www.Padasalai.Net - No.1 Educational Website in Tamilnadu

			11109					
No. of Printed Pages: 4	Register Number							

1 1 REVISION EXAMINATION (NUMERICAL PROBLEMS) – FEBRUARY 2023

PART - III PHYSICS

Time Allowed : 3.00 Hours] [Maximum Marks : 70

Instructions: (1) Check the question paper for fairness of printing. If there is any lack

of fairness, inform the Hall Supervisor immediately.

(2) Use **Blue** or **Black** ink to write and underline and pencil to draw

diagrams.

PART - II

Note: Answer **All the** questions.

14x2=28

14405

- A car takes a turn with the velocity 50 ms⁻¹ on a circular road of radius of curvature 10 m. Calculate the centrifugal force experienced by a person of mass 60 kg inside the car. [MARCH - 2019]
- 2. The surface tension of a soap solution is 0.03 Nm⁻¹. How much work is done in producing soap bubble of radius 0.05 m? [MARCH 2019]
- 3. Calculate the value of orbital velocity for an artificial satellite of earth orbiting at a height of 1000 km (Mass of the earth = $6x10^{24}$ kg, radius of the earth = 6400 km). [MARCH 2019]
- 4. During a cyclic process, a heat engine absorbs 500 J of heat from a hot reservoir, does work and ejects an amount of heat 300 J into the surroundings (cold reservoir).
 Calculate the efficiency of the heat engine. [MARCH 2020, AUGUST 2022]
- 5. If the length of the simple pendulum is increased by 44% from its original length, calculate the percentage increase in time period of the pendulum. [MARCH 2020]
- 6. The position vector and angular velocity vector of a particle executing uniform circular motion at an instant are $2\hat{\imath}$ and $4\hat{k}$ respectively. Find its linear velocity at that instant. [SEPTEMBER 2020]
- 7. A metal cube of side 0.20 m is subjected to a shearing force of 4000 N. The top surface is displaced through 0.50 cm with respect to the bottom. Calculate the shear modulus of elasticity of the metal. [SEPTEMBER 2020]

[Turn Over

11105

- 8. Two objects of masses 2 kg and 4 kg are moving with same momentum of 20 kgms^{-1} .
 - (A) Will they have same kinetic energy?
 - (B) Will they have same speed? [SEPTEMBER 2020]
- 9. In a submarine equipped with sonar, the time delay between the generation of a pulse and its echo after reflection from an enemy submarine is observed to be 80 sec. If the speed of sound in water is 1460 ms⁻¹, what is the distance of enemy submarine? [MAY 2022]
- 10. A particle moves along the x-axis in such a way that its coordinates x varies with time 't' according to equation x=2-5t+6t?. What is the initial velocity of the particle?

 [MAY 2022]
- 11. A mobile phone tower transmits a wave signal of frequency 900 MHz. Calculate the length of the waves transmitted from the mobile phone tower. [AUGUST 2022]
- 12. Consider two trains A and B moving along parallel tracks with same velocity in the same direction. Let the velocity of each train be 50 km / hr due east. Calculate the relative velocities of the trains. [AUGUST 2022]
- 13. If two objects of masses 2.5 kg and 100 kg experience the same force 5 N, what is the acceleration experienced by each of them?
- 14. Consider a circular leveled road of radius 10 m having coefficient of static friction 0.81. Three cars (A, B and C) are travelling with speed 7 m s⁻¹, 8 m s⁻¹ and 10 ms⁻¹ respectively. Which car will skid when it moves in the circular level road? $(g = 10 \text{ m s}^{-2})$

11105

3

PART - III

Note: Answer **All the** questions.

14x3=42

- 15. What is the torque of the force $\vec{F} = 3\hat{\imath} 2\hat{\jmath} + 4\hat{k}$ acting at a point $\vec{r} = 2\hat{\imath} + 3\hat{\jmath} + 5\hat{k}$ about the origin? [MARCH 2019]
- 16. Find the rotational kinetic energy of a ring of mass 9 kg and radius 3m rotating with 240 rpm about an axis passing through its centre and perpendicular to its plane.

 [MARCH 2019]
- 17. Two waves of wavelength 99 cm and 100 cm both travelling with the velocity of 396 ms⁻¹ are made to interfere. Calculate the number of beats produced by them per sec. [MARCH 2019]
- 18. A ball is thrown vertically upwards with the speed of 19.6 ms⁻¹ from the top of a building and reaches the earth in 6 s. Find the height of the building.

 [MARCH 2019]
- 19. An object is thrown with initial speed 5ms⁻¹ with an angle of projection 30°. Calculate the maximum height reached and the horizontal range. [MARCH 2020]
- 20. A force of $(4\hat{\imath} 3\hat{\jmath} + 5\hat{k})$ N is applied at a point whose position vector is $(7\hat{\imath} + 4\hat{\jmath} 2\hat{k})$ m. Find the torque of force about the origin. [MARCH 2020]
- 21. From a point on the ground, the top of a tree is seen to have an angle of elevation 60°. The distance between the tree and a point is 50 m. Calculate the height of the tree. [MARCH 2020]
- 22. A train was moving at the rate of 54 kmh⁻¹ when brakes were applied. It came to rest within a distance of 225 m. Calculate the retardation produced in the train. [SEPTEMBER 2020]
- 23. Suppose we go 200 km above and below the surface of the Earth, what are the g values at these two points? In which case, is the value of g small?

 [SEPTEMBER 2020]
- 24. Calculate the amplitude, angular frequency, frequency, time period and initial phase of the simple harmonic oscillation for the given equation $y = 0.3 \sin (40\pi t + 1.1)$. [SEPTEMBER 2020]

[Turn Over

11105

4

- 25. Express 76 cm of mercury pressure in terms of Nm⁻² using the method of dimensions. [SEPTEMBER 2020]
- 26. What are the resultants of the vector product of two vectors given by $\vec{A} = 4\hat{\imath} 2\hat{\jmath} + \hat{k}$ and $\vec{B} = 5\hat{\imath} + 3\hat{\jmath} 4\hat{k}$? [MAY 2022]
- 27. A person docs 30 kJ work on 2 kg of water by stirring using a paddle wheel. While stirring, around 5 kcal of heat is released from water through its container to the surface and surroundings by thermal conduction and radiation. What is the change in internal energy of the system? [MAY 2022]
- 28. An electron of mass 9.1×10^{-31} kg revolves around a nucleus in a circular orbit of radius 0.53\AA . What is the angular momentum of the electron? (Velocity of electron v= 2.2×10^6 ms⁻¹) [AUGUST 2022]

-000-

RAJENDRAN M, M.Sc., B.Ed., C.C.A., P.G. TEACHER IN PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

REVISION EXAMINATION (NUMERICAL PROBLEMS) - FEBRUARY 2023

ANSWER KEY

PART - II

Note: Answer **All the** questions.

14x2=28

- 1. Centrifugal force is given by, $F_{cf} = \frac{mv^2}{r}$; $= \frac{60 \times 50 \times 50}{10}$; $= 6 \times 2500$ $F_{cf} = 15000 \text{ N}$
- 2. Work dome = total surface area x surface tension W = $2 \times 4\pi r^2 \times T$; = $2 \times 4 \times 3.14 \times (0.05)^2 \times 0.03$ = $0.0025 \times 0.03 \times 8 \times 3.14$ = $1.884 \times 10^{-3} \text{ J}$
- 3. $V = \sqrt{\frac{GM_e}{R_e + h}}$; = $\sqrt{\frac{6.67 \times 10^{-11} \times 6 \times 10^{24}}{(6400 + 1000) \times 10^3}}$ V = 7.353 kms⁻¹
- 4. The efficiency of heat engine is given by $\eta=1-\frac{Q_L}{Q_H}$; $\eta=1-\frac{300}{500}$; $=1-\frac{3}{5}$; $\eta=1-0.6$; 0.4 The heat engine has 40% efficiency, implying that this heat engine converts only

The heat engine has 40% efficiency, implying that this heat engine converts only 40% of the input heat into work.

- 5. $T \propto \sqrt{l}$; $T = \text{constant } \sqrt{l}$ $\frac{T_f}{T_i} = \sqrt{\frac{1 + \frac{44}{100}l}{l}} \text{ ; } \sqrt{1.44} = 1.2 \text{ ;}$ Therefore, $T_f = 1.2 \text{ T}_i = T_i + 20\% \text{ T}_i$
- 6. $\vec{L} = \vec{r} \times \vec{\omega}$; = $2\vec{\iota} \times 4\vec{k}$; $8\vec{\jmath}$
- 7. L = 0.20m, F=4000N, x=0.50cm; =0.005m and Area A = L² = 0.04 m² Therefore, $\eta_R = \left(\frac{F}{A}\right) \times \left(\frac{L}{x}\right)$; = $\left(\frac{4000}{0.04}\right) \times \left(\frac{0.20}{0.005}\right)$; = 4 x 10⁶ Nm-²
- 8. (a) The kinetic energy of the mass is given by $KE = \frac{P^2}{2m}$ For the object of mass 2kg, kinetic energy is $KE_1 = \frac{(20)^2}{2x^2} = \frac{400}{4} = 100J$ For the object of mass 4kg, kinetic energy is $KE_2 = \frac{(20)^2}{2x^4} = \frac{400}{8} = 50J$ the kinetic energy of **both masses is not the same**. The kinetic energy of the **heavier object has lesser kinetic energy than smaller mass**.
 - (b) As the momentum, p = mv, the two objects **will not have same speed**.

9.
$$v = 80s$$
, $v = 1460 \text{ ms}^{-1}$, $D = ?$

$$D = \frac{v \text{ t}}{2} = \frac{1460 \times 80}{2} \text{ ; } = 1460 \times 40 \text{ ; } 58400m$$

$$D = 58.4 \text{km}$$

10.
$$X = 2 - 5t + 6t^2$$

Velocity $v = \frac{dx}{dt} = \frac{d}{dt}(2 - 5t + 6t^2)$ or $v = -5 + 12t$
For initial velocity, $t = 0$. Initial velocity = -5 ms^{-1}

11. Frequency, f = 900 MHz; = 900 x 10⁶ Hz
The speed of wave is c = 3 × 10⁸ms⁻¹
$$\lambda = \frac{v}{f} = \frac{3 \times 10^{8}}{900 \times 10^{6}}; = 0.33m$$

12. Relative velocity of B with respect to A,
$$v_{BA} = v_B - v_A$$

= 50 km h⁻¹ + (-50) km h⁻¹; = 0 km h⁻¹
Similarly, relative velocity of A with respect to B i.e., v_{AB} is also zero.
Thus each train will appear to be at rest with respect to the other.

- 13. For the object of mass 2.5 kg, the acceleration is a = $\frac{F}{m} = \frac{5}{2.5}$; = 2ms-2 For the object of mass 100 kg, the acceleration is a = $\frac{F}{m} = \frac{5}{100}$; = 0.05ms-2
- 14. From the safe turn condition, the speed of the vehicle (v) must be less than or equal $\sqrt{\mu_s rg}$; $v \leq \sqrt{\mu_s rg}$; $\sqrt{\mu_s rg} = \sqrt{0.81 \times 10 \times 10} = 9 \text{ ms}^{-1}$ For car C, $\sqrt{\mu_s rg}$ is less than v The speed of car A, B and C are 7 ms $^{-1}$, 8 ms $^{-1}$ and 10 ms $^{-1}$ respectively. The cars A and B will have safe turns. But the car C has speed 10 ms $^{-1}$ while it turns which exceeds the safe turning speed. Hence, the car C will skid.

PART - III

Note: Answer **All the** questions.

$$14x3=42$$

15.
$$\vec{\tau} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 2 & 3 & 5 \\ 3 & -2 & 4 \end{vmatrix}$$

= $(12 - (-10)\hat{i} + (15 - 8)\hat{j} + (-4 - 9)\hat{k}$; $\vec{\tau} = 22\hat{i} + 7\hat{j} - 13\hat{k}$

16. The rotational kinetic energy is , KE = $\frac{1}{2}$ I ω^2 .

The moment of Inertia of the ring is, $I = MR^2$

$$I = 9 \times 3^2$$
; = 9 x 9; = 81 kgm²

The angular speed of the ring is, ω = 240 rpm ; = $\frac{240 \times 2\pi}{60}$ rads⁻¹

KE =
$$\frac{1}{2}$$
 x 81 x $\left(\frac{240 \times 2\pi}{60}\right)^2$.; = $\frac{1}{2}$ x 81 x $(8\pi)^2$;

$$KE = \frac{1}{2} \times 81 \times 64 (\pi)^2$$
;

= 2592 x
$$(\pi)^2$$
; KE \approx 25920J

KE = 25.920 kJ
$$[(\pi)^2 \approx 10]$$

- 17. Frequency of first wave $f_1 = \frac{v}{\lambda_1} = \frac{396}{0.96}$; Frequency of second wave $f_2 = \frac{v}{\lambda_2} = \frac{396}{1}$ Thus number of beat produced per second $b = f_1 - f_2$; = 396 $\left[\frac{1}{0.99} - \frac{1}{1}\right]$; b = 4
- 18. The ball is thrown upwards with velocity 19.6 m/s. During the upward motion it experiences -9.8 m/s² acceleration due to which it comes to rest momentarily at the highest point in air. We can calculate the time taken to reach the highest point.

$$v = u + at$$
; $0 = 19.6 - 9.8 t$; $t = 2 sec$

So the ball reaches the topmost point in air in 2 seconds.

Distance travelled by the ball until it reaches the highest point:

$$s = ut + at^2/2 = 19.6 \times 2 + 9.8 \times 2^2/2 s = 19.6 \times 2 + 19.6 = 19.6 \times 3 = 58.8 m$$

Hence the ball travels 58.8 m above the height of tower after throwing. Now the ball comes down and experiences an acceleration of $+9.8 \text{ m/s}^2$.

The time in which it reaches down from the highest point is 4 sec (6-2) because 2 sec is consumed in reaching the highest point.

Now let us calculate the distance travelled by the ball to reach the earth in 4 sec. $s = ut + at^2/2$ $s = 0 \times t + 9.8 \times 4^2/2$ $s = 9.8 \times 8$ m This distance also includes the distance from the throwing point to the highest point, ie 58.8m.

So we need to subtract that distance from this calculated distance of 9.8×8 m. So height of tower = 9.8×8 - 58.8 = 9.8×8 - 9.8×3 = 9.8×5 = 49 m. Hence height of the tower is 49 m.

19. i) maximum height of the projectile,
$$h_{max} = \frac{u^2 \sin^2 \theta}{2g}$$

$$h_{\text{max}} = \frac{5^2 \sin 30^0 \sin 30^0}{2 \times 9.8}$$
; $= \frac{25 \times \left[\frac{1}{2}\right] \times \left[\frac{1}{2}\right]}{2 \times 9.8}$; $= \frac{25}{8 \times 9.8}$; $= \frac{25}{78.4}$; $h_{\text{max}} = 0.3188$ m

ii) Horizontal Range R =
$$\frac{u^2 \sin 2\theta}{g}$$
; = $\frac{u^2 2 \sin \theta \cos \theta}{g}$; = $\frac{5^2 \times 2 \sin 30^0 \cos 30^0}{9.8}$

$$=\frac{25 \times 2 \left[\frac{1}{2}\right] \times \left[\frac{\sqrt{3}}{2}\right]}{9.8}; = \frac{25 \times 1.732}{2 \times 9.8} = \frac{43.300}{19.6}; R = 2.21m$$

20.
$$\vec{t} = \vec{r} \times \vec{F} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 7 & 4 & -2 \\ 4 & -3 & 5 \end{vmatrix}$$

= $(20 - 6) \hat{i} - (35 + 8) \hat{j} + (-21 - 16) \hat{k}$;
= $(14\hat{i} - 43\hat{j} - 37 \hat{k}) \text{ Nm}$

- 21. For triangulation method tan $\theta = \frac{h}{x}$ $h = x \tan \theta$; = 50 × tan 60°; = 50 × 1.732 h = 86.6 m; The height of the tree is 86.6 m.
- 22. The final velocity of the particle v = 0

The initial velocity of the particle $u = 54 \times \frac{5}{18} \text{ ms}^{-1} = 15 \text{ ms}^{-1}$; s = 225 mRetardation is always against the velocity of the particle.

$$v^2 = u^2 - 2aS$$
; $0 = (15)^2 - 2a$ (225); 450 $a = 225$ $a = \frac{225}{450}$ ms⁻² ; =0.5 ms⁻² ; Retardation = =0.5 ms⁻²

23.
$$g' = g\left(1 - \frac{d}{R_E}\right)$$
; = $\left(1 - \frac{200 \times 10^3}{6371 \times 10^3}\right)$; = $g\left(1 - 0.0314\right)$; = $g\left(0.9686\right)$ $g' = 0.96 g$

Variation of g' with altitude

$$g' = g\left(1 - \frac{2h}{R_E}\right); = \left(1 - \frac{2 \times 200 \times 10^3}{6371 \times 10^3}\right); = g\left(1 - 2(0.0314)\right); = g\left(0.9372\right)$$

$$g' = 0.94 \ g$$

24.
$$y = A \sin (\omega t + \varphi_0)$$

Amplitude $A = 0.3$ unit
Angular frequency $\omega = 40\pi$ rad s⁻¹
Frequency $f = \frac{\omega}{2\pi}$; $= \frac{40\pi}{2\pi}$ $f = 20$ Hz
Time period $T = \frac{1}{f}$; $= \frac{1}{20}$ $T = 0.05$ sec.
Initial phase φ_0 : 1:1 rad

25. In cgs system 76 cm of mercury pressure = $76 \times 13.6 \times 980$ dyne cm⁻² The dimensional formula of pressure P is [ML⁻¹T⁻²]

$$\begin{split} & P_1 \Big[M_1^a \ L_1^b \ T_1^c \ \Big] = P_2 \Big[M_2^a \ L_2^b \ T_2^c \ \Big] \ ; \ P_2 = P_1 \Big[\frac{M_1}{M_2} \Big]^a \left[\frac{L_1}{L_2} \right]^b \left[\frac{T_1}{T_2} \right]^c \\ & M_1 = 1 g, \ M_2 = 1 kg; \ L_1 = 1 \ cm, \ L_2 = 1 m; \ T_1 = 1 \ s, \ T_2 = 1 s \\ & As \ a = 1, \ b = -1, \ and \ c = -2 \\ & Then \ P_2 = 76 \ x \ 13.6 \ x \ 980 \left[\frac{1 kg}{1 kg} \right]^1 \left[\frac{1 cm}{1 m} \right]^{-1} \left[\frac{1 s}{1 s} \right]^{-2} \\ & = 76 \ x \ 13.6 \ x \ 980 \ \left[\frac{10^{-3} kg}{1 kg} \right]^1 \left[\frac{10^{-2} m}{1 m} \right]^{-1} \left[\frac{1 s}{1 s} \right]^{-2} \\ & = 76 \ x \ 13.6 \ x \ 980 \ x \ [10^{-3}] \ x \ 10^2 \\ & P_2 = 1.01 \ x \ 10^5 \ Nm^{-2} \end{split}$$

26.
$$\vec{A} \times \vec{B} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 4 & -2 & 1 \\ 5 & 3 & -4 \end{vmatrix}$$

= $(8-3)\hat{i} + (5+16)\hat{j} + (12+10)\hat{k}$;
 $\vec{A} \times \vec{B} = 5\hat{i} + 21\hat{j} + 22\hat{k}$

27. Work done on the system (by the person while stirring), W = -30 kJ = -30,000 J Heat flowing out of the system, Q = $-5 \text{ kcal} = -5 \times 4184 \text{ J} = -20920 \text{ J}$ Using First law of thermodynamics, $\Delta U = Q - W$ $\Delta U = -20,920 \text{ J} - (-30,000) \text{ J}$ $\Delta U = -20,920 \text{ J} + 30,000 \text{ J} = 9080 \text{ J}$ Here, the heat lost is less than the work done on the system, so the change in internal energy is positive.

28. Angular momentum of electron L = mvr $9.1 \times 10^{-31} \times 2.2 \times 10^{6} \times 0.53 \times 10^{-10}$ $10.61 \times 10^{-35} \text{ kgms}^{-2}$

RAJENDRAN M, M.Sc., B.Ed., C.C.A., P.G. TEACHER IN PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.