KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR.

STD:XII **MATHEMATICS MARKS: 50** DATE: ONE MARKS TEST-I (BB FULLY) TIME: 30 min

Choose the correct answer:

 $50 \times 1 = 50$

2. If
$$A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$ then $|adj(AB)| = 1 - 40$
2) -80
3) -60
4) -20

3. If A, B and C are invertible metrics of some order, then which one of the following is not true adj $A = |A| A^{-1}$ adj(AB) = (adj A)(adj B)

3)
$$\det A^{-1} = (\det A)^{-1}$$
4) $(ABC)^{-1} = C^{-1}B^{-1}C^{-1}$

4. If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^{T})^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$

$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
and
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$
and
$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

$$A = \begin{bmatrix} \cos \theta & \cos \theta \\ -\cos \theta & \cos \theta \end{bmatrix}$$

3) $\cos \theta$

6. The area of the triangle formed by the complex numbers z, iz and z + iz in Argand's diagram is

$$\frac{1}{2}|z|^2$$
 2) $|z|^2$ 3) $\frac{3}{2}|z|^2$ 4) $2|z|^2$

7. If z is a non zero complex number, such that $2iz^2 = \overline{z}$ then |z| is

1)
$$\frac{1}{2}$$
 2)1 3) 2 4) 3

8. If |z| = 1, then the value of $\frac{1+z}{1+z}$ is

1)
$$z$$
 2) \overline{z} 3) $\frac{1}{z}$ 4) 1

9. If z is a complex number such that $z \in \mathbb{C} \setminus \mathbb{R}$ and $z + \frac{1}{z} \in \mathbb{R}$, then |z| is

10. If z = x + iy is a complex number such that |z + 2| = |z - 2| then the locus of z is

11. If α, β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is

1)
$$-\frac{q}{r}$$
 2) $-\frac{p}{r}$ 3) $\frac{q}{r}$ 4) $-\frac{q}{p}$

12. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if

1)
$$a \ge 0$$
 2) $a > 0$ 3) $a < 0$ 4) $a \le 0$

13.	If $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$;	then $\cos^{-1} x + \cos^{-1} y$ i	s equal to			
	$\frac{2\pi}{3}$	$\frac{\pi}{}$	$\frac{\pi}{}$			
		,	$(3)^{\frac{\pi}{6}}$	$4)\pi$		
	4. If $\sin^{-1} x = 2\sin^{-1} \alpha$ has a solution, then					
	$ \alpha \le \frac{1}{\sqrt{2}}$ If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} x$	$ \alpha \ge \frac{1}{\sqrt{2}}$	$ \alpha < \frac{1}{\sqrt{2}}$	$ \alpha > \frac{1}{\sqrt{2}}$		
15.	If $\sin^{-1} x + \sin^{-1} y + \sin^{-1} x$	$z = \frac{3\pi}{2}$, the value of x^2	$x^{017} + y^{2018} + z^{2019} - \frac{1}{x^{101}}$	$\frac{9}{+v^{101}+z^{101}}$ is		
	1) 0	2) 1	3) 2	4) 3		
16.	If $x = \frac{1}{5}$, the value of $\cos x$	$s(\cos^{-1} x + 2\sin^{-1} x)$ is				
	$1) - \sqrt{\frac{24}{25}}$	V 23	3	4) $-\frac{1}{5}$		
17.	between the foci is			e axis is equal to half the distance		
	1) $\frac{4}{3}$	2) $\frac{4}{\sqrt{3}}$	3) $\frac{2}{\sqrt{3}}$	4) $\frac{3}{2}$		
18.	The length of the diameter	er of the circle which to	buches the x -axis at the	ne point $(1,0)$ and passes through		
	the point $(2,3)$.					
		<u>5</u>	$\frac{10}{3}$	3		
	$\frac{6}{5}$	$\frac{5}{3}$	$3)^{3}$	4) $\frac{-}{5}$		
19.		ascribed in a square for	emed by the lines $x^2 - 8$	$3x-12=0$ and $y^2-14y+45=0$		
	is 1) ^(4,7)	(7.4)	3) (9,4)	4. (4.9)		
20	-/			4) $(4,9)$ $F_2(-3,0)$ then $PF_1 + PF_2$ is		
20.	1) 8		3) 10			
21.	The area of quadrilateral					
	1) $4(a^2+b^2)$	2) $2(a^2+b^2)$	3) $a^2 + b^2$	4) $\frac{1}{2}(a^2+b^2)$		
22.	If a vector $\vec{\alpha}$ lies in the pl	ane of $\overrightarrow{\beta}$ and $\overrightarrow{\gamma}$, then		_		
	1) $[\vec{a}, \vec{\beta}, \vec{\gamma}] = 1$	2) $[\vec{a}, \vec{\beta}, \vec{\gamma}] = -1$	3) $[\vec{a}, \vec{\beta}, \vec{\gamma}] = 1$	4) $[\vec{a}, \vec{\beta}, \vec{\gamma}] = 2$		
23.	If \vec{a} , \vec{c} , \vec{b} are three unit ve	ectors such that \vec{a} is p	erpendicular to $\vec{\boldsymbol{b}}$, and	is parallel to \vec{c} then $\vec{a} \times (\vec{c} \times \vec{c})$		
	$\vec{\boldsymbol{b}}$) is equal to					
	1) a	2) $\vec{\boldsymbol{b}}$	3) c	4) 0		
24.	The volume of the parallel Is	elepiped with its edges	represented by the vec	tors $\hat{\boldsymbol{i}} + \hat{\boldsymbol{j}}$, $\hat{\boldsymbol{i}} + 2\hat{\boldsymbol{j}}$, $\hat{\boldsymbol{i}} + \hat{\boldsymbol{j}} + \boldsymbol{\pi} \hat{\boldsymbol{k}}$		
	$1)\frac{\pi}{2}$	$2)\frac{\pi}{3}$	3) π	4) $\frac{\pi}{4}$		
25.	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$		$\vec{c} = \lambda \vec{a} + \mu \vec{b}$, then the v			
26	1) 0 If $\vec{a} \neq \vec{b}$ are non-contains	2) 1	3) 6 $(\vec{b} \times \vec{c}) = \vec{b} + \vec{c}$ then	4) 3 the angle between \vec{a} and \vec{b} is		
∠o.	_	_	π			
	$1)\frac{\pi}{2}$	$2)\frac{3\pi}{4}$	$3)\frac{n}{4}$	4) π		

	A balloon rises straight up at 10 m/s. An observer is 40m away from the spot where the balloon left the ground. Find the rate of change of the balloon's angle of elevation in radian per second when the balloon is 30 metres above the ground.					
	1) $\frac{3}{25}$ radian/sec	2) $\frac{4}{25}$ radian/sec	3) $\frac{1}{5}$ radian/sec	4) $\frac{1}{3}$ radian/sec		
28.	A stone is thrown up vertically. The height it reaches at time t seconds is given by $x = 80t - 16t^2$. The stone reaches the maximum height in time t seconds is given by					
	1) 2	2) 2.5	3)3	4)3.5		
29.	The abscissa of the point on the curve $f(x) = \sqrt{8-2x}$ at which the slope of the tangent is -0.25 ?					
	1) -8	2) -4	3) -2	4) 0		
30.	The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when					
	1) $y = 0$	2) $y = \pm \sqrt{3}$	3) $y = \frac{1}{2}$	4) $y = \pm 3$		
31.	What is the value of the l	imit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$ is				
	1) 0	2) 1	3) 2	4) ∞		
32.	The percentage error of fa	ifth root of 31 is appro-	ximately how many tin	nes the percentage error in 31?		
	1) $\frac{1}{31}$	2) $\frac{1}{5}$	3) 5	4) 31		
33.	If $w(x, y) = x^y, x > 0$, then $\frac{\partial w}{\partial x}$ is equal to					
	$1)^{x^y} \log x$	2) $y \log x$	3) yx^{y-1}	4) $x \log y$		
34.	. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is					
	1) 0.4 cu.cm	2) 0.45 cu.cm	3) 2 cu.cm	4) 4.8 cu.cm		
35.	The value of $\int_{-1}^{2} x dx$ is					
	1	3	5	7		
	$\frac{1}{2}$	$\frac{3}{2}$	$_{3)} \overline{2}$	4) $\frac{1}{2}$		
36.	The value of $\int_{\pi}^{\frac{\pi}{2}} \sin^2 x \cos x dx$ is					
						
	$\frac{3}{2}$	1		2		
	$\frac{3}{2}$	$(2)^{\frac{1}{2}}$	3) 0	$\frac{2}{3}$		
37.	The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^7 - 3x^5 + 7x^3 - x + 1}{\cos^2 x} \right) dx$ is					
	$-\frac{\pi}{4}$	$\cos x$				
	1) 4	2) 3	3) 2	4) 0		
38.	The area between $y^2 = 4$.	x and its latus rectum:	is			
	2	4	8	5		
	$\frac{2}{3}$	$\frac{4}{2}$	$\frac{8}{3}$	$\frac{5}{3}$		
39.	,	representing the family	y of curves $y = A\cos($	(x + B), where A and B are		
	parameters, is					
	$\frac{d^2y}{dx} - y = 0$	$\frac{d^2y}{dx^2} + y = 0$	$\frac{d^2y}{d^2y} = 0$	•2		
	$\frac{d^2y}{dx^2} - y = 0$	2) $dx^2 + y = 0$	3) $dx^2 = 0$	$4) \frac{d^2x}{dy^2} = 0$		

40. The order of the differential equation of all circles with centre at (h,k) and radius 'a' is					
	1) 2	2) 3	3) 4	4) 1	
41.	The general solution of the differential equation $\frac{dy}{dx} = \frac{y}{x}$ is 1) $xy = k$ 2) $y = k \log x$ 3) $y = kx$ 4) $\log y = kx$				
	1) $xy = k$	$2) y = k \log x$	3) $y = kx$	$4) \log y = kx$	
42.	The solution of $\frac{dy}{dx} + p(x)$	(x)y = 0 is			
	$1) \ \ y = ce^{\int pdx}$	$2) y = ce^{-\int pdx}$			
43.	The integrating factor of	the differential equation	on $\frac{dy}{dx} + P(x)y = Q(x)$) is x , then $P(x)$	
		$\frac{x^2}{2}$	$\frac{1}{x}$	$\frac{1}{r^2}$	
	1) <i>x</i>	-/	-,	• /	
44.	A rod of length 2 <i>l</i> is broken	ken into two pieces at r	andom. The probabilit	y density function of the shorter of	
	the two pieces is $f(x) =$	$\begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l \le x \le 2l \end{cases}$ The magnetic formula of the magnet	ean and variance of the	e shorter of the two pieces are	
		$(0 l \leq \lambda \leq 2l)$			
	respectively	2	2	2	
	$\frac{l}{l} \frac{l^2}{l}$	$\frac{l}{l}$ $\frac{l^2}{l}$	$l = \frac{l^2}{l}$	$\frac{l}{l}$ $\frac{l^2}{l}$	
	$\frac{l}{2}, \frac{l^2}{3}$	2) 2'6	3) 12	4) 2 12	
				of a four-sided die is rolled and	
				en the number of elements in the	
	inverse image of 7 is				
	1) 1	2) 2	3) 3	4) 4	
46.	-			umber of tails obtained when a coin	
	is tossed <i>n</i> times. Then the	ne possible values of X	are		
	1) $i+2n$, $i=0,1,2,n$		2) $2i-n$, $i=0,1,2,n$		
	3) $n-i$, $i=0,1,2,n$		4) $2i + 2n, i = 0, 1, 2,$	<i>n</i>	
47.		ers '*' is defined as fo	ollows. Which one of t	he following is not a binary	
	operation on \mathbb{R} ?		9,		
	1) $a * b = \min(a \cdot b)$	2) $a * b = max(a b)$	3) $a * b - a$	$A) a * b - a^b$	
48	In the set \mathbb{Q} define $a \odot a$				
			2		
	$y = \frac{2}{3}$	$y = -\frac{2}{3}$	$y = -\frac{3}{2}$	4) $y = 4$	
	1) 3	2) 3	2) /		
		-/		4) $y = 4$	
49.	Which one of the follow	ing statements has the		4) $y = 4$	
49.	1) $\sin x$ is an even function	ing statements has the ton.		4) $y = 4$	
49.	 sin x is an even function Every square matrix is 	ing statements has the son.	truth value T?		
49.	 sin x is an even function Every square matrix is The product of complete 	ing statements has the son. s non-singular ex number and its conj	truth value T?		
49.	 sin x is an even function Every square matrix is 	ing statements has the son. s non-singular ex number and its conj	truth value T?		
	1) sin x is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value.	ing statements has the son. s non-singular ex number and its conjumber e of each of the follow:	truth value T? ugate is purely imagin ing statements:	ary	
	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$	ing statements has the son. s non-singular ex number and its conjumber e of each of the follows	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	
	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the son. s non-singular ex number and its conjumber e of each of the follows	truth value T? ugate is purely imagin ing statements:	ary -1=7	
50.	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the con. Is non-singular ex number and its conjumber the of each of the follows (d)	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	
50.	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the con. Is non-singular ex number and its conjumber the of each of the follows (d)	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	
50.	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the con. Is non-singular ex number and its conjumber the of each of the follows (d)	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	
50.	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the con. Is non-singular ex number and its conjumber the of each of the follows (d)	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	
50.	1) $\sin x$ is an even function 2) Every square matrix is 3) The product of complete 4) $\sqrt{5}$ is an irrational number Determine the truth value (a) $4+2=5$ and $6+3=9$ (c) $4+5=9$ and $1+2=4$	ing statements has the con. Is non-singular ex number and its conjumber the of each of the follows (d)	truth value T? ugate is purely imagin ing statements: (b) 3+2=5 and 6-	ary -1=7	