + 4y + 2 = 0 and 5x + 12y 5 = 0. (E.g. 6.25)
- 7. Find the points on the line x + y = 5, that lie at a distance 2 units from the line 4x + 3y 12 = 0. (E.g. 6.26)
- **8.** Find the equation of the straight line parallel to 5x 4y + 3 = 0 and having x —intercept 3. **(EX 6.3. 2)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **9.** Find the length of the perpendicular and the co-ordinates of the foot of the perpendicular from (-10, -2) to the line x + y 2 = 0. **(EX 6.3. 10)**
- **10.** Show that the straight lines $x^2 4xy + y^2 = 0$ and x + y = 3 form an equilateral triangle. **(E.g. 6.36)**
- **11.** Find the combined equation of the straight lines whose separate equations are x 2y 3 = 0 and x + y + 5 = 0. **(EX 6.4. 1)**
- **12.** Show that $4x^2 + 4xy + y^2 6x 3y 4 = 0$ represents a pair of parallel lines. **(EX 6.4. 2)**
- **13.** Show that $2x^2 + 3xy 2y^2 + 3x + y + 1 = 0$ represents a pair of perpendicular lines. **(EX 6.4. 3)**

3 MARKS

- **14.** A straight rod of the length 6 units, slides with its ends A and B always on the x and y axes respectively. If O is the origin, then find the locus of the centroid of $\triangle OAB$. **(E.g. 6.5)**
- **15.** If θ is a parameter, find the equation of the locus of a moving point, whose coordinates are $(a(\theta \sin \theta), a(1 \cos \theta))$. (E.g. 6.6)
- **16.** Find the value of k and b, if the points P(-3,1) and Q(2,b) lie on the locus of $x^2 5x + ky = 0$. **(EX 6.1. 4)**
- **17.** Find the equation of the locus of a point such that the sum of the squares of the distance from the points (3,5), (1,-1) is equal to 20. **(EX 6.1. 6)**
- **18.** Express the equation $\sqrt{3}x y + 4 = 0$ in the following equivalent form: (*i*) Slope and Intercept form (*iii*) Intercept form (*iii*) Normal form **(E.g. 6.19)**
- **19.** If P(r,c) is midpoint of a line segment between the axes, then show that $\frac{x}{r} + \frac{y}{c} = 2$. (EX 6.2. 2)
- **20.** If p is length of perpendicular from origin to the line whose intercepts on the axes are a, b then S.T. $\frac{1}{p^2} = \frac{1}{a^2} + \frac{1}{b^2}$. (EX 6.2. 4)
- **21.** Find the equations of two straight lines which are parallel to the line 12x + 5y + 2 = 0 and at a unit distance from the point (1, -1). **(EX 6.3. 7)**
- **22.** Find the equation of a straight line parallel to 2x + 3y = 10 and which is such that the sum of its intercepts on the axes is 15. **(EX 6.3. 9)**
- **23.** A line is drawn perpendicular to 5x = y + 7. Find the equation of the line if the area of the triangle formed by this line with co-ordinate axes is 10 sq. units. **(EX 6.3. 16)**
- **24.** Find the equation of the pair of lines through the origin and perpendicular to the pair of lines $ax^2 + 2hxy + by^2 = 0$. (E.g. 6.35)

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **25.** If the pair of lines represented by $x^2 2cxy y^2 = 0$ and $x^2 2dxy y^2 = 0$ be such that each pair bisects the angle between the other pair, prove that cd = -1. **(E.g. 6.37)**
- **26.** Show that the straight lines joining the origin to the points of intersection of 3x 2y + 2 = 0 and $3x^2 + 5xy 2y^2 + 4x + 5y = 0$ are at right angles. **(E.g. 6.41)**
- **27.** Find the equation of the pair of straight lines passing through the point (1,3) and perpendicular to the lines 2x 3y + 1 = 0 and 5x + y 3 = 0. **(EX 6.4. 6)**
- **28.** Find the separate equation of the following pair of straight lines $2x^2 xy 3y^2 6x + 19y 20 = 0$ (EX 6.4. 7)

5 MARKS

- **29.** If the points P(6,2) and Q(-2,1) and R are the vertices of a ΔPQR and R is the point on the locus $y = x^2 3x + 4$, then find the equation of the locus of centroid of ΔPQR . **(EX 6.1. 12)**
- **30.** If *Q* is a point on the locus of $x^2 + y^2 + 4x 3y + 7 = 0$, then find the equation of locus of *P* which divides segment *OQ* externally in the ratio 3: 4, where *O* is origin. **(EX 6.1. 13)**
- **31.** The sum of the distance of a moving point from the points (4,0) and (-4,0) is always 10 units. Find the equation of the locus of the moving point. **(EX 6.1. 15)**
- **32.** The normal boiling point of water is $100^{\circ}C$ or $212^{\circ}F$ and the freezing point of water is $0^{\circ}C$ or $32^{\circ}F$. (i) Find the linear relationship between C and F Find (ii) the value of C for $98.6^{\circ}F$ and (iii) the value of F for $38^{\circ}C$ (EX 6.2. 5)
- **33.** An object was launched from a place P in constant speed to hit a target. At the 15^{th} second it was 1400m away from the target and at the 18^{th} second 800m away. Find (i) the distance between the place and the target (ii) the distance covered by it in 15 seconds. (iii) time taken to hit the target. **(EX 6.2. 6)**
- **34.** Find the equation of the lines passing through the point of intersection lines 4x y + 3 = 0 and 5x + 2y + 7 = 0, and (*i*) through the point (-1,2) (*ii*) Parallel to x y + 5 = 0 (*iii*) Perpendicular to x 2y + 1 = 0 (**EX 6.3. 6**)
- **35.** If p_1 and p_2 are the lengths of the perpendiculars from the origin to the straight lines $x \sec \theta + y \csc \theta = 2a$ and $x \cos \theta y \sin \theta = a \cos 2\theta$, then prove that $p_1^2 + p_2^2 = a^2$. **(EX 6.3. 11)**
- **36.** Find the image of the point (-2,3) about the line x + 2y 9 = 0. (EX 6.3. 17)
- **37.** Find all the equations of the straight lines in the family of the lines y = mx 3, for which m and the x –coordinate of the point of intersection of the lines with x y = 6 are integers. **(EX 6.3. 20)**

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

- **38.** If the equation $\lambda x^2 10xy + 12y^2 + 5x 16y 3 = 0$ represents a pair of straight lines, find (*i*) the value of λ and the separate equations of the lines (*ii*) point of intersection of the lines (*iii*) angle between the lines (**E.g. 6.38**)
- **39.** Show that the straight lines $x^2 4xy + y^2 = 0$ and x + y = 3 form an equilateral triangle. **(E.g. 6.36)**
- **40.** Prove that the equation to the straight lines through the origin, each of which makes an angle α with the straight line y = x is $x^2 2xy \sec 2\alpha + y^2 = 0$. (EX 6.4. 5)
- **41.** A $\triangle OPQ$ is formed by the pair of straight lines $x^2 4xy + y^2 = 0$ and the line PQ. The equation of PQ is x + y 2 = 0. Find the equation of the median of the triangle $\triangle OPQ$ drawn from the origin O. **(EX 6.4. 10)**
- **42.** Find p and q, if the following equation represents a pair of perpendicular lines $6x^2 + 5xy py^2 + 7x + qy 5 = 0$. **(EX 6.4. 11)**
- **43.** Show that the equation $9x^2 24xy + 16y^2 12x + 16y 12 = 0$ represents a pair of parallel lines. Find the distance between them. **(EX 6.4. 14)**

One Words Question with Answer

1. SETS, RELATIONS AND FUNCTIONS

1.	If two sets A and B have 17 elements in common, then the number of elements common to the								
	set $A \times B$ and $B \times A$ is								
	$(a) 2^{17}$	$(b) 17^2$		(c) 34	(d) insufficient data				
2.	The range of the funct	f(x) = x	[x]-x	$x \in R$ is					
	(a) [0,1]	$(b) [0, \infty)$		(c)[0,1)	(<i>d</i>) (0,1)				
3.	If $A = \{(x, y) : y = sin$	$x, x \in R$ and R	$B = \{(x \in B) \mid (x \in B) \in B \mid (x \in B) \in B \mid (x \in B) \in B \}$	$(x,y): y = \cos x$	$x, x \in R$ then $A \cap B$ contains				
	(a) no element		(<i>b</i>) in	(b) infinitely many elements					
	(c) only one element		(<i>d</i>) ca	nnot be deter	mined.				
4.	The number of consta	nt functions fr	om a se	et containing	m elements to a set containing n				
	elements is								
	(a) mn	(b) m	(c) n		(d) m + n				
5.	Let A and B be subset	s of the univer	sal set	N, the set of n	natural numbers. Then $A' \cup [(A \cap B) \cup$				
	<i>B'</i>] is								
	(a) A	(b) A'	(c) B		(d) \mathbb{N}				
6.	The number of studer	its who take bo	oth the	subjects Math	nematics and Chemistry is 70. This				
	represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry.								
	The number of studer	its take at least	t one of	these two su	bjects, is				
	(a) 1120	(b) 1130		(c) 1100	(d) insufficient data				
7.	The function $f: \mathbb{R} \to \mathbb{R}$	R is defined by	f(x) =	sin x + cos x	x is				
	(a) an odd function (b) neither an odd function nor an even function								
	(c) an even function	(<i>d</i>) bo	th odd	function and	even function.				
8.	For non-empty sets A and B , if $A \subset B$ then $(A \times B) \cap (B \times A)$ is equal to								
	$(a) A \cap B$	(b) $A \times A$		$(c) B \times B$	(d) None of these.				
9.	The number of relation	ns on a set cor	ntaining	g 3 elements i	s				
	(a) 9	(b) 81	(c) 51	2	(d) 1024				
10.	Let $X = \{1,2,3,4\}$ and	$R = \{(1,1), (1$,2),(1,3	3), (2,2), (3,3)	(2,1),(3,1),(1,4),(4,1). Then R is				
	(a) reflexive	(b) symmetri	ic	(c) transitive	e (d) equivalence				
11.	The range of the funct	$ tion \frac{1}{1 - 2\sin x} is $							
	$(a) (-\infty, -1) \cup \left(\frac{1}{3}, \infty\right)$)		$(b) \left(-1,\frac{1}{3}\right)$					
	$(c) \left[-1,\frac{1}{3}\right]$			(d) $(-\infty, -1)$	$\left(1\right) \cup \left[\frac{1}{3},\infty \right)$				

12. The function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \frac{(x^2 + \cos x)(1 + x^4)}{(x - \sin x)(2x - x^3)} + e^{- x }$ is							
(a) an odd function (b) neither an odd function nor an even function							
(c) an even function (d) both odd function and even function.							
13. The rule $f(x) = x^2$ is a bijection if the domain and the co-domain are given by							
$(a)\mathbb{R},\mathbb{R}$ $(b)\mathbb{R},(0,\infty)$ $(c)(0,\infty),\mathbb{R}$ $(d)[0,\infty),[0,\infty)$							
14. The function $f:[0,2\pi] \rightarrow [-1,1]$ defined by $f(x) = \sin x$ is							
(a) one-to-one (b) onto (c) bijection (d) cannot be defined							
15. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = 1 - x $. Then the range of f is							
(a) \mathbb{R} (b) $(1,\infty)$ (c) $(-1,\infty)$ (d) $(-\infty,1]$							
16. Let <i>R</i> be the universal relation on a set <i>X</i> with more than one element. Then <i>R</i> is							
(a) not reflexive (b) not symmetric (c) transitive (d) none of the above							
17. If the function $f: [-3,3] \to S$ defined by $f(x) = x^2$ is onto, then S is							
(a) $[-9,9]$ (b) \mathbb{R} (c) $[-3,3]$ (d) $[0,9]$							
18. If $n(A) = 2$ and $n(B \cup C) = 3$, then $n[(A \times B) \cup (A \times C)]$ is							
(a) 2^3 (b) 3^2 (c) 6							
19. Let $X = \{1,2,3,4\}, Y = \{a,b,c,d\}$ and $f = \{(1,a),(4,b),(2,c),(3,d),(2,d)\}$. Then f is							
(a) an one-to-one function (b) an onto function							
(c) a function which is not one-to-one (d) not a function							
20. The relation <i>R</i> defined on a set $A = \{0, -1, 1, 2\}$ by xRy if $ x^2 + y^2 \le 2$, then which one of the							
following is true?							
$(a)R = \{(0,0), (0,-1), (0,1), (-1,0), (-1,1), (1,2), (1,0)\}$							
$(b)R^{-1} = \{(0,0), (0,-1), (0,1), (-1,0), (1,0)\}$							
(c) Domain of R is $\{0, -1, 1, 2\}$ (d) Range of R is $\{0, -1, 1\}$							
21. If $A = \{(x, y) : y = e^x, x \in R\}$ and $B = \{(x, y) : y = e^{-x}, x \in R\}$ then $n(A \cap B)$ is							
(a) Infinity (b) 0 (c) 1 (d) 2							
22. If $n((A \times B) \cap (A \times C)) = 8$ and $n(B \cap C) = 2$, then $n(A)$ is							
(a) 6 (b) 4 (c) 8 (d) 16							
23. Let \mathbb{R} be the set of all real numbers. Consider the following subsets of the plane $\mathbb{R} \times \mathbb{R}$, $S =$							
$\{(x,y): y = x+1 \text{ and } 0 < x < 2\}$ and $T = \{(x,y): x-y \text{ is an integer}\}$. Then which of the							
following is true?							
(a) T is an equivalence relation but S is not an equivalence relation.							
(b) Neither S nor T is an equivalence relation							
(c) Both S and T are equivalence relation							
PREPARED BY SAMI SIR, Ph: 7639147727 (VOLUME-1) Page	22						

(*d*) *S* is an equivalence relation but *T* is not an equivalence relation.

- **24.** The inverse of $f(x) = \begin{cases} x & \text{if } x < 1 \\ x^2 & \text{if } 1 \le x \le 4 \text{ is } \\ 8\sqrt{x} & \text{if } x > 4 \end{cases}$

 - $(a) f^{-1}(x) = \begin{cases} x & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16 \\ \frac{x^2}{64} & \text{if } x > 16 \end{cases} \quad (b) f^{-1}(x) = \begin{cases} -x & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16 \\ \frac{x^2}{64} & \text{if } x > 16 \end{cases}$ $(c) f^{-1}(x) = \begin{cases} x^2 & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16 \\ \frac{x^2}{64} & \text{if } x > 16 \end{cases} \quad (d) f^{-1}(x) = \begin{cases} 2x & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16 \\ \frac{x^2}{8} & \text{if } x > 16 \end{cases}$
- **25.** If f(x) = |x-2| + |x+2|, $x \in R$, then
 - $(a) f(x) = \begin{cases} -2x & \text{if } x \in (-\infty, -2] \\ 4 & \text{if } x \in (-2, 2] \\ 2x & \text{if } x \in (2, \infty) \end{cases}$ $(b) f(x) = \begin{cases} 2x & \text{if } x \in (-\infty, -2] \\ 4x & \text{if } x \in (-2, 2] \\ -2x & \text{if } x \in (2, \infty) \end{cases}$

$$\begin{cases} -2x & if \ x \in (-\infty, -2] \\ -4x & if \ x \in (-2, 2] \\ 2x & if \ x \in (2, \infty) \end{cases} (d) f(x) = \begin{cases} -2x & if \ x \in (-\infty, -2] \\ 2x & if \ x \in (-2, 2] \\ 2x & if \ x \in (2, \infty) \end{cases}$$

2. BASIC ALGEBRA

- 1. If $\frac{1-2x}{3+2x-x^2} = \frac{A}{3-x} + \frac{B}{x+1}$, then the value of A + B is $(a) \frac{-1}{2} \qquad (b) \frac{-2}{3} \qquad (c) \frac{1}{2}$ 2. If $\frac{|x-2|}{x-2} \ge 0$, then x belongs to

- $(d)^{\frac{2}{3}}$

- - $(a) [2, \infty)$
- (b) $(2, \infty)$

- The value of $\log_3 11 \cdot \log_{11} 13 \cdot \log_{13} 15 \cdot \log_{15} 27 \cdot \log_{27} 81$ is
 - (a) 1
- (b) 2
- (d) 4
- The solution of 5x 1 < 24 and 5x + 1 > -24 is
 - (a)(4,5)
- (b) (-5,-4) (c) (-5,5) (d) (-5,4)
- If a and b are the real roots of the equation $x^2 kx + c = 0$, then the distance between the points (a, 0) and (b, 0) is
 - (a) $\sqrt{k^2-4c}$
- (b) $\sqrt{4k^2-c}$ (c) $\sqrt{4c-k^2}$ (d) $\sqrt{k-8c}$
- **6.** The value of $\log_3 \frac{1}{81}$ is
 - (a) 2
- (b) 8
- (c) 4
- (d) 9

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

The solution set of the following inequality $|x - 1| \ge |x - 3|$ is

	(a) [0,2]	(b) $[2,\infty)$	(c) (0,	2)	(d) $(-\infty,2)$			
8.	The value of $\log_a b \log_a b$	$g_b c \log_c a$ is						
	(a) 2	(b) 1	(c) 3		(d) 4			
9.	If 3 is the logarithm of 343, then the base is							
	(a) 5	(b) 7	(c) 6		(d) 9			
10.	If $\frac{kx}{(x+2)(x-1)} = \frac{2}{x+2} + \frac{1}{x-2}$	$\frac{1}{1}$, then the val	ue of k is					
	(a) 1	(b) 2	(c) 3		(d) 4			
11.	Find a so that the sum	and product o	f the roots of	the equation 2	$x^2 + (a-3)x + 3a - 5 = 0$			
	are equal is							
	(a) 1	(b) 2	(c) 0		(d) 4			
12.	Given that x , y and b a	are real number	$\operatorname{rs} x < y, b > 0$), then				
	(a) $xb < yb$	(b) xb > yb	$(c) xb \le yb$	$(d) \ \frac{x}{b} \ge \frac{y}{b}$				
13.	The equation whose r	oots are numer	rically equal b	ut opposite in	sign to the roots of $3x^2$ –			
	5x - 7 = 0 is							
	$(a)3x^2 - 5x - 7 = 0 (b)3x^2 + 5x - 7 = 0$							
	$(c)3x^2 - 5x + 7 = 0$		$(d)3x^2 + x -$	7				
14.	The value of $\log_{\sqrt{2}} 512$	2 is						
	(a) 16	(b) 18	(c) 9	(d) 12				
15.	. If 8 and 2 are the roots of $x^2 + ax + c = 0$ and 3,3 are the roots of $x^2 + dx + b = 0$ then the							
	roots of the equation $x^2 + ax + b = 0$ are							
	(a)1,2	(b) - 1,1	(c)9,1		(d) - 1,2			
16.	If $ x + 2 \le 9$, then $x > 1$	pelongs to						
	(a) $(-\infty, -7)$	(b)[-11,7]	(c) $(-\infty, -7)$	∪ [11,∞)	(<i>d</i>) (–11,7)			
17.	7. The number of roots of $(x + 3)^4 + (x + 5)^4 = 16$ is							
	(a) 4	(b) 2	(c) 3		(d) 0			
18.	3. The number of solutions of $x^2 + x - 1 = 1$ is							
	The number of solution	ons of $x^2 + x - x $	1 = 1 is					
	The number of solution (a) 1	ons of $x^2 + x - b $	c = 1 is $(c) 2$		(d) 3			
19.	(a) 1	(<i>b</i>) 0	(c) 2	16 = 0 and sat	(<i>d</i>) 3 isfy $a^2 + b^2 = 32$, then the			
19.	(a) 1	(<i>b</i>) 0	(c) 2	16 = 0 and sat				
19.	(a) 1 If a and b are the root	(<i>b</i>) 0	(c) 2					

20. If $\log_{\sqrt{x}} 0.25 = 4$, then the value of x is

(a) 0.5

(b) 2.5

(c) 1.5

(d) 1.25

3. TRIGONOMETRY

 $\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x}$ is equal to

 $(a) \cos 2x$

 $(b)\cos x$

 $(c)\cos 3x$

 $(d) 2 \cos x$

2. In a triangle ABC, $sin^2A + sin^2B + sin^2C = 2$, then the triangle is

(a) equilateral triangle

(b) isosceles triangle

(c) right triangle

(d) scalene triangle.

3. $\frac{1}{\cos 80^{\circ}} - \frac{\sqrt{3}}{\sin 80^{\circ}} =$

 $(a)\sqrt{2}$

(b) $\sqrt{3}$

(c) 2

(d) 4

4. If $\sin \alpha + \cos \alpha = b$, then $\sin 2\alpha$ is equal to

(a) $b^2 - 1$, if $b \le \sqrt{2}$

 $(b)b^2 - 1$, if $b > \sqrt{2}$

(c) $b^2 - 1$, if $b \ge 1$

 $(d)b^2 - 1$, if $b \ge \sqrt{2}$

5. The maximum value of $4 \sin^2 x + 3 \cos^2 x + \sin \frac{x}{2} + \cos \frac{x}{2}$ is

(a) $4 + \sqrt{2}$

(b) $3 + \sqrt{2}$

(d) 4

6. $\left(1 + \cos\frac{\pi}{8}\right) \left(1 + \cos\frac{3\pi}{8}\right) \left(1 + \cos\frac{5\pi}{8}\right) \left(1 + \cos\frac{7\pi}{8}\right) =$

(a) $\frac{1}{9}$

(b) $\frac{1}{2}$ (c) $\frac{1}{\sqrt{3}}$ (d) $\frac{1}{\sqrt{2}}$

7. Let $f_k(x) = \frac{1}{k} [\sin^k x + \cos^k x]$ where $x \in R$ and $k \ge 1$. Then $f_4(x) - f_6(x) =$

 $(b) \frac{1}{12}$ $(c) \frac{1}{6}$

8. In a $\triangle ABC$, if (i) $\sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} > 0$ (ii) $\sin A \sin B \sin C > 0$ then

(a) Both (i) and (ii) are true (b) Only (i) is true

(c) Only (ii) is true

(d) Neither (i) nor (ii) is true

9. If $f(\theta) = |\sin \theta| + |\cos \theta|$, $\theta \in R$, then $f(\theta)$ is in the interval

(a) [0,2]

(b) $[1,\sqrt{2}]$

(c) [1,2]

(d) [0,1]

10. If $\cos 28^{\circ} + \sin 28^{\circ} = k^{3}$, then $\cos 17^{\circ}$ is equal to

(a) $\frac{k^3}{\sqrt{2}}$

 $(b)\frac{-k^3}{\sqrt{2}}$ $(c)\pm\frac{k^3}{\sqrt{2}}$ $(d)-\frac{k^3}{\sqrt{3}}$

- 11. The triangle of maximum area with constant perimeter 12m is
 - (a) an equilateral triangle with side 4m
 - (b) an isosceles triangle with sides 2m, 5m, 5m
 - (c) a triangle with sides 3m, 4m, 5m
- (d) Does not exist.
- **12.** Which of the following is not true?

$$(a) \sin \theta = \frac{-3}{4} \qquad (b) \cos \theta = -1 \qquad (c) \tan \theta = 25 \qquad (d) \sec \theta = \frac{1}{4}$$

$$(b)\cos\theta=-1$$

(c)
$$\tan \theta = 25$$

$$(d)\sec\theta = \frac{1}{4}$$

13. $\cos 2\theta \cos 2\phi + \sin^2(\theta - \phi) - \sin^2(\theta + \phi)$ is equal to

(a)
$$\sin 2(\theta + \phi)$$
 (b) $\cos 2(\theta + \phi)$ (c) $\sin 2(\theta - \phi)$ (d) $\cos 2(\theta - \phi)$

(b)
$$\cos 2(\theta + \phi)$$

(c)
$$\sin 2(\theta - \phi)$$

(d)
$$\cos 2(\theta - \phi)$$

14. $\frac{\sin(A-B)}{\cos A \cos B} + \frac{\sin(B-C)}{\cos B \cos C} + \frac{\sin(C-A)}{\cos C \cos A}$ is

$$(a) \sin A + \sin B + \sin C$$

$$(d)\cos A + \cos B + \cos C$$

15. If $\tan \alpha$ and $\tan \beta$ are the roots of $x^2 + ax + b = 0$, then $\frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}$ is equal to

(a)
$$\frac{b}{a}$$

(b)
$$\frac{a}{b}$$

(b)
$$\frac{a}{b}$$
 (c) $\frac{-a}{b}$ (d) $\frac{-b}{a}$

$$(d) \frac{-b}{a}$$

16. If $\pi < 2\theta < \frac{3\pi}{2}$ then $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$ is equals to

$$(a) - 2\cos\theta$$

$$(a) - 2\cos\theta$$
 $(b) - 2\sin\theta$ $(c)2\cos\theta$

$$(d)$$
2 sin θ

17.
$$\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 179^{\circ} =$$

$$(c) - 1$$

$$(d)$$
 89

- 18. A wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete rotations?
 - (a) 10π seconds (b) 20π seconds
- (c) 5 π seconds
- (d) 15 π seconds
- **19.** If $\cos p\theta + \cos q\theta = 0$ and if $p \neq q$, then θ is equal to (n is any integer)

(a)
$$\frac{\pi(3n+1)}{n-a}$$

(b)
$$\frac{\pi(2n+1)}{n+a}$$

$$(c) \frac{\pi(n\pm 1)}{n+a}$$

$$(d) \frac{\pi(n+2)}{n+a}$$

20. If $\tan 40^\circ = \lambda \text{ then } \frac{\tan 140^\circ - \tan 130^\circ}{1 + \tan 140^\circ \tan 130^\circ}$

(a)
$$\frac{1-\lambda^2}{\lambda}$$

(b)
$$\frac{1+\lambda^2}{\lambda}$$

$$(c) \frac{1+\lambda^2}{2\lambda}$$

$$(d) \frac{1-\lambda^2}{2\lambda}$$

4. COMBINATORICS AND MATHEMATICAL INDUCTION

- **1.** In $2nC_3$: $nC_3 = 11$: 1 then n is

- (b) 6
- (c)11
- (d)7
- **2.** If nC_4 , nC_5 , nC_6 are in AP the value of n can be
 - (a) 14
- (b) 11
- (c)9
- (d)5

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

3.	The number of 5 digit	numbers all d	igits of v	which a	re odd	is	
	(a) 25	$(b) 5^5$	$(c) 5^6$		(d) 62	5.	
4.	In 3 fingers, the number of ways four rings can be worn is ways.						
	$(a)4^3-1$	$(b) 3^4$	$(c) 6^{8}$		$(d) 6^4$		
5.	Everybody in a room s	shakes hands v	with eve	rybody	else. T	he tota	al number of shake hands is
	66. The number of per	sons in the ro	om is				
	(a) 11	(b) 12	(c) 10		(d) 6		
6.	The product of r conso	ecutive positiv	e intege	ers is di	visible	by	
	(a) r!	(b) $(r-1)!$	(c) (r -	+ 1)!		$(d) r^r$	
7.	The number of five dig	git telephone n	numbers	having	g at leas	st one o	of their digits repeated is
	(a) 90000	(b) 10000		(c) 302	240		(d) 69760.
8.	The sum of the digits a	at the 10 th pla	ce of all	numbe	rs forn	ned wit	th the help of 2, 4, 5, 7 taken
	all at a time is						
	(a) 432	(b) 108		(c) 36		(d) 18	
9.	There are 10 points in	a plane and 4	of them	are co	llinear.	The n	umber of straight lines
	joining any two points	sis			(5)		
	(a) 45	(b) 40	(c) 39		(d) 38.		
10.	Number of sides of a p	olygon having	g 44 diag	gonals i	s		
	(a) 4	(b) 4!	(c) 11		(d) 22		
11.	The number of ways in	n which a host	lady in	vite 8 p	eople f	or a pa	rty of 8 out of 12 people of
	whom two do not want to attend the party together is						
	(a) $2 \times 11C_7 + 10 C_8$		(b) 110	$C_7 + 10$	C_8		
	(c) 12 $C_8 - 10C_6$			(d)100	$G_6 + 2!$		
12.	12. The number of parallelograms that can be formed from a set of four parallel lines intersectin					our parallel lines intersecting	
	another set of three pa	arallel lines.					
	(a) 6	(b) 9		(c) 12		(d) 18	
13.	1 + 3 + 5 + 7+	+17 is equal	to				
	(a) 101	(b) 81	(c) 71		(d) 61		
14.	In an examination the	re are three m	ultiple c	choice o	uestio	ns and	each question has 5 choices.
	Number of ways in wh	nich a student	can fail	to get a	ll answ	er corı	rect is
	(a) 125	(b) 124		(c) 64		(d) 63	

15.	5. If 10 lines are drawn in a plane such that no two of them are parallel and no three are					three are	
	concurrent, then the t	otal number o	f points of inte	ersection are			
	(a) 45	(b) 40	(<i>c</i>)10!	$(d) 2^{10}$			
16.	In a plane there are 1	0 points are th	ere out of whi	ch 4 points are	e collinear, tl	nen the number of	
	triangles formed is						
	(a) 110	(b) $10C_3$	(c) 12	0	(d) 116		
17.	$(n-1)\mathcal{C}_r + (n-1)\mathcal{C}_r$	$C_{(r-1)}$ is					
	$(a)(n+1)C_r$	$(b)(n-1)C_n$	$c(c) nC_r$	(d) n(G(r-1)		
18.	The number of 10 dig	it number that	t can be writte	n by using the	digits 2 and	3 is	
	$(a)10C_2 + 9C_2 (b) 2^{-1}$	$(a)10C_2 + 9C_2 (b) 2^{10}$		(d) 10)!		
19.	$If (a^2 - a)C_2 = (a^2 - a)$	$a)C_4$ then the	value of a is				
	(a) 2	(<i>b</i>) 3	(c) 4		(d) 5		
20.	The product of first n	odd natural n	umbers equals				
	(a) $2nC_n \times nP_n$		$(b)\left(\frac{1}{2}\right)^n \times 2nC_n \times nP_n$				
	$(c)\left(\frac{1}{4}\right)^n \times 2nC_n \times 2n$	P_n	$(d)nC_n \times nP_n$	6			
21.	The number of ways i	n which the fo	llowing prize l	oe given to a cl	lass of 30 bo	ys first and	
	second in mathematic	cs, first and sec	cond in physics	s, first in chem	istry and fir	st in English is	
	(a) $30^4 \times 29^2$	(b) $30^3 \times 29^3$	(c) 30	$^2 \times 29^4 (d) 30$	$) \times 29^5$.		
22. The number of rectangles that a chessboard has							
	(a) 81	$(b) 9^9$	(<i>c</i>)1296	(d) 65	561		
23.	23. The number of ways of choosing 5 cards out of a deck of 52 cards which include at least of				ude at least one		
	king is						
	$(a) 52C_5$	(b) $48C_5$	(c) 52	$2C_5 + 48C_5$	$(d) 52C_5 -$	48 <i>C</i> ₅	
24.	If P_r stands for P_r th	en the sum of	the series 1 +	$P_1 + 2P_2 + 3P_3$	$_3++nP_n$ is	S	
	$(a) P_{n+1}$	$(b)P_{n+1}-1$	$(c) P_{n-1} + 1$	(d) (n+1)P	n-1		
25.	If $(n+5)P_{(n+1)} = \frac{11(n+1)}{n+1}$	$\frac{n-1}{2}$. $(n+3)P_n$	$_{\imath}$, then the valu	\mathbf{n} e of n are			
	(a) 7 and 11	(b) 6 and 7	(c) 2 a	and 11 (d) 2 a	and 6.		
		5. BINOMIAL	THEOREM, SE	QUENCES AND	SERIES		
1	The coefficient of x^5 i	n the series $ ho^-$	-2x is				

PREPARED BY SAMI SIR, Ph: 7639147727

(a) $\frac{2}{3}$

(VOLUME-1)

Page 28

(b) $\frac{3}{2}$ (c) $\frac{-4}{15}$ (d) $\frac{4}{15}$

2.	The coefficient of x^8y^{12} in the	expansion of $(2x + 3y)^{20}$ is

(b)
$$2^83^{12}$$

(c)
$$2^83^{12} + 2^{12}3^8$$
 (d) $20C_82^83^{12}$

3. If
$$nC_{10} > nC_r$$
 for all possible r , then a value of n is

4. The value of
$$1 - \frac{1}{2} \left(\frac{2}{3}\right) + \frac{1}{3} \left(\frac{2}{3}\right)^2 - \frac{1}{4} \left(\frac{2}{3}\right)^3 + \dots$$
 is

(a)
$$\log\left(\frac{5}{3}\right)$$

(b)
$$\frac{3}{2}\log(\frac{5}{2})$$
 (c) $\frac{5}{2}\log(\frac{5}{2})$ (d) $\frac{2}{3}\log(\frac{2}{3})$

$$(c) \frac{5}{2} \log \left(\frac{5}{2}\right)$$

$$(d) \frac{2}{3} \log \left(\frac{2}{3}\right)$$

5. The value of
$$\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$$
 is

$$(a)^{\frac{e^2+1}{2e}}$$

$$(b)^{\frac{(e+1)^2}{2e}}$$
 $(c)^{\frac{(e-1)^2}{2e}}$

$$(c)^{\frac{(e-1)^2}{2}}$$

$$(d)^{\frac{e^2+1}{2a}}$$

6. The coefficient of
$$x^6$$
 in $(2 + 2x)^{10}$ is

(a)
$$10C_6$$

$$(b) 2^6$$

$$(c) 10C_62^6$$

(b)
$$2^6$$
 (c) $10C_62^6$ (d) $10C_62^{10}$

7. The value of the series
$$\frac{1}{2} + \frac{7}{4} + \frac{13}{8} + \frac{19}{16} + \dots$$
 is

$$(c)$$
 4

$$(c)$$
 5

9. The
$$n^{th}$$
 term of the sequence 1,2,4,7,11, is

(a)
$$n^3 + 3n^2 + 2n$$
 (b) $n^3 - 3n^2 + 3n$ (c) $\frac{n(n+1)(n+2)}{2}$

(b)
$$n^3 - 3n^2 + 3n^2$$

$$(c) \frac{n(n+1)(n+2)}{2}$$

(d)
$$\frac{n^2-n+2}{2}$$

10. The value of
$$2 + 4 + 6 + \dots + 2n$$
 is

(a)
$$\frac{n(n-1)}{2}$$

(b)
$$\frac{n(n+1)}{2}$$

(b)
$$\frac{n(n+1)}{2}$$
 (c) $\frac{2n(2n+1)}{2}$ (d) $n(n+1)$

$$(d) n(n+1)$$

11. If
$$a$$
 is the arithmetic mean and g is the geometric mean of two numbers, then

(a)
$$a \leq g$$

$$(b) a \ge g$$

$$(c) a = g$$

12. The sequence
$$\frac{1}{\sqrt{3}}$$
, $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{1}{\sqrt{3}+2\sqrt{2}}$, form an

$$(c)$$
 HP

13. The sum up to
$$n$$
 terms of the series $\frac{1}{\sqrt{1}+\sqrt{3}} + \frac{1}{\sqrt{3}+\sqrt{5}} + \frac{1}{\sqrt{5}+\sqrt{7}} + \dots$ is

$$(a)\,\sqrt{2n+1}$$

$$(b) \ \frac{\sqrt{2n+1}}{2}$$

(b)
$$\frac{\sqrt{2n+1}}{2}$$
 (c) $\sqrt{2n+1}-1$ (d) $\frac{\sqrt{2n+1}-1}{2}$

$$(d)^{\frac{\sqrt{2n+1}-1}{2}}$$

14. If
$$(1+x^2)^2(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + x^{n+4}$$
 and if a_0, a_1, a_2 are in AP, then n is

15. The sum up to *n* terms of the series
$$\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \dots$$
 is

(a)
$$\frac{n(n+1)}{2}$$

(b)
$$2n(n+1)$$
 (c) $\frac{n(n+1)}{\sqrt{2}}$

(c)
$$\frac{n(n+1)}{\sqrt{2}}$$

$$(d)$$
 1

16. If a, 8, b are in AP, a, 4, b are in GP, and if a, x, b are in HP then x is

	(a)2	(b)1	(c)4	(d)16				
17.	The sum of an infinite GP is 18. If the first term is 6, the common ratio is							
	(a) $\frac{1}{3}$	(b) $\frac{2}{3}$	$(c) \frac{1}{6}$	$(d) \frac{3}{4}$				
18.	The remainder when 38^{15} is divided by 13 is							
	(a) 12	(b) 1	(c) 11 (d) 5					
19.	If S_n denotes the sum of n terms of an AP whose common difference is d , the value of S_n —							
	$2S_{n-1} + S_{n-2}$ is							
	(a) d	(b) 2d (c) 4d	$(d) d^2$					
20.	The n^{th} term of the se	quence $\frac{1}{2}$, $\frac{3}{4}$, $\frac{7}{8}$, $\frac{15}{16}$,	is					
	(a) $2^n - n - 1$	(b) $1-2^{-n}$ (c) 2^{-n}	$n^{n}+n-1$ $(d)2^{n}$	-1				
		6. TWO DIMENSION	AL ANALYTICAL GEO	METRY				
1	The region on the line of	2 	(12)	1 (2, 4) in				
1.	The point on the line 2							
•	(a) (7,3)	(<i>b</i>) (4,1)						
2.								
	then the area of the square is							
_	(a) 20 sq. units		(c) 25 sq. units					
3.								
coordinate axes are								
	(a)5, -5		(c) 5,3					
4.	Which of the following							
	(a)(0,0)	(b)(-2,3)	(c)(1,2)	(d)(0,-1)				
5.	The equation of the lo	cus of the point whos	e distance from y —a	xis is half the distance from				
	origin is							
	$(a) x^2 + 3y^2 = 0$	$(b) x^2 - 3y^2 = 0$	$(c) \ 3x^2 + y^2 = 0$	$(d) 3x^2 - y^2 = 0$				
6.	The slope of the line w	which makes an angle	45° with the line $3x$	-y = -5 are				
	(a) $1,-1$	$(b)^{\frac{1}{2}}$, -2	(c) 1, $\frac{1}{2}$	$(d)2,\frac{-1}{2}$				
7.	Equation of the straig	ht line that forms an i	sosceles triangle with	n coordinate axes in the				
	<i>I</i> −quadrant with peri	imeter $4 + 2\sqrt{2}$ is						
	(a) x + y + 2 = 0	(b)x + y - 2 = 0	$(c)x + y - \sqrt{2} = 0 $	$d) x + y + \sqrt{2} = 0$				

PREPARED BY SAMI SIR, Ph: 7639147727

(VOLUME-1)

The coordinates of the four vertices of a quadrilateral are (-2,4), (-1,2), (1,2) and (2,4) taken in order. The equation of the line passing through the vertex (-1,2) and dividing the quadrilateral in the equal areas is

(a)
$$x + 1 = 0$$

(b)
$$x + y = 1$$

(b)
$$x + y = 1$$
 (c) $x + y + 3 = 0$ (d) $x - y + 3 = 0$

$$(d)x - y + 3 = 0$$

9. Which of the following equation is the locus of $(at^2, 2at)$

(a)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

(a)
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 (b) $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ (c) $x^2 + y^2 = a^2$ (d) $y^2 = 4ax$

$$(c) x^2 + y^2 = a^2$$

$$(d) y^2 = 4ax$$

10. The equation of one the line represented by the equation $x^2 + 2xy \cot \theta - y^2 = 0$ is

$$(a)x - y \cot \theta = 0$$

$$(b)x + y \tan \theta = 0$$

$$(c) x \cos \theta + y (\sin \theta + 1) = 0$$

$$(d)x\sin\theta + y(\cos\theta + 1) = 0$$

11. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to 5 is

(a)
$$x + 2y = \sqrt{5}$$

(b)
$$2x + y = \sqrt{5}$$

$$(c) 2x + y = 5$$

(a)
$$x + 2y = \sqrt{5}$$
 (b) $2x + y = \sqrt{5}$ (c) $2x + y = 5$ (d) $x + 2y - 5 = 0$

12. A line perpendicular to the line 5x - y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. units, then its equation is

(a)
$$x + 5y \pm 5\sqrt{2} = 0$$

$$(b) x - 5y \pm 5\sqrt{2} = 0$$

(c)
$$5x + y \pm 5\sqrt{2} = 0$$

(d)
$$5x - y \pm 5\sqrt{2} = 0$$

13. If the lines represented by the equation $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with $x - y^2 = 0$ axis, then $\tan \alpha \tan \beta =$

(a)
$$\frac{-6}{7}$$

(b)
$$\frac{6}{7}$$

(b)
$$\frac{6}{7}$$
 (c) $\frac{-7}{6}$ (d) $\frac{7}{6}$

$$(d)^{\frac{7}{6}}$$

14. If the point (8, -5) lies on the locus $\frac{x^2}{16} - \frac{y^2}{25} = k$ then the value of k is

$$(d)$$
 3

15. Equation of the straight line perpendicular to the linex x - y + 5 = 0, through the point of intersection the y –axis and the given line

$$(a) x - y - 5 = 0$$

(a)
$$x - y - 5 = 0$$
 (b) $x + y - 5 = 0$ (c) $x + y + 5 = 0$ (d) $x + y + 10 = 0$

16. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals to

$$(1) - 3$$

$$(b) - 1$$

17. If the equation of the base opposite to the vertex (2, 3) of an equilateral triangle is x + y = 2, then the length of a side is

(a)
$$\sqrt{3/2}$$

$$(c)\sqrt{6}$$

$$(c) \sqrt{6} \qquad (d) 3\sqrt{2}$$

- **18.** The line (p + 2q)x + (p 3q)y = p q for different values of p and q passes through the point
 - $(a)\left(\frac{3}{2},\frac{5}{2}\right)$
- (b) $\left(\frac{2}{5}, \frac{2}{5}\right)$ (c) $\left(\frac{3}{5}, \frac{3}{5}\right)$ (d) $\left(\frac{2}{5}, \frac{3}{5}\right)$
- **19.** θ is acute angle between the lines $x^2 xy 6y^2 = 0$, then $\frac{2\cos\theta + 3\sin\theta}{4\sin\theta + 5\cos\theta}$ is
 - (a) 1

- $(b)^{\frac{-1}{\alpha}}$ $(c)^{\frac{5}{\alpha}}$
- **20.** The image of the point (2, 3) in the line y = -x is
 - (a)(-3,-2)

- (b)(-3,2)(c)(-2,-3)(d)(3,2)
- **21.** The length of \perp from the origin to the line $\frac{x}{3} \frac{x}{4} = 1$ is
 - $(a)^{\frac{11}{5}}$

- (b) $\frac{5}{12}$ (c) $\frac{12}{5}$ (d) $\frac{-5}{12}$
- **22.** The area of the triangle formed by the lines $x^2 4y^2 = 0$ and x = a is
 - (a) $2a^{2}$

- (b) $\frac{\sqrt{3}}{2}a^2$ (c) $\frac{1}{2}a^2$ (d) $\frac{2}{\sqrt{3}}a^2$
- **23.** The y –intercept of the straight line passing through (1,3) and perpendicular to 2x 3y +1 = 0 is
 - $(a)^{\frac{3}{2}}$
- $(b)^{\frac{9}{2}}$
- $(c) \frac{2}{3}$
- $(d)^{\frac{2}{\alpha}}$
- **24.** Straight line joining the points (2, 3) and (-1, 4) passes through the point (α, β) if (α) α +
 - $2\beta = 7$ (b) $3\alpha + \beta = 9$
- (c) $\alpha + 3\beta = 11$ (d) $3\alpha + \beta = 11$
- **25.** If the two straight lines x + (2k 7)y + 3 = 0 and 3kx + 9y 5 = 0 are perpendicular then the value of k is
 - (a) k = 3
- $(b)k = \frac{1}{3}$ $(c) k = \frac{2}{3}$ $(d) k = \frac{3}{2}$

Centum Holders of Mathematics

K.NISHANITHI

A.ATCHAYA

R.JAYASURIYA

K.KAVYA SRI

10

.