No. of Printed Pages : 4

PART - III

, a wgpy ;/ PHYSICS

(English Version)
Time Allowed : 3.00 Hours]
[Maximum Marks: 70
Instructions : (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

PART - I

Note : (i) Answer all the questions.
$15 \times 1=15$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. If a wire is stretched to double of its original length, then the strain in the wire is
(a) 3
(b) 1
(c) 4
(d) 2
2. Round of the following number 19.95 into three significant figures.
(a) 20.1
(b) 19.9
(c) 19.5
(d) 20.0
3. The graph between volume and temperature in Charles' law is
(a) a straight line
(b) an ellipse
(c) a parabola
(d) a circle
4. In the given $\mathrm{SHM} \mathrm{y}=2 \sin (20 \pi t+1.5)$ the frequency of oscillation is:
(a) $10 \mathrm{~Hz}(\mathrm{~b})$
20 Hz
(c) 15 Hz
(d) $\pi \mathrm{Hz}$
5. The kinetic energy of the satellite orbiting around the Earth is
(a) greater than kinetic energy
(b) equal to potential energy
(c) zero
(d) less than potential energy
6. The centrifugal force appears to exist
(a) in any accelerated frame (b) only in inertial frames
(c) both in inertial and non-inertial frames
(d) only in rotating frames
7. If an object is falling from a height of 20 m , then the time taken by the object to reach the ground: (ignore air resistance and take $\mathrm{g}=10 \mathrm{~ms}^{-2}$)
(a) 2 s
(b) $\quad 1.732 \mathrm{~s}$
(c) $\quad 1.532 \mathrm{~s}$
(d) $\quad 1.414 \mathrm{~s}$
8. The fundamental frequency of closed organ pipe whose length is 10 cm is:
(a) 4.5 vHz
(b) 2.5 vHz
(c) 10 vHz
(d) 2 vHz
9. A particle executing SHM crosses points A and B with the same velocity. Having taken 3 s in passing from A to B, it returns to B after another 3 s . The time period is
(a) 12 s
(b) 15 s
(c) 9 s
(d) 6 s
10. If the temperature and pressure of a gas is doubled the mean free path of the gas molecules
(a) tripled
(b) remains same
(c) quadrupled
(d) doubled
11. A uniform force of $(2 \hat{\imath}+\hat{\jmath})+\mathrm{N}$ acts on a particle of mass 1 kg . The particle displaces from position $(3 \hat{\jmath}+\hat{k}) \mathrm{m}$ to $(5 \hat{\imath}+3 \hat{\jmath})$. The work done by the force on the particle is :
(a) 10 J
(b) 9 J
(c) 12 J
(d) 6 J
12. A rigid body rotates with an angular momentum L. If its kinetic energy is halved, the angular momentum becomes,
(a) 2 L
(b) L
(c) $\frac{\mathrm{L}}{\sqrt{2}}$
(d) $\frac{\mathrm{L}}{2}$
13. Which one of the following physical quantities cannot be represented by a scalar?
(a) momentum
(b) Mass
(c) magnitude of acceleration
(d) length
14. The dimensional formula for coefficient of viscosity is :
(a) $\quad \mathrm{ML}^{-2} \mathrm{~T}^{-2}$
(b) MLT^{-2}
(c) $\mathrm{ML}^{-1} \mathrm{~T}^{-2}$
(d) $\quad \mathrm{ML}^{-1} \mathrm{~T}^{-1}$
15. A sound wave whose frequency is 5000 Hz travels in air and then hits the water surface. The ratio of its wavelengths in water and air is
(a) 5.30
(b) 4.30
(c) 1.23
(d) 0.23

B

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

PART - II
Note : Answer any six questions. Question No. 24 is compulsory. 6x2=12
16. Write the rules for determining significant figures.
17. Define scalar. Give examples.
18. Under what condition will a car skid on a levelled circular road ?
19. Write any two differences between conservative and non-conservative Force.
20. What are the conditions in which Force cannot produce Torque ?
21. State Newton's Universal Law of Gravitation.
22. Define Poisson's ratio.
23. State Zeroth Law of Thermodynamics.
24. Two objects of masses 3 kg and 6 kg are moving with the same momentum of $30 \mathrm{kgms}^{-1}$. Will they have same kinetic energy ?

PART - III

Note : Answer any six questions. Question No. 33 is compulsory. 6x3=18
25. What is Gross Error ? State the reasons for it and how to minimize the errors.
26. Write the properties of scalar product of two vectors.
27. State the differences between centripetal force and centrifugal force.
28. State the various types of potential energy. Explain its formulae.
29. Explain geostationary satellites.
30. Write the practical applications of capillarity.
31. State the Laws of Simple Pendulum.
32. Write down the postulates of kinetic theory of gases.
33. During a cyclic process, a heat engine absorbs 600 J of heat from a hot reservoir, does work and ejects an amount of heat 200 J into the surroundings (cold reservoir). Calculate the efficiency of the heat engine.

PART - IV

Note : Answer all the questions.
34. (a) Obtain an expression for the time period T of a simple pendulum. The time period depends on :
(i) mass ' m ' of the bob
(ii) length ' 1 ' of the pendulum and
(iii) acceleration due to gravity ' g ' at the place where the pendulum is suspended. (Constant $k=2 \pi$)

OR

(b) Explain in detail the Triangle Law of Vector Addition.
35. (a) Show that in an inclined plane, angle of friction is equal to angle of repose.

OR

(b) Derive an expression for power and velocity.
36. (a) Derive the expression for moment of inertia of a rod about its centre and perpendicular to the rod.

OR
(b) Explain the variation of Acceleration due to gravity (g) with depth from the earth's surface.
37. (a) Derive the expression for the terminal velocity of a sphere moving in a high viscous fluid using Stoke's law.

OR
(b) Derive Meyer's relation for an ideal gas.
38. (a) Derive the expression of pressure exerted by the gas molecules on the walls of the container.

OR

(b) Derive Newton's formula for velocity of sound waves in air. Explain the Laplace's correction in it.

HIGHER SECONDARY FIRST YEAR EXAMINATION - MARCH 2023 PHYSICS ANSWER KEY

Note:

1. Answers written with Blue or Black ink only to be evaluated.
2. Choose the most suitable answer in Part A, from the given alternatives and write the option code and the corresponding answer.
3. For answers in Part-II, Part-III and Part-IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
4. In numerical problems, if formula is not written, marks should be given for the remaining correct steps.
5. In graphical representation, physical variables for X-axis and Y-axis should be marked.
PART - I

Answer all the questions.
$15 \times 1=15$

$\begin{aligned} & \text { Q. } \\ & \text { No. } \end{aligned}$	OPTION	TYPE - A	Q. No.	OPTION	TYPE - B
1	(d)	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$	1	(b)	1
2	(a)	2 s	2	(d)	20.0
3	(b)	remains same	3	(a)	a straight line
4	(a)	a straight line Si	4	(a)	10 Hz
5	(a)	momentum	5	(d)	Less than potential energy
6	(b)	4.30 5	6	(d)	Only in rotating frames
7	(a)	10 Hz	7	(a)	2 s
8	(a)	12 s	8	(b)	2.5 vHz
9	(b)	2.5 vHz	9	(a)	12 s
10	(a)	10J	10	(b)	remains same
11	(c)	$\frac{\mathrm{L}}{\sqrt{2}}$	11	(a)	10J
12	(d)	Only in rotating frames	12	(c)	$\frac{\mathrm{L}}{\sqrt{2}}$
13	(d)	Less than potential energy	13	(a)	momentum
14	(b)	1	14	(d)	$\mathrm{ML}^{-1} \mathrm{~T}^{-1}$
15	(d)	20.0	15	(b)	4.30

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

PART - II

Answer any six questions. Question number 24 is compulsory.

$$
6 \times 2=12
$$

16	1. All non-zero digits are significant. Ex. 1342 has four significant figures 2. All zeros between two non-zero digits are significant. Ex. 2008 has four significant figures. 3. All zeros to the right of a non-zero digit but to the left of a decimal point are significant. Ex. 30700. has five significant figures. 4. The number without a decimal point, the terminal or trailing zero(s) are not significant. Ex. $\mathbf{3 0 7 0 0}$ has three significant figures. All zeros are significant if they come from a measurement Ex. $\mathbf{3 0 7 0 0} \mathbf{~ m}$ has five significant figures 5. If the number is less than 1, the zero (s) on the right of the decimal point but to left of the first non-zero digit are not significant. Ex. 0.00345 has three significant figures. 6. All zeros to the right of a decimal point and to the right of non-zero digit are significant. Ex. $\mathbf{4 0 . 0 0}$ has four significant figures and $\mathbf{0 . 0 3 0 4 0 0}$ has five significant figures. 7. The number of significant figures does not depend on the system of units used $1.53 \mathrm{~cm}, 0.0153 \mathrm{~m}, 0.0000153 \mathrm{~km}$, all have three significant figures.		$\begin{aligned} & \text { Any } 2 \\ & 2 \times 1=2 \end{aligned}$
17	It is a property which can besde number of quantities can bedescrib Examples Distance, mass, tempe	scribed only by magnitude. In physics a ibed by scalars. ature, speed and energy.	2
18	If the static friction ds not able to the vehicle will start to skid.	provide enough centripetal force to turn, (skid)	2
19	Conservative forces	Non-conservative forces	
	Work done is independent of the path	Work done depends upon the path	
	Work done in a round trip is zero	Work done in a round trip is not zero	
	Total energy remains constant	Energy is dissipated as heat energy	2
	Work done is completely recoverable	Work done is not completely recoverable	
	Force is the negative gradient of potential energy	No such relation exists.	

20	The torque is zero when \vec{r} and $\overrightarrow{\mathrm{F}}$ are parallel or anti-parallel. If parallel, then $\theta=0$ and $\sin 0=0$. If anti-parallel, then $\boldsymbol{\theta}=\mathbf{1 8 0}$ and $\sin \mathbf{1 8 0}=\mathbf{0}$. Hence, $\tau=0$. The torque is zero if the force acts at the reference point. i.e. as $\vec{r}=0, \tau=0$.	2
21	Newton's law of gravitation states that a particle of mass M_{1} attracts any other particle of mass M_{2} in the universe with an attractive force. The strength of this force of attraction was found to be directly proportional to the product of their masses and is inversely proportional to the square of the distance between them. (or) $\vec{F}=-G \frac{m_{1} m_{2}}{r^{2}} \hat{r}$	2 1
22	The ratio of relative contraction (lateral strain) to relative expansion (longitudinal strain). It is denoted by the symbol μ. Poisson s ratio, $\mu=$ Lateral strain / Longitudinal strain	2
23	The zeroth law of thermodynamics states that if two systems, A and B, are in thermal equilibrium with a third system, C, then A and B are in thermal equilibrium with each other.	
24	The kinetic energy of the mass is given by $\mathrm{k}(\mathrm{E})=\frac{\mathrm{P}^{2}}{2 \mathrm{~m}}$ For the object of mass 3 kg , kinetic energy is $K E_{1}=\frac{(30)^{2}}{2 \times 3}=\frac{900}{6}=150 \mathrm{~J}$ For the object of mass 6 kg , kinetic energy is $K E_{2}=\frac{(30)^{2}}{2 \times 6}=\frac{900}{12}=75 \mathrm{~J}$ the kinetic energy of both masses is not the same. The kinetic energy of the heavier object has lesserkinetic energy than smaller mass.	

[^0]PART - II
Answer any six questions. Question number 33 is compulsory.

25	Gross Error The error caused due to the shear carelessness of an observer is called gross error. For example (i) Reading an instrument without setting it properly. (ii) Taking observations in a wrong manner without bothering about the sources of errors and the precautions. (iii) Recording wrong observations. (iv) Using wrong values of the observations in calculations. These errors can be minimized only when an observer is careful and mentally alert.	3
26	Properties of scalar products 1) The product quantity $\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{B}}$ is always a scalar. It is positive if the angle between the vectors is acute (i.e. $<90^{\circ}$) and negative if the angle between them is obtuse (i.e. $90^{\circ}<\theta<180^{\circ}$). 2) The scalar product is commutative, i.e. $\vec{A} \cdot \vec{B}=\vec{B} \cdot \vec{A}$ 3) The vectors obey distributive law i.e. $\vec{A} \cdot(\vec{B}+\vec{C})=\vec{A} \cdot \vec{B}+\vec{A} \cdot \vec{C}$ 4) The angle between the vectors $\theta=\cos -1\left[\frac{\vec{A} \cdot \vec{B}}{A B}\right]$ 5) The scalar product of two vectors will be maximum when $\operatorname{Cos} \theta=1$, i.e. $\theta=0^{\circ}$, i.e when the vectors are parallel; $(\vec{A} \cdot \vec{B})_{\max }=A B$ 6) The scalar product of two vectors will be minimum, when $\operatorname{Cos} \theta=G 1$, i.e. $\theta=1800(\vec{A} \cdot \vec{B})_{\min }=-A B$ when the vectors are anti-parallel. 7) If two vectors $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, are perpendicular to each other than their scalar Product $\vec{A} \cdot \vec{B}=0$, because $\operatorname{Cos} 90^{\circ}=0$. Then the vectors \vec{A} and \vec{B}. are said to be mutually orthogonal. 8) The scalar product of a vector with itself is termed as self-dot product and is given by $(\overrightarrow{\mathrm{A}})^{2}=\overrightarrow{\mathrm{A}} \cdot \overrightarrow{\mathrm{A}}=\mathrm{AA} \operatorname{Cos} \theta=\mathrm{A}^{2}$. Here angle $\theta=0^{\circ}$ The magnitude or norm of the vector $\overrightarrow{\mathbf{A}}$ is $\|\overrightarrow{\mathbf{A}}\|=\mathbf{A}=\sqrt{\overrightarrow{\mathbf{A}} \cdot \overrightarrow{\mathbf{A}}}$ 9) In case of a unit vector $\hat{n}, \hat{n} \cdot \hat{n}=1 \times 1 \times \operatorname{Cos} 0=1$. For example, $\hat{\imath} . \hat{\imath}=\hat{\jmath} . \hat{\jmath}=\hat{k} . \hat{k}=1$ 10) In the case of orthogonal unit vectors $\hat{\imath}, \hat{\jmath}$ and $\hat{k}, \hat{\imath} \cdot \hat{\jmath}=\hat{\jmath} . \hat{k}=\hat{k}$. $\hat{\imath}=1.1 \operatorname{Cos} 90^{\circ}=0$ 11) In terms of components the scalar product of \vec{A} and \vec{B} can be written As $\vec{A} \cdot \vec{B}=\left(A_{x} \hat{\imath}+A_{y} \hat{\jmath}+A_{z} \hat{k}\right) \cdot\left(B_{x} \hat{\imath}+B_{y} \hat{\jmath}+B_{z} \hat{k}\right)$ $=A_{x} B_{x}+A_{y} B_{y}+A_{z} B_{z}$ with all other terms zero. The magnitude of vector $\|\vec{A}\|$ is given by $\|\vec{A}\|=A=\sqrt{A_{x}^{2}+A_{y}^{2}+A_{z}^{2}}$	Any 3 $3 \times 1=3$

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net @gmail.com

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

30	Practical applications of capillarity - Due to capillary action, oil rises in the cotton within an earthen lamp. Likewise, sap rises from the roots of a plant to its leaves and branches. - Absorption of ink by a blotting paper - Capillary action is also essential for the tear fluid from the eye to drain constantly. - Cotton dresses are preferred in summer because cotton dresses have fine pores which act as capillaries for sweat.	$\begin{aligned} & \text { Any } 3 \\ & 3 \times 1=3 \end{aligned}$
31	Law of length: For a given value of acceleration due to gravity, the time period of a simple pendulum is directly proportional to the square root of length of the pendulum. T $\alpha \sqrt{l}$ Law of acceleration: For a fixed length, the time period of a simple pendulum is inversely proportional to square root of acceleration due to gravity. T $\alpha \frac{1}{\sqrt{g}}$	1 1 1
32	1) All the molecules of a gas are identical, elastic spheres. 2) The molecules of different gases are different. 3) The number of molecules in a gas is very large and the average separation between them is larger than size of the gas molecules. 4) The molecules of a gas are in a state of continuous random motion. 5) The molecules collide with one another and also with the walls of the container. 6) These collisions are perfectly elastic so that there is no loss of kinetic energy during collisions. 7) Between two successive collisions, a molecule moves with uniform velocity. 8) The molecules do not exert any force of attraction or repulsion on each other except during collision. The molecules do not possess any potential energy and the energy is wholly kinetic. 9) The collisions are instantaneous. The time spent by a molecule in each collision is very small compared to the time elapsed between two consecutive collisions. 10) These molecules obey Newton's laws of motion even though they move randomly.	$\begin{aligned} & \text { Any } 3 \\ & 3 \times 1=3 \end{aligned}$
33	The efficiency of heat engine is given by $\eta=1-\frac{Q_{L}}{Q_{H}}$; $\begin{aligned} & \eta=1-\frac{200}{600} ; \\ & =1-\frac{2}{6} ; \eta=1-0.33 ; 0.67 \end{aligned}$ The heat engine has 67% efficiency, implying that this heat engine converts only 67% of the input heat into work.	1 1 1

PART - IV

Answer all the questions.
$5 \times 5=25$

34 (a)	$\mathrm{T} \propto m^{a} l^{b} g^{c} ; \mathrm{T}=\mathrm{k} m^{a} l^{b} g^{c}$ Here k is the dimensionless constant. Rewriting the above equation with dimensions $\left[\mathrm{T}^{1}\right]=\left[\mathrm{M}^{\mathrm{a}}\right]\left[\mathrm{L}^{\mathrm{b}}\right]\left[\mathrm{LT}^{-2}\right]^{\mathrm{c}}\left[\mathrm{M}^{0} \mathrm{~L}^{0} \mathrm{~T}^{1}\right]=\left[\mathrm{M}^{\mathrm{a}} \mathrm{~L}^{\mathrm{b}+\mathrm{c}} \mathrm{~T}^{-2 \mathrm{c}}\right]$ Comparing the powers of M, L and T on both sides, $a=0, b+c=0,-2 c=1$ Solving for a, b and $c a=0, b=1 / 2$, and $c=-1 / 2$ From the above equation $\mathrm{T}=\mathrm{k} . \mathrm{m}^{0} l^{1 / 2} g^{1 / 2}$ $\mathrm{T}=\mathrm{k}\left(\frac{l}{g}\right)^{1 / 2} ; \mathrm{k} \sqrt{l / g} ; \text { Experimentally } \mathrm{k}=2 \pi, \text { hence } \mathrm{T}=2 \pi \sqrt{l / g}$	1 1 1 1 1
34 (b)	1) Represent the vectors \vec{A} and \vec{B} by the two adjacent sides of a triangle taken in the same order. Then the resultant is given by the third side of the triangle taken in the opposite order. 2) The head of the first vector $\overrightarrow{\mathbf{A}}$ is connected to the tail of the second vector \vec{B}. Let θ be the angle between \vec{A} and \vec{B}. Then \vec{R} is the resultant vector connecting the tail of the first vector $\overrightarrow{\mathrm{A}}$ to the head of the second vector \vec{B}. 3) The magnitude of \vec{R} (resultant) is given geometrically by the length of $\vec{R}(\mathrm{OQ})$ and the direction of the resultant vector is the angle between $\overrightarrow{\mathrm{R}}$ and $\overrightarrow{\mathrm{A}}$ Thus we write $\overrightarrow{\mathbf{R}}=\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}} . \because \overrightarrow{\mathbf{0 Q}}=\overrightarrow{\mathbf{0 P}}+\overrightarrow{\mathbf{P Q}}$ Magnitude of resultant vector: 4) Consider the triangle ABN, which is obtained by extending the side $O A$ to $O N$. $A B N$ is a right angled triangle. $\operatorname{Cos} \theta=\frac{\mathrm{AN}}{\mathrm{~B}} \therefore \mathrm{AN}=\mathrm{B} \operatorname{Cos} \theta \text { and }$ $\operatorname{Sin} \theta=\frac{B N}{B} \therefore B N=B \operatorname{Sin} \theta$ For $\triangle O B N$, we have $O B^{2}=O N^{2}+B N^{2} \Rightarrow R^{2}=(A+B \operatorname{Cos} \theta)^{2}+(B \operatorname{Sin} \theta)^{2}$ $\begin{aligned} & \Rightarrow R^{2}=A^{2}+B^{2} \cos ^{2} \theta+2 A B \cos \theta+B^{2} \sin ^{2} \theta \\ & \Rightarrow R^{2}=A^{2}+B^{2}\left(\cos ^{2} \theta+\sin ^{2} \theta\right)+2 A B \cos \theta \\ & \Rightarrow \mathbf{R}=\sqrt{A^{2}+B^{2}+2 A B \operatorname{Cos} \theta} \end{aligned}$	5

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

	which is the magnitude of the resultant of A and B Direction of resultant vectors: 5) If θ is the angle between $\overrightarrow{\mathrm{A}}$ and $\overrightarrow{\mathrm{B}}$, then $\|\vec{A}+\vec{B}\|=\sqrt{\mathrm{A}^{2}+\mathrm{B}^{2}+2 \mathrm{AB} \operatorname{Cos} \theta}$ If $\overrightarrow{\mathrm{R}}$ makes an angle α with $\overrightarrow{\mathrm{A}}$, then in $\triangle \mathrm{OBN}, \tan \alpha=\frac{\mathrm{BN}}{\mathrm{ON}}=\frac{\mathrm{BN}}{\mathrm{OA}+\mathrm{AN}}$ $\tan \alpha=\left(\frac{\mathrm{B} \operatorname{Sin} \theta}{\mathrm{~A}+\mathrm{B} \operatorname{Cos} \theta}\right) ; \alpha=\tan ^{-1}\left(\frac{\mathrm{~B} \operatorname{Sin} \theta}{\mathrm{~A}+\mathrm{B} \operatorname{Cos} \theta}\right)$	
35 (a)	Angle of Friction. The angle of friction is defined as the angle between the normal force (\mathbf{N}) and the resultant force (\mathbf{R}) of normal force and maximum friction force $\mathrm{f}_{\mathrm{s}}{ }^{\text {max }}$) Angle of repose. The same as angle of friction. But the difference is that the angle of repose refers to inclined surfaces and the angle of friction is applicable to any type of surface. i) Consider an inclined plane on which an object is placed. Let the angle which this plane makes with the horizontal be θ. For small angles of θ,the object may not slide down. ii) As θ is increased, for a particular value of θ, the object begins to slide down. This value is called angle of repose. Hence, the angle of repose is the angle of inclined plane with the horizontal such that an object placed on it begins to slide. iii) Consider the various forces in action here. The gravitational force $\mathbf{m g}$ is resolved into components parallel $(\mathrm{mg} \sin \theta)$ and perpendicular $(\mathrm{mg} \cos \theta)$ to the inclined plane. iv) The component of force parallel to the inclined plane $(\mathrm{mg} \sin \theta)$ tries to move the object down. The component of force perpendicular to the inclined plane $(\mathbf{m g} \cos \boldsymbol{\theta})$ is balanced by the Normal force (N). $N=m g \cos \theta$ When the object just begins to move, the static friction attains its maximum value, $\begin{aligned} & \mathbf{f}_{\mathbf{s}}=\mathbf{f}_{\mathrm{s}} \max =\boldsymbol{\mu}_{\boldsymbol{s}} \mathbf{N} \text {. This friction also satisfies the relation } \\ & \mathrm{f}_{\mathrm{s}}^{\max }=\mu_{s} \mathrm{mg} \sin \theta \end{aligned}$ Equating the right hand side of equations (1) and (2), we get $\left(f_{s}^{\max }\right) / N=\sin \theta / \cos \theta$ From the definition of angle of friction, we also know that $\tan \boldsymbol{\theta}=\boldsymbol{\mu}_{\mathrm{s}}$ in which $\boldsymbol{\theta}$ is the angle of friction. Thus the angle of repose is the same as angle of friction.	5

$\begin{aligned} & 35 \\ & \text { (b) } \end{aligned}$	i) The work done by a force \vec{F} for a displacement $\mathrm{d} \vec{r}$ is $\mathrm{W}=\int \vec{F} . d \vec{r}--$ (1) Left hand side of the equation (1) can be written as $\mathrm{W}=\int d W=\int \frac{d W}{d t} \mathrm{dt} \quad \text { (multiplied and divided by } \mathrm{dt} \text {) }$ ii) Since, velocity $\vec{v}=\frac{d \vec{r}}{d t} ; \mathrm{d} \vec{r}=\vec{v} \mathrm{dt}$. Right hand side of the equation (1) can be written as $\int \vec{F} \cdot d \vec{r}=\int\left(\vec{F} \cdot \frac{d \vec{r}}{d t}\right) \mathrm{dt}$ $=\int(\vec{F} \cdot \vec{v}) \mathrm{dt} \quad\left[\vec{v}=\frac{d \vec{r}}{d t}\right]$ Substituting equation (2) and equation (3) in equation (1), we get $\int \frac{d W}{d t} \mathrm{dt}=\int(\vec{F} \cdot \vec{v}) \mathrm{dt} \quad ; \int\left(\frac{d W}{d t}-\vec{F} \cdot \vec{v}\right) \mathrm{dt}=0$ iii) This relation is true for any arbitrary value of dt . This implies that the term within the bracket must be equal to zero, i.e., $\frac{d W}{d t}=\vec{F} \cdot \vec{v}=0 \text { (or) } \frac{d W}{d t}=\vec{F} \cdot \vec{v}$	5
36 (a)	1) Let us consider a uniform rod of mass (M) and length (I) as shown in Figure. Let us find an expression for moment of inertia of this rod about an axis that passes through the center of mass and perpendicular to the rod. 2) First an origin is to be fixed for the coordinate system so that it coincides with the center of mass, which is also the geometric center of the rod. The rod is now along the x axis. 3) We take an infinitesimally small mass (dm) at a distance (x) from the origin. The moment of inertia (dl) of this mass (dm) about the axis is, $\mathrm{dl}=(\mathrm{dm}) \mathrm{x}^{2}$ As the mass is uniformly distributed, the mass per unit length (λ) of the rod is, $\lambda=\frac{M}{l}$ The (dm) mass of the infinitesimally small length as, $\mathrm{dm}=\lambda, \mathrm{dx}=\frac{M}{l} \mathrm{dx}$. The moment of inertia (I) of the entire rod can be found by integrating dl , $\mathrm{I}=\int d I=\int(d m) x^{2} ; \quad \int\left(\frac{M}{l} \boldsymbol{d} \boldsymbol{x}\right) \boldsymbol{x}^{2} ; \quad \mathrm{I}=\frac{M}{l} \int x^{2} d x$ 4) As the mass is distributed on either side of the origin, the limits for integration are taken from $-\frac{l}{2}$ to $\frac{l}{2}$ $\begin{gathered} \mathrm{I}=\frac{M}{l} \int_{\frac{-l}{2}}^{\frac{l}{2}} x^{2} d x \quad=\frac{M}{l}\left[\frac{x^{3}}{3}\right]^{\frac{l}{2}} \\ \mathrm{I}=\frac{M}{2} \\ \frac{l^{3}}{2} \\ \left.\frac{l^{3}}{24}-\left(-\frac{l^{3}}{24}\right)\right]=\frac{M}{l}\left[\frac{l^{3}}{24}+\frac{l^{3}}{24}\right] \\ \mathrm{I}=\frac{M}{l}\left[2\left(\frac{l^{3}}{24}\right)\right] ; \\ \mathrm{I}=\frac{\mathbf{1}}{\mathbf{1 2}} \mathrm{m} l^{2} \end{gathered}$	5

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

Kindly send me your questions and answerkeys to us : Padasalai.Net@gmail.com

$\begin{aligned} & 36 \\ & \text { (b) } \end{aligned}$	Variation of g with depth: Consider a particle of mass m which is in a deep mine on the earth. Ex. Coal mines - in Neyveli). Assume the depth of the mine as d. To Calculate g at a depth d , consider the following points. The part of the Earth which is above the radius ($\mathrm{R}_{\mathrm{e}}-\mathrm{d}$) do not contribute to the acceleration. The result is proved earlier and is given as $\mathrm{g}^{\prime}=\frac{G M^{\prime}}{\left(R_{e}-d\right)^{2}}$ Here M is the mass of the Earth of radius ($\mathrm{R}_{\mathrm{e}}-\mathrm{d}$). Assuming the density of earth ρ to be constant, $\begin{aligned} & \rho=\frac{\mathrm{M}^{\prime}}{\mathrm{V}^{\prime}} ; \frac{\mathrm{M}^{\prime}}{\mathrm{V}^{\prime}}=\frac{\mathrm{M}}{\mathrm{~V}} \text { and } \mathrm{M}^{\prime}=\frac{\mathrm{M}}{\mathrm{~V}} \mathrm{~V}^{\prime} \\ & \mathrm{M}^{\prime}=\left(\frac{\mathrm{M}}{\frac{4}{3} \pi R_{e}^{3}}\right)\left(\frac{4}{3} \pi\left(R_{e}-d\right)^{3}\right) ; \\ & \mathrm{M}^{\prime}=\frac{M}{R_{e}^{3}}\left(\mathrm{Re}_{\mathrm{e}}-\mathrm{d}\right)^{3} \\ & \mathrm{~g}^{\prime}=\mathrm{G} \frac{M}{R_{e}^{3}}\left(\mathrm{Re}_{\mathrm{e}}-\mathrm{d}\right)^{3} \cdot \frac{1}{\left(R_{e}-d\right)^{2}} ; \\ & \mathrm{g}^{\prime}=\mathrm{GM} \frac{R_{e}\left(1-\frac{d}{R_{e}}\right)}{R_{e}^{3}} \\ & \mathrm{~g}^{\prime}=\mathrm{GM} \frac{\left(1-\frac{d}{R_{e}}\right)}{R_{e}^{2}} \text { thus } \mathbf{g}^{\prime}=\mathrm{g}\left(\mathbf{1}-\frac{d}{R_{e}}\right) . \text { Here also } \mathbf{g}^{\prime}<\mathrm{g} . \end{aligned}$ As depth increases, g^{\prime} decreases.	5
37(a)	Expression for terminal velocity: Consider a sphere of cradius r which falls freely through a highly viscous liquid of coefficientof viscosity η. Let the density of the material of the sphere be ρ and the density of the fluid be σ. Gravitational force acting on the sphere, $\mathrm{F}_{\mathrm{G}}=\mathrm{mg}=\frac{4}{3} \pi \mathrm{r}^{3} \rho \mathrm{~g}$ Up thrust, $\mathrm{U}=\frac{4}{3} \pi r^{3} \sigma g$ (upward force) Viscous force $F=6 \pi \eta r v_{t}$ At terminal velocity v_{t}, downward force $=$ upward force $\begin{aligned} & \mathrm{F}_{\mathrm{G}}-\mathrm{U}=\mathrm{F} \Rightarrow \frac{4}{3} \pi r^{3} \rho g-=\frac{4}{3} \pi r^{3} \sigma g=6 \pi \eta r V_{\mathrm{t}} \\ & V_{\mathrm{t}}=\frac{2}{9} \mathrm{r} \frac{r^{2}(\rho-\sigma)}{\eta} \mathrm{g} \Rightarrow V_{\mathrm{t}} \propto \boldsymbol{r}^{2} \end{aligned}$ Here, it should be noted that the terminal speed of the sphere is directly proportional to the square of its radius. If σ is greater than ρ, then the term $(\rho-\sigma)$ becomes negative leading to a negative terminal velocity.	5

$\begin{array}{\|l\|} \hline 37 \\ \text { (b) } \end{array}$	Meyer's relation 1) Consider μ mole of an ideal gas in a container with volume V , pressure P and temperature T . 2) When the gas is heated at constant volume the temperature increases by dT. As no work is done by the gas, the heat that flows into the system will increase only the internal energy. Let the change in internal energy be dU. If Cv is the molar specific heat capacity at constant volume, $d U=\mu C_{v} d T$ 3) Suppose the gas is heated at constant pressure so that the temperature increases by dT . If ' Q ' is the heat supplied in this process and ' $d V$ ' the change in volume of the gas. $\mathbf{Q}=\boldsymbol{\mu} \mathbf{C}_{\mathrm{p}} \mathrm{dT}---\mathrm{-}-\mathrm{-} 2$ 4) If W is the work done by the gas in this process, then $\text { W = PdV }-3$ But from the first law of thermodynamics, $\mathbf{Q}=\mathbf{d U}+\mathbf{W}--\mathbf{-}$ Substituting equations (1), (2) and (3) in (4), we get, $\mu C_{p} d T=\mu C_{v} d T+P d V$ 5) For mole of ideal gas, the equation of state is given by $P V=\mu R T \Rightarrow P d V+V d P \& \mu R d T$ Since the pressure is constant $d \mathrm{P}=0$ $\begin{aligned} & \therefore C_{p} d T=C_{v} d T+R d T \\ & \therefore C_{p}=C_{v}+R\left(O_{r}\right) C_{p} C_{v}=R- \end{aligned}$ This relation is called Meyer's relation.	5
38 (a)	1) Consider a monatomic gas of N molecules each having a mass m inside a cubical container of side $/$ as shown in the Figure (a). 2) The molecules of the gas are in random motion. They collide with each other and also with the walls of the container. As the collisions are elastic in nature, there is no loss of energy, but a change in momentum occurs. 3) The molecules of the gas exert pressure on the walls of the container due to collision on it. During each collision, the molecules impart certain momentum to the wall. Due to transfer of momentum, the walls experience a continuous force. 4) The force experienced per unit area of the walls of the container determines the pressure exerted by the gas. It is essential to determine the total momentum transferred by the molecules in a short interval of time.	5

5) A molecule of mass m moving with a velocity \bar{v} having components (v_{x}, v_{y}, v_{z}) hits the right side wall. Since we have assumed that the collision is elastic, the particle rebounds with same speed and its x-component is reversed. This is shown in

 the Figure (b). The components of velocity of the molecule after collision are ($-\mathrm{v}_{\mathrm{x}}, \mathrm{v}_{\mathrm{y}}, \mathrm{v}_{\mathrm{z}}$). The x-component of momentum of the molecule before collision $=m v_{x}$ The x-component of momentum of the molecule after collision $=-m v_{x}$
6) The change in momentum of the molecule in x direction $=$ Final momentum - initial momentum $=-m v_{x}-m v_{x}=-2 m v_{x}$ According to law of conservation of linear momentum, the change in momentum of the wall $=\mathbf{2 m v}$
7) The number of molecules hitting the-right side wall in a small interval of time Δt is calculated as follows. The molecules within the distance of $v_{x} \Delta t$ from the right side wall and moving towards the right will hit the wall in the
 time interval $\Delta \mathrm{t}$. This is shown in the Figure. The number of molecules that will hit the right side wall ina time interval Δt is equal to the product of volume ($A v_{x} \Delta t$) and number density of the molecules (n). Here A is area of the wall and n is number of molecules per unit volume $\left(\frac{N}{v}\right)$. We have assumed that the humber density is the same throughout the cube.
8) Not all the n molecules will move to the right, therefore on an average only half of the n molecules move to the right and the other half moves towards left side. The number of molecules that hit the right side wall in a time interval $\Delta t=\frac{n}{2} A v_{x} \Delta t \ldots-1$
In the same interval of time Δt, the total momentum transferred by the molecules $\Delta p=\frac{n}{2} A v_{x} \Delta t \times 2 m v_{x}=A v_{x}{ }^{2} n m \Delta t-\ldots---1$
9) From Newton's second law, the change in momentum in a small interval of time gives rise to force. The force exerted by the molecules on the wall (in magnitude) $\mathrm{F}=\frac{\Delta P}{\Delta t}=n \mathrm{~m} \mathrm{Av}{ }^{2}$ 3

Pressure, $\mathrm{P}=$ force divided by the area of the wall.
$\mathrm{P}=\frac{F}{A}=\mathrm{nmv}_{\mathrm{x}}{ }^{2}$ 4

Laplace's correction: 1) Laplace assumed that when the sound propagates through a medium, the particles oscillate very rapidly such that the compression and rarefaction occur very fast. Hence the exchange of heat produced due to compression and cooling effect due to rarefaction do not take place, because, air (medium) is a bad conductor of heat. 2) Since, temperature is no longer considered as a constant here, sound propagation is an adiabatic process. By adiabatic considerations, the gas obeys Poisson's law (not Boyle's law as Newton assumed), which is $\mathrm{Pv}^{r}=$ Constant -------4 Where, $\gamma=\frac{c_{P}}{C_{V}}$, which is the ratio between specific heat at constant pressure and specific heat at constant volume. Differentiating equation (4) on both the sides, we get $v^{\gamma} \mathrm{dP}+\mathrm{P}\left(\gamma V \gamma^{-1} d V\right)=0 \text { or } \gamma^{P}=-v_{d V}^{d P} B_{A}-5$ where, BA is the adiabatic bulk modulus of air. Now, substituting equation (5) in equation $V=\sqrt{\frac{B}{\rho}}$ the speed of sound in air is $\begin{aligned} & \mathrm{V}_{\mathrm{A}}=\sqrt{\frac{\mathrm{B}_{\mathrm{T}}}{\rho}}=\sqrt{\frac{\gamma P}{\rho}}=\sqrt{\gamma} \mathrm{V}_{\mathrm{T}} \\ & \mathrm{~V}_{\mathrm{A}}=331 \mathbf{m s}^{-1} \end{aligned}$

DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

[^0]: DEPARTMENT OF PHYSICS, SRMHSS, KAVERIYAMPOONDI, TIRUVANNAMALAI.

