												M	20	23	
No. of	Printeo	1 Pages	: 4				Register	Number							
B						PAR	RT – III	I							
	_			,	aw			YSICS							
							h Versio								
Time	Allowe	ed	: 3	3.00 F	Iours]			[Ma	ximı	1m [Mar	ks:	70	
Instr	uction	IS	:	(1)	is a		ick of t	n paper f fairness,					-	-	
				(2)			or Black agrams.	x ink to v	vrite	and	unc	lerliı	ne a	nd p	encil
Note	:	(i) (ii)	Choo	se th native	ne m	questio ost a	ppropri	ate ans					giv		four
1.	Ifaw	ire is s	stretch	ed to	doub	le of it	ts origin	al lengtl	n, th	en tl	he s	trai	n in	. the	wire
	is														
	(a)	3		(b)	1		(c)	4		(d)		2			
2.	Roun	d of th	ie follo	wing	num	ber 19	.95 inte	o three s	igni	fican	t fig	gure	s.		
	(a)	20.1		(b)	19.	9	(c)	19.5		(d)		20.0)		
3.	The g	raph l	betwee	n volu	ame a	and te	mperat	ure in Cl	harle	es'la	w is	S			
	(a)	a stra	aight li	ne			(b)	an ellij	pse						
	(c)	a par	abola				(d)	a circle	e						
4.	In the	e given	SHM	y = 2	sin (20πt+	1.5) the	frequen	cy o	f osc	cilla	tion	is:		
	(a)	10 Hz	z (b)	20 H	z	(c)	15 H	Iz	(d)	πŀ	Ηz				
5.	The k	inetic	energ	y of tł	ne sat	ellite	orbiting	g around	the	Ear	th is	3			
	(a)	great	er tha	n kine	etic ei	nergy	(b)	equal	to po	otent	tial	ener	gy		
	(c)	zero					(d)	less th	an p	ooter	ntial	l ene	ergy		
6.	The c		ıgal fo	-	-		xist								
	(a)		y acce				(b)	only in	i ine	rtial	fra	mes			
	(c)						rtial fra	mes						г <i>т</i>	
	(d)	only i	n rota	ting f	rame	S								ן דט	ırn Ove

M2023

2

7.	If an	object is fal	ling fro	om a height (of 20 r	n, then the t	ime ta	ken by the object
		•	-	gnore air resi				· ·
	(a)	2 s	(b)	1.732 s	(c)	1.532 s	(d)	1.414 s
8.	The	fundamenta	l frequ	ency of close	ed orga	an pipe whos	se leng	th is 10 cm is:
	(a)	4.5 vHz	(b)	2.5 vHz	(c)	10 vHz	(d)	2 vHz
9.	A pa	article execu	ting S	HM crosses	point	s A and B	with t	he same velocity.
	Havi	ng taken 3 s	in pas	ssing from A	to B, i	it returns to	B afte	r another 3 s. The
	time	period is						
	(a)	12 s	(b)	15 s	(c)	9 s	(d)	6 s
10.	If the	e temperatur	re and	pressure of	a gas i	is doubled th	ne mea	an free path of the
	gas 1	molecules						
	(a)	tripled			(b)	remains sa	ame	
	(c)	quadruple	d		(d)	doubled		
11.	A ur	niform force	of (2î	$+\hat{j}$)+ N acts	on a	particle of 1	nass	l kg. The particle
	disp	laces from p	osition	$(3\hat{j} + \hat{k}) $ m	to (5î -	+ 3ĵ).The wo	ork doi	ne by the force on
	the p	particle is :						
	(a)	10 J	(b)	9 J	(c)	12 J	(d)	6 J
12.	A rig	gid body rot	ates w	rith an angu	lar mo	omentum L.	If its	kinetic energy is
	halv	ed, the angu	lar mo	mentum bec	comes,			
	(a)	2L	(b)	L	(c)	$\frac{L}{\sqrt{2}}$	(d)	$\frac{L}{2}$
13.	Whie	ch one of th	e follo	wing physic	al qua	ntities cann	ot be	represented by a
	scala				-			1 5
	(a)	momentun	n		(b)	Mass		
	(c)	magnitude	of acc	eleration	(d)	length		
14.	The	dimensional	formu	la for coeffic	ient of	viscosity is	:	
	(a)	ML-2T-2	(b)	MLT ⁻²	(c)	$ML^{-1}T^{-2}$	(d)	$ML^{-1}T^{-1}$
15.	A so	und wave wł	nose fr	equency is 5	000 H	z travels in a	air and	l then hits the
	wate	er surface. Th	ne ratio	o of its wave	length	s in water ar	nd air	is
	(a)	5.30	(b)	4.30	(c)	1.23	(d)	0.23

B

3

PART – II

Note : Answer any six questions. Question No. 24 is compulsory. 6x2=12

- 16. Write the rules for determining significant figures.
- 17. Define scalar. Give examples.
- 18. Under what condition will a car skid on a levelled circular road ?
- 19. Write any two differences between conservative and non-conservative Force.
- 20. What are the conditions in which Force cannot produce Torque ?
- 21. State Newton's Universal Law of Gravitation.
- 22. Define Poisson's ratio.
- 23. State Zeroth Law of Thermodynamics.
- 24. Two objects of masses 3 kg and 6 kg are moving with the same momentum of 30kgms⁻¹. Will they have same kinetic energy ?

PART – III

Note : Answer any six questions. Question No. 33 is compulsory. 6x3=18

- 25. What is Gross Error ? State the reasons for it and how to minimize the errors.
- 26. Write the properties of scalar product of two vectors.
- 27. State the differences between centripetal force and centrifugal force.
- 28. State the various types of potential energy. Explain its formulae.
- 29. Explain geostationary satellites.

В

- 30. Write the practical applications of capillarity.
- 31. State the Laws of Simple Pendulum.
- 32. Write down the postulates of kinetic theory of gases.
- 33. During a cyclic process, a heat engine absorbs 600 J of heat from a hot reservoir, does work and ejects an amount of heat 200 J into the surroundings (cold reservoir). Calculate the efficiency of the heat engine.

[Turn Over

M2023

PART – IV

- **Note :** Answer **all** the questions.
- 34. (a) Obtain an expression for the time period T of a simple pendulum. The time period depends on :
 - (i) mass 'm' of the bob
 - (ii) length 'l' of the pendulum and
 - (iii) acceleration due to gravity 'g' at the place where the pendulum is suspended. (Constant $k = 2\pi$)

OR

- (b) Explain in detail the Triangle Law of Vector Addition.
- 35. (a) Show that in an inclined plane, angle of friction is equal to angle of repose.

OR

- (b) Derive an expression for power and velocity.
- 36. (a) Derive the expression for moment of inertia of a rod about its centre and perpendicular to the rod.

OR

- (b) Explain the variation of Acceleration due to gravity (g) with depth from the earth's surface.
- 37. (a) Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using Stoke's law.

OR

- (b) Derive Meyer's relation for an ideal gas.
- 38. (a) Derive the expression of pressure exerted by the gas molecules on the walls of the container.

OR

(b) Derive Newton's formula for velocity of sound waves in air. Explain the Laplace's correction in it.

- 0 0 0 -

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

Β

5x5=25

HIGHER SECONDARY FIRST YEAR EXAMINATION – MARCH 2023 PHYSICS ANSWER KEY

Note:

- 1. Answers written with **Blue** or **Black ink** only to be evaluated.
- 2. Choose the most suitable answer in Part A, from the given alternatives and write the **option code** and the **corresponding answer**.
- 3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

PART – I

Answer all the questions.

15x1=15

Q. No.	OPTION	TYPE – A	Q. No.	OPTION	TYPE – B
1	(d)	ML-1T-1	1	(b)	1
2	(a)	2 s	AR2P	(d)	20.0
3	(b)	remains same	3	(a)	a straight line
4	(a)	a straight line	4	(a)	10 Hz
5	(a)	momentum	5	(d)	Less than potential energy
6	(b)	4.30	6	(d)	Only in rotating frames
7	(a)	10 Hz ph	7	(a)	2 s
8	(a)	12 s 40	8	(b)	2.5 vHz
9	(b)	2.5 vHz	9	(a)	12 s
10	(a)	10J	10	(b)	remains same
11	(C)	$\frac{L}{\sqrt{2}}$	11	(a)	10J
12	(d)	Only in rotating frames	12	(c)	$\frac{L}{\sqrt{2}}$
13	(d)	Less than potential energy	13	(a)	momentum
14	(b)	1	14	(d)	ML-1T-1
15	(d)	20.0	15	(b)	4.30

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Part – II

Answer **any six** questions. Question number **24 is compulsory**.

6x2=12

16	 All zeros between two non-zero Ex. 2008 has four significant f All zeros to the right of a non-zero are significant. Ex. 30700. has The number without a decimal not significant. Ex. 30700 has All zeros are significant if they of Ex. 30700 m has five significant If the number is less than 1, the but to left of the first non-zero of Ex. 0.00345 has three significant All zeros to the right of a decima are significant. Ex. 40.00 has for five significant figures. The number of significant figure units used 1.53 cm, 0.0153 m, significant figures. 	igures. ero digit but to the left of a decimal point five significant figures. point, the terminal or trailing zero(s) are three significant figures. some from a measurement at figures e zero (s) on the right of the decimal point digit are not significant. ant figures. al point and to the right of non-zero digit our significant figures and 0.030400 has es does not depend on the system of 0.0000153 km, all have three	Any 2 2x1=2
17	It is a property which can be deen number of quantities can be descr Examples Distance, mass, temper	-	2
18	If the static friction is not able to the vehicle will start to skid. $\mu < \frac{v^2}{rg}$	provide enough centripetal force to turn, (skid)	2
	Conservative forces	Non-conservative forces	
	Work done is independent of the path	Work done depends upon the path	
	Work done in a round trip is zero	Work done in a round trip is not zero	
19	Total energy remains constant	Energy is dissipated as heat energy	2
	Work done is completely recoverable	Work done is not completely recoverable	
	Force is the negative gradient of potential energy	No such relation exists.	

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

20	The torque is zero when \vec{r} and \vec{F} are parallel or anti-parallel. If parallel, then $\theta=0$ and sin 0 =0. If anti-parallel, then $\theta=180$ and sin 180=0. Hence, $\tau = 0$. The torque is zero if the force acts at the reference point. i.e. as $\vec{r} = 0$, $\tau = 0$.	2
21	Newton's law of gravitation states that a particle of mass M_1 attracts any other particle of mass M_2 in the universe with an attractive force. The strength of this force of attraction was found to be directly proportional to the product of their masses and is inversely proportional to the square of	2
	the distance between them. (or) $\vec{F} = -G \frac{m_1 m_2}{r^2} \hat{r}$	1
22	The ratio of relative contraction (lateral strain) to relative expansion (longitudinal strain). It is denoted by the symbol μ . Poisson s ratio, μ = Lateral strain / Longitudinal strain	2
23	The zeroth law of thermodynamics states that if two systems , A and B , are in thermal equilibrium with a third system , C , then A and B are in thermal equilibrium with each other .	
24	The kinetic energy of the mass is given by $KE = \frac{P^2}{2m}$ For the object of mass 3kg, kinetic energy is $KE_1 = \frac{(30)^2}{2x3} = \frac{900}{6} = 150J$ For the object of mass 6kg, kinetic energy is $KE_2 = \frac{(30)^2}{2x6} = \frac{900}{12} = 75J$ the kinetic energy of both masses is not the same . The kinetic energy of the heavier object has lesser kinetic energy than smaller mass .	
	WRRHHSCS, STUN	

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

Part - II

Answer any six questions. Question number 33 is compulsory.

25	The e gross For e (i) Re (ii) Ta sourc (iii) R (iii) R (iv) U These ment	s Error error caused due to the shear carelessness of an observer is called s error. example eading an instrument without setting it properly. aking observations in a wrong manner without bothering about the ces of errors and the precautions. Recording wrong observations. Ising wrong values of the observations in calculations. e errors can be minimized only when an observer is careful and tally alert.	3
26	1) 2) 3) 4) 5) 6) 7) 8) 9) 10) 11)	Serties of scalar products The product quantity $\vec{A} \cdot \vec{B}$ is always a scalar . It is positive if the angle between the vectors is acute (i.e., $<90^{\circ}$) and negative if the angle between them is obtuse (i.e. $90^{\circ} < < 180^{\circ}$). The scalar product is commutative , i.e. $\vec{A} \cdot \vec{B} = \vec{B} \cdot \vec{A}$ The vectors obey distributive law i.e. $\vec{A} \cdot (\vec{B} + \vec{C}) = \vec{A} \cdot \vec{B} + \vec{A} \cdot \vec{C}$ The angle between the vectors $\theta = \cos - 1 \begin{bmatrix} \vec{A} \cdot \vec{B} \\ AB \end{bmatrix}$ The scalar product of two vectors will be maximum when $\cos \theta = 1$, i.e. $\theta = 0^{\circ}$, i.e., when the vectors are parallel; $(\vec{A} \cdot \vec{B})_{max} = AB$ The scalar product of two vectors will be minimum , when $\cos \theta = -1$, i.e. $\theta = 180^{\circ}$ ($\vec{A} \cdot \vec{B}$) _{min} = $-AB$ when the vectors are anti-parallel. If two vectors \vec{A} and \vec{B} , are perpendicular to each other than their scalar Product $\vec{A} \cdot \vec{B} = 0$, because $\cos 90^{\circ} = 0$. Then the vectors \vec{A} and \vec{B} are said to be mutually orthogonal. The scalar product of a vector with itself is termed as self-dot product and is given by $(\vec{A})^2 = \vec{A} \cdot \vec{A} = AA \cos \theta = A^2$. Here angle $\theta = 0^{\circ}$ The magnitude or norm of the vector \vec{A} is $ \vec{A} = A = \sqrt{\vec{A} \cdot \vec{A}}$ In case of a unit vector \hat{n} , $\hat{n} \cdot \hat{n} = 1 \times 1 \times \cos 0 = 1$. For example, \hat{i} , $\hat{i} = \hat{j}$, $\hat{j} = \hat{k}$. $\hat{k} = 1$ In the case of orthogonal unit vectors \hat{i} , \hat{j} and \hat{k} , $\hat{i} \cdot \hat{j} = \hat{j} \cdot \hat{k} = \hat{k}$. $\hat{i} = 1.1 \cos 90^{\circ} = 0$ In terms of components the scalar product of \vec{A} and \vec{B} can be written As $\vec{A} \cdot \vec{B} = (A_x \hat{i} + A_y \hat{j} + A_z \hat{k})$. $(B_x \hat{i} + B_y \hat{j} + B_z \hat{k})$ $= A_x B_x + A_y B_y + A_z B_z$ with all other terms zero. The magnitude of vector $ \vec{A} $ is given by $ \vec{A} = A = \sqrt{A_x^2 + A_y^2 + A_z^2}$ PARTMENT OF PHYSICS, SRMHSS, KAVERTYAMPONDIJ, TIRUVANNAMALAI.	Any 3 3x1=3

	Centripetal force	Centrifugal force	
	It is a real force which is exerted on the body by the external agencies like gravitational force, tension in the string, normal force etc.	It is a pseudo force or fictitious force Which cannot arise from gravitational force, tension force, normal force etc.	
	Acts in both inertial and non- inertial frames	Acts only in rotating frames (non-inertial frame)	
	It acts towards the axis of rotation or center of the circle in circular motion	It acts outwards from the axis of rotation or radially outwards from the center of the circular motion	Any 3
27	$ F_{cp} = m\omega^2 r = \frac{mv^2}{r}$ Real force and has real effects.	$\left F_{cf}\right = m\omega^2 r = \frac{mv^2}{r}$	3x1=3
	Real force and has real effects.	Pseudo force but has real effects	
	Origin of centripetal force is interaction between two objects	Origin of centrifugal force is inertia. It does not arise from interaction.	
	In inertial frames centripetal force has to be included when free body diagrams are drawn.	In an inertial frame the object's inertial motion appears as centrifugal force in the rotating frame. In inertial frames there is no centrifugal force. In rotating frames, both centripetal and	
	155 HAVE	centrifugal force have to be included body diagrams are drawn.	when free
28	 rise to gravitational potential 2. The energy due to spring force elastic potential energy. U = 1/2 	oody due to gravitational force gives energy U = mgh and other similar forces give rise to Kx ² c force on charges gives rise to	3x1=3
29	 The satellites orbiting the corresponding to different orbital rational of a satellite if its time period is 24 I Substituting for the time period radius of the Earth, h turns out called "geo-stationary satellites", sin seen from Earth. Geo-stationary satellites for Another type of satellite which is pl from the surface of the Earth orbits t This type of satellite that orbits 	Earth have different time periods dii. Can we calculate the orbital radius hours. iod (24 hrs = 86400 seconds), mass, t to be 36,000 km. Such satellites are nee they appear to be stationary when the purpose of telecommunication. aced at a distance of 500 to 800 km he Earth from north to south direction. ts Earth from North Pole to South Pole period of a polar satellite is nearly 100	Any 3 3x1=3

		,1
	Practical applications of capillarity	
	• Due to capillary action, oil rises in the cotton within an earthen lamp.	
	Likewise, sap rises from the roots of a plant to its leaves and branches.	
30	 Absorption of ink by a blotting paper 	Any 3
	• Capillary action is also essential for the tear fluid from the eye to drain	3x1=3
	constantly.	
	• Cotton dresses are preferred in summer because cotton dresses have	
	fine pores which act as capillaries for sweat.	
	Law of length: For a given value of acceleration due to gravity, the time	1
	period of a simple pendulum is directly proportional to the square root of	
31	length of the pendulum. T $\alpha \sqrt{l}$	1
	Law of acceleration: For a fixed length, the time period of a simple	
	pendulum is inversely proportional to square root of acceleration due to	1
	gravity. T $\alpha \frac{1}{\sqrt{g}}$	
	1) All the molecules of a gas are identical, elastic spheres .	
	2) The molecules of different gases are different.	
	3) The number of molecules in a gas is very large and the average	
	separation between them is larger than size of the gas molecules.	
	4) The molecules of a gas are in a state of continuous random motion .	
	5) The molecules collide with one another and also with the walls of the container.	
	6) These collisions are perfectly elastic so that there is no loss of	
	kinetic energy during collisions.	
	7) Between two successive collisions, a molecule moves with uniform	Any 3
32	velocity.	3x1=3
	8) The molecules do not exert any force of attraction or repulsion on	
	each other except during collision. The molecules do not possess	
	any potential energy and the energy is wholly kinetic.	
	9) The collisions are instantaneous. The time spent by a molecule in	
	each collision is very small compared to the time elapsed between two consecutive collisions.	
	10) These molecules obey Newton's laws of motion even though they	
	move randomly.	
	The officiency of heat anging is given by $n = 1$ Q_L	4
	The efficiency of heat engine is given by $\eta = 1 - \frac{Q_L}{Q_H}$;	1
	$\eta = 1 - \frac{200}{600}$;	4
33	$=1-\frac{2}{6}; \eta = 1-0.33; 0.67$	1
	The heat engine has 67% efficiency, implying that this heat engine converts	1
	only 67% of the input heat into work.	1
L		•I

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

PART	_	IV
------	---	----

	PARI - IV	
Answer all t he que	stions. 5x5=	25
$34 T \propto m^a l^b g$	$c ; T = k m^a l^b g^c$	
(a) Here k is	the dimensionless constant. Rewriting the above equation wi	th 1
dimension		
	[L ^b] [LT ⁻²] ^c [M ^o L ^o T ¹] = [M ^a L ^{b+c} T ^{-2c}]	1
	g the powers of M, L and T on both sides, a=0, b+c=0, -2c=1	1
Solving for	r a, b and c a = 0, b = 1/2, and c = -1/2	
From the a	above equation T = k. m ^o $l^{1/2} g^{1/2}$	1
$T = k \left(\frac{l}{g}\right)^{1}$	$\sqrt{l/g}$; k $\sqrt{l/g}$; Experimentally k = 2π, hence T = 2π $\sqrt{l/g}$	1
taken in t resultant i the triang order.	djacent sides of a triangle the same order. Then the s given by the third side of the taken in the opposite $\vec{R} = \vec{A} + \vec{B}$ head of the first vector \vec{A}	Q
second ve between	Exted to the tail of the Extor B . Let θ be the angle O \overline{A} P \overrightarrow{A} and \overrightarrow{B} . Then \overrightarrow{R} is the Extor connecting the tail of the first vector \overrightarrow{A} to the head of the ctor \overrightarrow{B} .	ne
3) The	magnitude of \vec{R} (resultant) is given geometrically by the leng	th
	and the direction of the resultant vector is the angle between	
	nus we write $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$. $\because \vec{\mathbf{OQ}} = \vec{\mathbf{OP}} + \vec{\mathbf{PQ}}$	5
4) Con ABN, whi extending OA to ON. triangle. Cos $\theta = \frac{AN}{B}$ Sin $\theta = \frac{BN}{B}$ For ΔOBN , we have O $\Rightarrow R^2 = A^2$	ABN is a right angled $\therefore AN = B \cos \theta$ and $\therefore BN = B \sin \theta$	nθ

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

	which is the magnitude of the resultant of <i>A</i> and <i>B</i> Direction of resultant vectors:	
	5) If θ is the angle between \vec{A} and \vec{B} , then	
	$ \vec{A} + \vec{B} = \sqrt{A^2 + B^2 + 2AB \cos\theta}$	
	If \vec{R} makes an angle α with \vec{A} , then in ΔOBN , tan $\alpha = \frac{BN}{ON} = \frac{BN}{OA+AN}$	
	$\tan \alpha = \left(\frac{B \sin \theta}{A + B \cos \theta}\right); \alpha = \tan^{-1}\left(\frac{B \sin \theta}{A + B \cos \theta}\right)$	
35	Angle of Friction.	
(a)	The angle of friction is defined as the angle between the normal force (N) and the resultant force (R) of normal force and maximum friction force f_s^{max})	
	Angle of repose.	
	The same as angle of friction. But the difference is that the angle of repose	
	refers to inclined surfaces and the angle of friction is applicable to any	
	type of surface.	
	i) Consider an inclined plane on which an object is placed. Let the	
	angle which this plane makes with the horizontal be θ . For small angles of	
	θ,the object may not slide down.	
	ii) As θ is increased, for a	
	particular value of θ , the object begins to slide down.	
	This value is called angle of	
	repose. Hence, the angle of $mg \sin \theta$	
	repose is the angle of inclined $mg \cos \theta \theta$	
	plane with the horizontal such	
	that an object placed on it	
	begins to slide.	
	iii) Consider the various	
	forces in action here. The gravitational force mg is resolved into components parallel (mg sin θ) and perpendicular (mg cos θ) to the	5
	inclined plane.	•
	iv) The component of force parallel to the inclined plane (mg sin θ)	
	tries to move the object down. The component of force perpendicular to	
	the inclined plane (mg cos θ) is balanced by the Normal force (N).	
	$N = mg \cos \theta \qquad(1)$	
	When the object just begins to move, the static friction attains its	
	maximum value,	
	$f_s = f_s^{max} = \mu_s N$. This friction also satisfies the relation	
	$f_s^{max} = \mu_s \text{ mg sin}\theta$ (2)	
	Equating the right hand side of equations (1) and (2), we get $(f_s^{max}) / N = \sin \theta / \cos \theta$	
	From the definition of angle of friction, we also know that $\tan \theta = \mu_s$	

35 i) The work done by a force
$$\vec{F}$$
 for a displacement d \vec{r} is $W = \int d\vec{k} = \vec{r} \cdot d\vec{r} - (1)$
Left hand side of the equation (1) can be written as
 $W = \int dW = \int \frac{dW}{dt}$ (multiplied and divided by dt) ------(2)
ii) Since, velocity $\vec{v} = \frac{d\vec{x}}{dt}$; $d\vec{r} = \vec{v} dt$.
Right hand side of the equation (1) can be written as $\int \vec{F} \cdot d\vec{r} = \int (\vec{F} \cdot \frac{d\vec{r}}{dt}) dt$
 $= \int (\vec{F} \cdot \vec{v}) dt \quad [\vec{v} = \frac{d\vec{r}}{dt}] - (3)$
Substituting equation (2) and equation (3) in equation (1), we get
 $\int \frac{dW}{dt} ef = \int (\vec{F} \cdot \vec{v}) dt : \int (\frac{dW}{dt} - \vec{F} \cdot \vec{v}) dt = 0$
iii) This relation is true for any arbitrary value of dt.
This implies that the term within the bracket must be equal to zero, i.e.,
 $\frac{dW}{dt} = \vec{F} \cdot \vec{v} = 0$ (or) $\frac{dW}{dt} = \vec{F} \cdot \vec{v}$
36 1) Let us consider a uniform rod of mass (M) and length (*l*) as shown in
(a) Figure. Let us find an expression for
moment of inertia of this rod about an
axis that passes through the center of
mass and perpendicular to the rod.
2) First an origin is to be fixed for the
coordinate system so that it coincides
with the center of mass, which is also the
geometric center of the rod. The rod is
now along the x axis.
3) We take an infinitesimally small
mass (dm) at a distance (k) from the origin. The moment of inertia (dl) of
this mass (dm) about the axis is, $dl = (dm)x^2$
As the mass is uniformity distributed, the mass per unit length (λ) of the rod
is, $\lambda = \frac{M}{i}$
The (dm) mass of the infinitesimally small length as, dm = λ , dx = $\frac{M}{i} dx$.
4) As the mass is distributed on either side of the origin, the limits for
integration are taken form $-\frac{1}{2}$ to $\frac{1}{2}$
 $I = \frac{M}{i} \int \frac{d^2}{2x^2} dx = \frac{M}{i} \left[\frac{x^2}{2x} \right] \frac{1}{2}$
 $I = \frac{M}{i} \left[\frac{d^2}{2x} - \left(-\frac{d^2}{2x} \right) \right] = \frac{M}{i} \left[\frac{d^2}{2x} + \frac{d^3}{2x} \right]$
 $I = \frac{M}{i} \left[\frac{d^2}{2x} - \left(-\frac{d^2}{2x} \right) \right] = \frac{M}{i} \left[\frac{d^2}{2x} + \frac{d^3}{2x} \right] = \frac{M}{i} \left[\frac{d^2}{2x} + \frac{d^3}{2x} \right]$
 $I = \frac{M}{i} \left[\frac{d^2}{2x} - \left(-\frac{d^2}{2x} \right) \right] = \frac{M}{i} \left[\frac$

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

		·
	Since all the molecules are moving completely in random manner, they do not have same speed. So we can replace the term v_x^2 by the average $\overline{v_x^2}$ in equation. P = nm $\overline{v_x^2}$ 5	
	10) Since the gas is assumed to move in random direction, it has no preferred direction of motion (the effect of gravity on the molecules is neglected). It implies that the molecule has same average speed in all the	
	three direction. So, $\overline{v_x^2}$ = $\overline{v_y^2}$ = $\overline{v_z^2}$.	
	The mean square speed is written as $\overline{v^2} = \overline{v_x^2} = \overline{v_y^2} = \overline{v_z^2}$	
	$\overline{v_x^2} = \frac{1}{3}\overline{v^2}$	
	Using this in equation (5), we get, $\overline{v_x^2} = \frac{1}{3} \operatorname{nm} \overline{v^2}$ or	
	$P = \frac{1}{3} \frac{N}{v} m \overline{v^2} \text{ as } \left[n = \frac{N}{v} \right]$	
38	1) Newton assumed that when sound propagates in air, the formation	
(b)	of compression and rarefaction takes place in a very slow manner so that	
	 the process is isothermal in nature. That is, the heat produced during compression (pressure increases, 	
	volume decreases), and heat lost during rarefaction (pressure decreases,	
	volume increases) occur over a period of time such that the temperature	
	of the medium remains constant. Therefore, by treating the air molecules	
	to form an ideal gas, the changes in pressure and volume obey Boyle's law, PV = Constant 1	
	3) Differentiating equation (1), we get $PdV + VdP = 0$ or	
	$P = -V \frac{dP}{dV} = B_T - 2$	
	where DT is an isothermal bulk modulus of air Substituting equation (2) in	5
	equation V = $\sqrt{\frac{B}{\rho}}$ the speed of sound in air is $V_T = \sqrt{\frac{B_T}{\rho}} = \sqrt{\frac{P}{\rho}}$ 3	
	$V_{\rm T} = \sqrt{\frac{B_{\rm T}}{\rho}} = \sqrt{\frac{P_{\rm T}}{\rho}}3$	
	and Pressure) is 76 cm of mercury, we have	
	P = (0.76 × 13.6 ×10³ × 9.8) N m⁻² ρ = 1.293 kg m-3. here ρ is density of air	
	Then the speed of sound in air at Normal Temperature and	
	Pressure (NTP) is $V_T = \sqrt{\frac{0.76 \times 13.6 \times 10^3 \times 9.8}{1.293}}$ =279.80 ms ⁻¹ ≈ 280 ms-1	
	(theoretical value)	
	But the speed of sound in air at 0°C is experimentally observed as 332ms⁻¹ which is close upto 16% more than theoretical value	
	(Percentage error is $\frac{(332-280)}{332}$ x 100% = 15.6%) This error is not small.	

Laplace's correction: 1) Laplace assumed that when the sound propagates through a medium, the particles oscillate very rapidly such that the **compression and** rarefaction occur very fast. Hence the exchange of heat produced due to compression and cooling effect due to rarefaction do not take place, because, air (medium) is a bad conductor of heat. 2) Since, temperature is no longer considered as a constant here, sound propagation is an adiabatic process. By adiabatic considerations, the gas obeys Poisson's law (not Boyle's law as Newton assumed), which is Pv^{γ} = Constant -----4 Where, $\gamma = \frac{C_P}{C_V}$, which is the ratio between specific heat at constant pressure and specific heat at constant volume. Differentiating equation (4) on both the sides, we get $v^{\gamma} dP + P(\gamma V \gamma^{-1} dV) = 0 \text{ or } \gamma^{P} = -V \frac{dP}{dV} B_{A}$ -----5 where, BA is the adiabatic bulk modulus of air. Now, substituting equation (5) in equation V = $\sqrt{\frac{B}{\rho}}$ the speed of sound in air is V_A = $\sqrt{\frac{B_T}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\gamma} V_T$ -----6 V_A = **331ms**-1 MRRHYSICS, SRIMMIS, WAIERWA

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.