11105

No. of Printed Pages: 4
Register Number

		PART - III PHYSICS	
Time Allowed	: 3.00 Hours]		[Maximum Marks

Instructions : (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

PART - II

Note : Answer All the questions. $14 \times 2=28$

1. A car takes a turn with the velocity $50 \mathrm{~ms}^{-1}$ on a circular road of radius of curvature 10 m . Calculate the centrifugal force experienced by a person of mass 60 kg inside the car. [MARCH - 2019]
2. The surface tension of a soap solution is $0.03 \mathrm{Nm}^{-1}$. How much work is done in producing soap bubble of radius 0.05 m ? [MARCH - 2019]
3. Calculate the value of orbital velocity for an artificial satellite of earth orbiting at a height of 1000 km (Mass of the earth $=6 \times 10^{24} \mathrm{~kg}$, radius of the earth $=6400 \mathrm{~km}$). [MARCH - 2019]
4. During a cyclic process, a heat engine absorbs 500 J of heat from a hot reservoir, does work and ejects an amount of heat 300 J into the surroundings (cold reservoir). Calculate the efficiency of the heat engine. [MARCH-2020, AUGUST - 2022]
5. If the length of the simple pendulum is increased by 44% from its original length, calculate the percentage increase in time period of the pendulum. [MARCH - 2020]
6. The position vector and angular velocity vector of a particle executing uniform circular motion at an instant are $2 \hat{\imath}$ and $4 \hat{k}$ respectively. Find its linear velocity at that instant. [SEPTEMBER - 2020]
7. A metal cube of side 0.20 m is subjected to a shearing force of 4000 N . The top surface is displaced through 0.50 cm with respect to the bottom. Calculate the shear modulus of elasticity of the metal. [SEPTEMBER - 2020]
[Turn Over

Kindly send me your questions and answerkeys to us : Padasalai.Net @gmail.com
8. Two objects of masses 2 kg and 4 kg are moving with same momentum of $20 \mathrm{kgms}^{-1}$.
(A) Will they have same kinetic energy?
(B) Will they have same speed? [SEPTEMBER - 2020]
9. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an enemy submarine is observed to be 80 sec. If the speed of sound in water is $1460 \mathrm{~ms}^{-1}$, what is the distance of enemy submarine? [MAY - 2022]
10. A particle moves along the x-axis in such a way that its coordinates x varies with time ' t ' according to equation $x=2-5 t+6 t$?. What is the initial velocity of the particle?
[MAY - 2022]
11. A mobile phone tower transmits a wave signal of frequency 900 MHz . Calculate the length of the waves transmitted from the mobile phone tower. [AUGUST - 2022]
12. Consider two trains A and B moving along parallel tracks with same velocity in the same direction. Let the velocity of each train be $50 \mathrm{~km} / \mathrm{hr}$ due east. Calculate the relative velocities of the trains. [AUGUST - 2022]
13. If two objects of masses 2.5 kg and 100 kg experience the same force 5 N , what is the acceleration experienced by each of them?
14. Consider a circular leveled road of radius 10 m having coefficient of static friction 0.81 . Three cars (A, B and C) are travelling with speed $7 \mathrm{~m} \mathrm{~s}^{-1}, 8 \mathrm{~m} \mathrm{~s}^{-1}$ and $10 \mathrm{~ms}^{-1}$ respectively. Which car will skid when it moves in the circular level road? ($\mathrm{g}=10 \mathrm{~m} \mathrm{~s}^{-2}$)

PART - III

Note : Answer All the questions. $14 \times 3=42$
15. What is the torque of the force $\overrightarrow{\mathrm{F}}=3 \hat{\imath}-2 \hat{\jmath}+4 \hat{k}$ acting at a point $\vec{r}=2 \hat{\imath}+3 \hat{\jmath}+5 \hat{k}$ about the origin? [MARCH - 2019]
16. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3 m rotating with 240 rpm about an axis passing through its centre and perpendicular to its plane. [MARCH - 2019]
17. Two waves of wavelength 99 cm and 100 cm both travelling with the velocity of $396 \mathrm{~ms}^{-1}$ are made to interfere. Calculate the number of beats produced by them per sec. [MARCH - 2019]
18. A ball is thrown vertically upwards with the speed of $19.6 \mathrm{~ms}^{-1}$ from the top of a building and reaches the earth in 6 s . Find the height of the building.
[MARCH - 2019]
19. An object is thrown with initial speed $5 \mathrm{~ms}^{-1}$ with an angle of projection 30°. Calculate the maximum height reached and the horizontal range. [MARCH - 2020]
20. A force of $(4 \hat{\imath}-3 \hat{\jmath}+5 \hat{k}) \mathrm{N}$ is applied at a point whose position vector is $(7 \hat{\imath}+4 \hat{\jmath}-2 \hat{k}) \mathrm{m}$. Find the torque of force about the origin. [MARCH - 2020]
21. From a point on the ground, the top of a tree is seen to have an angle of elevation 60°. The distance between the tree and a point is 50 m . Calculate the height of the tree. [MARCH - 2020]
22. A train was moving at the rate of $54 \mathrm{kmh}^{-1}$ when brakes were applied. It came to rest within a distance of 225 m . Calculate the retardation produced in the train. [SEPTEMBER - 2020]
23. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?

[SEPTEMBER - 2020]

24. Calculate the amplitude, angular frequency, frequency, time period and initial phase of the simple harmonic oscillation for the given equation $y=0.3 \sin (40 \pi t+1.1)$. [SEPTEMBER - 2020]

11105

25. Express 76 cm of mercury pressure in terms of Nm^{-2} using the method of dimensions. [SEPTEMBER - 2020]
26. What are the resultants of the vector product of two vectors given by $\overrightarrow{\mathrm{A}}=4 \hat{\imath}-2 \hat{\jmath}+\hat{k}$ and $\overrightarrow{\mathrm{B}}=5 \hat{\imath}+3 \hat{\jmath}-4 \hat{k}$? [MAY-2022]
27. A person docs 30 kJ work on 2 kg of water by stirring using a paddle wheel. While stirring, around 5 kcal of heat is released from water through its container to the surface and surroundings by thermal conduction and radiation. What is the change in internal energy of the system? [MAY - 2022]
28. An electron of mass $9.1 \times 10^{-31} \mathrm{~kg}$ revolves around a nucleus in a circular orbit of radius $0.53 \AA$. What is the angular momentum of the electron? (Velocity of electron $\mathrm{v}=2.2 \times 10^{6} \mathrm{~ms}^{-1}$) [AUGUST - 2022]

REVISION EXAMINATION (NUMERICAL PROBLEMS) - FEBRUARY 2023

ANSWER KEY

PART - II

Note : Answer All the questions.

1. Centrifugal force is given by, $\mathrm{F}_{\mathrm{cf}}=\frac{m v^{2}}{r} ;=\frac{60 \times 50 \times 50}{10} ;=6 \times 2500$
$\mathrm{F}_{\mathrm{cf}}=15000 \mathrm{~N}$
2. Work dome = total surface area x surface tension
$\mathrm{W}=2 \times 4 \pi \mathrm{r}^{2} \times \mathrm{T} ;=2 \times 4 \times 3.14 \times(0.05)^{2} \times 0.03$
$=0.0025 \times 0.03 \times 8 \times 3.14$
$=1.884 \times 10^{-3} \mathrm{~J}$
3. $\mathrm{V}=\sqrt{\frac{G M_{e}}{R_{e}+h}} ;=\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6400+1000) \times 10^{3}}} \mathrm{~V}=7.353 \mathrm{kms}^{-1}$
4. The efficiency of heat engine is given by $\eta=1-\frac{\mathrm{Q}_{\mathrm{L}}}{\mathrm{Q}_{\mathrm{H}}} ; \eta=1-\frac{300}{500} ;=1-\frac{3}{5}$;
$\eta=1-0.6 ; 0.4$
The heat engine has 40% efficiency, implying that this heat engine converts only 40% of the input heat into work.
5. $\quad \mathrm{T} \propto \sqrt{l} ; \mathrm{T}=\mathrm{constant} \sqrt{l}$
$\frac{T_{f}}{T_{i}}=\sqrt{\frac{1+\frac{44}{100} l}{l}} ; \sqrt{1.44}=1.2 ;$
Therefore, $T_{f}=1.2 T_{i}=T_{i}+20 \% T_{i}$
6. $\overrightarrow{\mathrm{L}}=\overrightarrow{\mathrm{r}} \times \vec{\omega} ;=2 \vec{\imath} \times 4 \vec{k} ; 8 \vec{\jmath}$
7. $\mathrm{L}=0.20 \mathrm{~m}, \mathrm{~F}=4000 \mathrm{~N}, x=0.50 \mathrm{~cm} ;=0.005 \mathrm{~m}$ and Area $\mathrm{A}=\mathrm{L}^{2}=0.04 \mathrm{~m}^{2}$

Therefore, $\eta_{R}=\left(\frac{\mathrm{F}}{\mathrm{A}}\right) \times\left(\frac{\mathrm{L}}{x}\right) ;=\left(\frac{4000}{0.04}\right) \times\left(\frac{0.20}{0.005}\right) ;=4 \times 10^{6} \mathrm{Nm}^{2}$
8. (a) The kinetic energy of the mass is given by $K E=\frac{P^{2}}{2 m}$

For the object of mass 2 kg , kinetic energy is $\mathrm{KE}_{1}=\frac{(20)^{2}}{2 \times 2}=\frac{400}{4}=100 \mathrm{~J}$
For the object of mass 4 kg , kinetic energy is $\mathrm{KE}_{2}=\frac{(20)^{2}}{2 \times 4}=\frac{400}{8}=50 \mathrm{~J}$ the kinetic energy of both masses is not the same. The kinetic energy of the heavier object has lesser kinetic energy than smaller mass.
(b) As the momentum, $p=m v$, the two objects will not have same speed.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com
9. $v=80 \mathrm{~s}, \mathrm{v}=1460 \mathrm{~ms}^{-1}, \mathrm{D}=$?
$D=\frac{\mathrm{vt}}{2}=\frac{1460 \times 80}{2} ;=1460 \times 40 ; 58400 \mathrm{~m}$
$\mathrm{D}=58.4 \mathrm{~km}$
10. $X=2-5 t+6 t^{2}$

Velocity $v=\frac{d x}{d t}=\frac{d}{d t}\left(2-5 t+6 t^{2}\right)$ or $v=-5+12 \mathrm{t}$
For initial velocity, $\mathrm{t}=0$. Initial velocity $=-5 \mathrm{~ms}^{-1}$
11. Frequency, $\mathrm{f}=900 \mathrm{MHz} ;=900 \times 10^{6} \mathrm{~Hz}$

The speed of wave is $c=3 \times 10^{8} \mathrm{~ms}^{-1}$
$\lambda=\frac{\mathrm{v}}{\mathrm{f}}=\frac{3 \times 10^{8}}{900 \times 10^{6}} ;=0.33 \mathrm{~m}$
12. Relative velocity of B with respect to $A, v_{B A}=v_{B}-v_{A}$
$=50 \mathrm{~km} \mathrm{~h}^{-1}+(-50) \mathrm{km} \mathrm{h}^{-1}$; $=0 \mathrm{~km} \mathrm{~h}^{-1}$
Similarly, relative velocity of A with respect to B i.e., $V_{A B}$ is also zero.
Thus each train will appear to be at rest with respect to the other.
13. For the object of mass 2.5 kg , the acceleration is a $=\frac{F}{m}=\frac{5}{2.5} ;=2 \mathrm{~ms}^{-2}$

For the object of mass 100 kg , the acceleration is $\mathrm{a}=\frac{F}{m}=\frac{5}{100} ;=0.05 \mathrm{~ms}^{-2}$
14. From the safe turn condition, the speed of the vehicle (v) must be less than or equal $\sqrt{\mu_{\mathrm{s}} \mathrm{rg}} ; v \leq \sqrt{\mu_{\mathrm{s}} \mathrm{rg}} \sqrt{\mu_{\mathrm{s}} \mathrm{rg}}=\sqrt{0.81 \times 10 \times 10}=9 \mathrm{~ms}^{-1}$
For car $C, \sqrt{\mu_{\mathrm{s}} \mathrm{rg}}$ is less than v
The speed of car A, B and C are $7 \mathrm{~ms}^{-1}, 8 \mathrm{~ms}^{-1}$ and $10 \mathrm{~ms}^{-1}$ respectively. The cars A and B will have safe turns. But the car C has speed $10 \mathrm{~ms}^{-1}$ while it turns which exceeds the safe turning speed. Hence, the car C will skid.

PART - III

Note : Answer All the questions.
15. $\vec{\tau}=\vec{r} \times \vec{F}=\left|\begin{array}{rrr}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 2 & 3 & 5 \\ 3 & -2 & 4\end{array}\right|$
$=(12-(-10) \hat{\imath}+(15-8) \hat{\jmath}+(-4-9) \hat{k} \quad ; \overrightarrow{\boldsymbol{\tau}}=22 \hat{\imath}+7 \hat{\jmath}-13 \widehat{\boldsymbol{k}}$
16. The rotational kinetic energy is, $\mathrm{KE}=\frac{1}{2} \mathrm{I} \omega^{2}$.

The moment of Inertia of the ring is, $I=M R^{2}$
$\mathrm{I}=9 \times 3^{2}$; $=9 \times 9$; $=81 \mathrm{kgm}^{2}$
The angular speed of the ring is, $\omega=240 \mathrm{rpm} ;=\frac{240 \times 2 \pi}{60} \mathrm{rads}^{-1}$
$\mathrm{KE}=\frac{1}{2} \times 81 \times\left(\frac{240 \times 2 \pi}{60}\right)^{2} . ;=\frac{1}{2} \times 81 \times(8 \pi)^{2}$;
$\mathrm{KE}=\frac{1}{2} \times 81 \times 64(\pi)^{2}$;
$=2592 \times(\pi)^{2} ; K E \approx 25920 J$
$\mathrm{KE}=25.920 \mathrm{~kJ} \quad\left[(\pi)^{2} \approx 10\right]$
17. Frequency of first wave $f_{1}=\frac{v}{\lambda_{1}}=\frac{396}{0.96}$ cFrequency of second wave $f_{2}=\frac{v}{\lambda_{2}}=\frac{396}{1}$

Thus number of beat produced per second $b=f_{1}-f_{2} ;=396\left[\frac{1}{0.99}-\frac{1}{1}\right] ; b=4$
18. The ball is thrown upwards with velocity $19.6 \mathrm{~m} / \mathrm{s}$. During the upward motion it experiences $-9.8 \mathrm{~m} / \mathrm{s}^{2}$ acceleration due to which it comes to rest momentarily at the highest point in air. We can calculate the time taken to reach the highest point.
$v=u+a t ; 0=19.6-9.8 t ; t=2 \mathrm{sec}$
So the ball reaches the topmost point in air in 2 seconds.
Distance travelled by the ball until it reaches the highest point:
$\mathrm{s}=\mathrm{ut}+\mathrm{at}^{2} / 2=19.6 \times 2+9.8 \times 2^{2} / 2 \mathrm{~s}=19.6 \times 2+19.6=19.6 \times 3=58.8 \mathrm{~m}$
Hence the ball travels 58.8 m above the height of tower after throwing. Now the ball comes down and experiences an acceleration of $+9.8 \mathrm{~m} / \mathrm{s}^{2}$.
The time in which it reaches down from the highest point is $4 \mathrm{sec}(6-2)$ because 2 sec is consumed in reaching the highest point.
Now let us calculate the distance travelled by the ball to reach the earth in 4 sec . $s=u t+a t^{2} / 2 s=0 \times t+9.8 \times 4^{2} / 2 s=9.8 \times 8 \mathrm{~m}$ This distance also includes the distance from the throwing point to the highest point, ie 58.8 m .
So we need to subtract that distance from this calculated distance of $9.8 \times 8 \mathrm{~m}$. So height of tower $=9.8 \times 8-58.8=9.8 \times 8-9.8 \times 3=9.8 \times 5=49 \mathrm{~m}$. Hence height of the tower is 49 m .
19. i) maximum height of the projectile, $\mathrm{h}_{\max }=\frac{\mathrm{u}^{2} \sin ^{2} \theta}{2 \mathrm{~g}}$
$\mathrm{h}_{\max }=\frac{5^{2} \sin 30^{0} \sin 30^{0}}{2 \times 9.8} ;=\frac{25 \times\left[\frac{1}{2}\right] \times\left[\frac{1}{2}\right]}{2 \times 9.8} ;=\frac{25}{8 \times 9.8} ;=\frac{25}{78.4} ; \mathrm{h}_{\max }=0.3188 \mathrm{~m}$
ii) Horizontal Range $\mathrm{R}=\frac{\mathrm{u}^{2} \sin 2 \theta}{\mathrm{~g}} ;=\frac{\mathrm{u}^{2} 2 \sin \theta \cos \theta}{\mathrm{~g}} ;=\frac{5^{2} \times 2 \sin 30^{\circ} \cos 30^{\circ}}{9.8}$
$=\frac{25 \times 2\left[\frac{1}{2}\right] \times\left[\frac{\sqrt{3}}{2}\right]}{9.8} ;=\frac{25 \times 1.732}{2 \times 9.8}=\frac{43.300}{19.6} ; R=2.21 \mathrm{~m}$
20. $\vec{\tau}=\vec{r} \times \vec{F}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 7 & 4 & -2 \\ 4 & -3 & 5\end{array}\right|$
$=(20-6) \hat{\imath}-(35+8) \hat{\jmath}+(-21-16) \hat{k}$;
$=(14 \hat{\imath}-43 \hat{\jmath}-37 \hat{k}) \mathrm{Nm}$
21. For triangulation method $\tan \theta=\frac{h}{x}$
$\mathrm{h}=x \tan \theta ;=50 \times \tan 60^{\circ} ;=50 \times 1.732$
$\mathrm{h}=86.6 \mathrm{~m}$; The height of the tree is 86.6 m .
22. The final velocity of the particle $v=0$

The initial velocity of the particle $u=54 \times \frac{5}{18} \mathrm{~ms}^{-1}=15 \mathrm{~ms}^{-1} ; \mathrm{s}=225 \mathrm{~m}$
Retardation is always against the velocity of the particle.
$v^{2}=u^{2}-2 a S ; 0=(15)^{2}-2 a(225) ; 450 a=225$
$\mathrm{a}=\frac{225}{450} \mathrm{~ms}^{-2} ;=0.5 \mathrm{~ms}^{-2} ;$ Retardation $==0.5 \mathrm{~ms}^{-2}$
23. $\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{\mathrm{d}}{\mathrm{R}_{\mathrm{E}}}\right) ;=\left(1-\frac{200 \times 10^{3}}{6371 \times 10^{3}}\right) ;=\mathrm{g}(1-0.0314) ;=\mathrm{g}(0.9686)$
$\mathrm{g}^{\prime}=0.96 \mathrm{~g}$
Variation of g^{\prime} with altitude
$\mathrm{g}^{\prime}=\mathrm{g}\left(1-\frac{2 \mathrm{~h}}{\mathrm{R}_{\mathrm{E}}}\right) ;=\left(1-\frac{2 \times 200 \times 10^{3}}{6371 \times 10^{3}}\right) ;=\mathrm{g}(1-2(0.0314)) ;=\mathrm{g}(0.9372)$
$\mathrm{g}^{\prime}=0.94 \mathrm{~g}$

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com
24. $y=A \sin \left(\omega t+\varphi_{0}\right)$

Amplitude $\mathrm{A}=0.3$ unit
Angular frequency $\omega=40 \pi \mathrm{rad} \mathrm{s}^{-1}$
Frequency $f=\frac{\omega}{2 \pi} ;=\frac{40 \pi}{2 \pi} \quad f=20 \mathrm{~Hz}$
Time period $\mathrm{T}=\frac{1}{\mathrm{f}} ;=\frac{1}{20} \mathrm{~T}=0.05 \mathrm{sec}$.
Initial phase $\varphi_{0}: 1$: 1 rad
25. In cgs system 76 cm of mercury pressure $=76 \times 13.6 \times 980$ dyne cm^{-2}

The dimensional formula of pressure P is $\left[\mathrm{ML}^{-1} \mathrm{~T}^{-2}\right]$

$$
\begin{aligned}
& \mathrm{P}_{1}\left[\mathrm{M}_{1}^{\mathrm{a}} \mathrm{~L}_{1}^{\mathrm{b}} \mathrm{~T}_{1}^{\mathrm{c}}\right]=\mathrm{P}_{2}\left[\mathrm{M}_{2}^{\mathrm{a}} \mathrm{~L}_{2}^{\mathrm{b}} \mathrm{~T}_{2}^{\mathrm{c}}\right] ; \mathrm{P}_{2}=\mathrm{P}_{1}\left[\frac{\mathrm{M}_{1}}{\mathrm{M}_{2}}\right]^{\mathrm{a}}\left[\frac{\mathrm{~L}_{1}}{\mathrm{~L}_{2}}\right]^{\mathrm{b}}\left[\frac{\mathrm{~T}_{1}}{\mathrm{~T}_{2}}\right]^{\mathrm{c}} \\
& \mathrm{M}_{1}=1 \mathrm{~g}, \mathrm{M}_{2}=1 \mathrm{~kg} ; \mathrm{L}_{1}=1 \mathrm{~cm}, \mathrm{~L}_{2}=1 \mathrm{~m} ; \mathrm{T}_{1}=1 \mathrm{~s}, \mathrm{~T}_{2}=1 \mathrm{~s} \\
& \text { As } \mathrm{a}=1, \mathrm{~b}=-1 \text {, and } \mathrm{c}=-2 \\
& \text { Then } \mathrm{P}_{2}=76 \times 13.6 \times 980\left[\frac{1 \mathrm{~kg}}{1 \mathrm{~kg}}\right]^{1}\left[\frac{1 \mathrm{~cm}}{1 \mathrm{~m}}\right]^{-1}\left[\frac{1 \mathrm{~s}}{1 \mathrm{~s}}\right]^{-2} \\
& =76 \times 13.6 \times 980\left[\frac{10^{-3} \mathrm{~kg}}{1 \mathrm{~kg}}\right]^{1}\left[\frac{10^{-2} \mathrm{~m}}{1 \mathrm{~m}}\right]^{-1}\left[\frac{1 \mathrm{~s}}{1 \mathrm{~s}}\right]^{-2} \\
& =76 \times 13.6 \times 980 \times\left[10^{-3}\right] \times 10^{2} \\
& \mathrm{P}_{2}=1.01 \times 10^{5} \mathrm{Nm}^{-2}
\end{aligned}
$$

26. $\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=\left|\begin{array}{ccc}\hat{\imath} & \hat{\jmath} & \hat{k} \\ 4 & -2 & 1 \\ 5 & 3 & -4\end{array}\right|$
$=(8-3) \hat{\imath}+(5+16) \hat{\jmath}+(12+10) \hat{k}$;
$\overrightarrow{\mathrm{A}} \times \overrightarrow{\mathrm{B}}=5 \hat{\imath}+21 \hat{\jmath}+22 \hat{k}$
27. Work done on the system (by the person while stirring), $\mathrm{W}=-30 \mathrm{~kJ}=-30,000 \mathrm{~J}$

Heat flowing out of the system, $\mathrm{Q}=-5 \mathrm{kcal}=-5 \times 4184 \mathrm{~J}=-20920 \mathrm{~J}$
Using First law of thermodynamics, $\Delta \mathrm{U}=\mathrm{Q}-\mathrm{W}$
$\Delta U=-20,920 \mathrm{~J}-(-30,000) \mathrm{J}$
$\Delta U=-20,920 \mathrm{~J}+30,000 \mathrm{~J}=9080 \mathrm{~J}$
Here, the heat lost is less than the work done on the system, so the change in internal energy is positive.
28. Angular momentum of electron $L=m v r$
$9.1 \times 10^{-31} \times 2.2 \times 10^{6} \times 0.53 \times 10^{-10}$
$10.61 \times 10^{-35} \mathrm{kgms}^{-2}$

RAJENDRAN M, M.Sc., B.Ed., C.C.A., P.G. TEACHER IN PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

