KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR.

STD:XII **MATHEMATICS MARKS: 50 DATE:** ONE MARKS TEST-II (BB FULLY) TIME: 30 min

Choose the correct answers:

 $50 \times 1 = 50$

1. If A is a 3×3 non – singular matrix such that $AA^T = A^TA$ and $B = A^{-1}A^T$, then $BB^T =$

2. If
$$A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, Then $9I_2 - A =$

1)
$$A^{-1}$$
 2) $\frac{A^{-1}}{2}$ 3) $3A^{-1}$ 4) $2A^{-1}$

3. If
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{23} & a_{33} \end{bmatrix}$ then the value of a_{23} is

4. If
$$A^{T}A^{-1}$$
 is symemetic, then $A^{2} = 1$, A^{-1} 2) $(A^{T})^{2}$ 3) A^{T} 4) $(A^{-1})^{2}$

1)
$$A^{-1}$$
 2) $\frac{A}{2}$ 3) $3A^{-1}$ 4) $2A^{-1}$

3. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{23} & a_{33} \end{bmatrix}$ then the value of a_{23} is

1) 0 2) -2 3) -3 4) -1

4. If $A^{T}A^{-1}$ is symemetic, then $A^{2} = 1$ 2) $(A^{T})^{2}$ 3) A^{T} 4) $(A^{-1})^{2}$

5. If $A = \begin{bmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{bmatrix}$ and $AB = I_{2}$, then $B = 1$ 1) $(\cos^{2} \frac{\theta}{2}) A$ 2) $(\cos^{2} \frac{\theta}{2}) A^{T}$ 3) $(\cos^{2} \theta) I$ 4) $(\sin^{2} \frac{\theta}{2}) A^{T}$

6. The value of $\sum_{i=1}^{13} (i^{n} + i^{n-1})$ is

1) $1 + i$ 2) i 3) 1 4) 0

1)
$$1 + i$$
 2) i 3) 1 4) 0

1)
$$1 + i$$
 2) i 3) 1

7. If $z = \frac{\left(\sqrt{3} + i\right)^3 \left(3i + 4\right)^2}{\left(8 + 6i\right)^2}$, then $|z|$ is

1) 0 2) 1 3) 2

8. If
$$\left|z - \frac{3}{z}\right| = 2$$
, then the least value of $|z|$ is

1) 1 2) 2 3) 3 4) 5

1) 1 2) 2 3) 3 4) 5 9. If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 3$ and $|9z_1z_2 + 4z_1z_3 + z_2z_3| = 12$, then the value of $|z_1 + z_2 + z_3|$ is 1) 1 2) 2 3) 3 4) 4

10. If $\frac{z-1}{z+1}$ is purely imaginary, then |z| is

$$z+1$$
1) $\frac{1}{2}$
2) 1
3) 2
4) 3

11. If f and g are polynomials of degrees m and n respectively, and if $h(x) = (f \circ g)(x)$, then the

degree of
$$h$$
 is

1) mn

2) $m+n$

3) m^n

4) n^m

12. According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$?

1)
$$-1$$
 2) $\frac{5}{4}$ 3) $\frac{4}{5}$ 4) 5

13. $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$ is equal to								
	1) 2π	2) π	3) 0	4) $\tan^{-1}\frac{12}{65}$				
14.	14. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is							
	1) $-\frac{\pi}{10}$		$3)\frac{\pi}{10}$	$4)-\frac{\pi}{5}$				
	$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is		2 1 -1 (3)	01 (1)				
	$1) \frac{1}{2} \cos^{-1} \left(\frac{3}{5}\right)$	2 (3)	2 (3)	\ - '				
16.	If $\cot^{-1} 2$ and $\cot^{-1} 3$ are			_				
	T	$2)\frac{3\pi}{4}$	U	$4)\frac{n}{3}$				
17.	The circle $x^2 + y^2 = 4x$							
	1) $15 < m < 65$	2) $35 < m < 85$,	<i>'</i>				
18.	The equation of the norm	hal to the circle $x^2 + y$	$x^2 - 2x - 2y + 1 = 0$ which	ch is parallel to the line				
	2x + 4y = 3 is 1) $x + 2y = 3$	2) $x+2y+3=0$	(2x+4y+3=0)	(x-2y+3) = 0				
19.	-/			atus rectum are tangents to				
	the circle $(x-3)^2 + (y+2)^2$							
	1) 2	2) 3	3) 1	4) 4				
20.	The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4}$	=1is inscribed in a rec	tangle R whose sides	are parallel to the coordinate				
	axes. Another ellipse E_2	passing through the po	oint (0,4) circumscrib	es the rectangle R . The				
	eccentricity of the ellipse							
	1) $\frac{\sqrt{2}}{2}$	2) $\frac{\sqrt{3}}{2}$ 3) $\frac{1}{2}$	$4)\frac{3}{4}$					
21.	Let C be the circle with	2 2	T	rcle centered at $(0, y)$ passing				
	through the origin and to	buching the circle C ex	ternally, then the radiu	is of T is equal to				
	1) $\frac{\sqrt{3}}{\sqrt{2}}$	2) $\frac{\sqrt{3}}{2}$ 3) $\frac{1}{2}$	4) $\frac{1}{4}$					
	V 4	_	4					
22.	If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$,		\vec{b}] is					
	1) $ \vec{a} \vec{b} \vec{c} $		4) -1					
23.	If \vec{a} and \vec{b} are unit vector	rs such that $[\vec{a}, \vec{b}, \vec{a} \times$	\vec{b}] = $\frac{\pi}{4}$, then the angle	between \vec{a} and \vec{b} is				
	$1)\frac{\pi}{6}$	$2)\frac{\pi}{4}$	3) $\frac{\pi}{3}$	4) $\frac{\pi}{2}$				
24.	The order and degree of	the differential equatio	$\int \sin x (dx + dy) = \sqrt{1 + 1}$	$\cos x(dx-dy)$ is				
	1) 1, 2	2) 2, 2 3) 1, 1	4) 2, 1					
25.	If the volume of the para							
	units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times (\vec{b} \times \vec{c})$, $(\vec{b} \times \vec{c})$, $(\vec{c} \times \vec{a})$ and							
	$(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as co 1) 8 cubic units	terminous edges is,	3) 64 cubic units	4) 24 cubic units				
26.	If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{c})$							
20.	$\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{b} a		are any times vectors s	den mar bile / o and				
	1) Perpendicular	2) parallel 3) ir		4) inclined at an angle $\frac{\pi}{6}$				
27.	The angle between the li	nes $\frac{x-2}{3} = \frac{y+1}{-2}$, $z = 2$ ar	$ad\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is	-				
	$1)\frac{\pi}{6}$	$2)\frac{\pi}{4}$ 3)		$4)\frac{\pi}{2}$				
	U	4	J	4				

28.	Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus. Then $E[X]$ and $E[Y]$ respectively are							
	1) 50, 40	2) 40, 50	3) 40.75, 40	4) 41, 41				
29.	The position of a particle	e moving along a horiz	ontal line of any time					
	$s(t) = 3t^2 - 2t - 8$. The t		cle is at rest is					
	1) $t = 0$	$2) t = \frac{1}{3}$	3) $t = 1$	4) $t = 3$				
30.	30. The slope of the line normal to the curve $f(x) = 2\cos 4x$ at $x = \frac{\pi}{12}$ is							
	1) $-4\sqrt{3}$	2) -4	3) $\frac{\sqrt{3}}{12}$	4) $4\sqrt{3}$				
31.	31. The number given by the Rolle's theorem for the function $x^3 - 3x^2, x \in [0,3]$ is							
	1) 1	2) $\sqrt{2}$	3) $\frac{3}{2}$	4) 2				
32.	If $u(x, y) = e^{x^2 + y^2}$, then	$\frac{\partial u}{\partial x}$ is equal to						
	1) $e^{x^2+y^2}$	2) 2 <i>xu</i>	3) x^2u	4) y^2u				
33.	The change in the surfac	se area $S = 6x^2$ of a cu	be when the edge leng	th varies from x_0 to $x_0 + dx$ is				
	1) $12x_0 + dx$			4) $6x_0 + dx$				
34.	If $f(x, y, z) = xy + yz +$	zx , then $f_x - f_z$ is eq	ual to					
		2) y-z	3) $x-z$	4) $y-x$				
35.	The value of $\int_{0}^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$	- is						
	1) $\frac{\pi}{6}$	$2)\frac{\pi}{2}$	$3)\frac{\pi}{4}$	4) π				
36.	36. If $f(t) = \int_{0}^{x} t \cos t dt$, then $\frac{df}{dx} =$							
	1) $\cos x - x \sin x$	2) $\sin x + x \cos x$	3) $x\cos x$	4) $x \sin x$				
37.	The volume of solid of r	evolution of the region	bounded by $y^2 = x(a)$	(-x) about x-axis is				
	1) πa^3	$2)\frac{\pi a^3}{4} \qquad \qquad 3)\frac{\pi a^3}{5}$	$4)\frac{\pi a^3}{6}$					
38. The value of $\int_{0}^{1} (\sin^{-1} x)^{2} dx$ is								
	1) $\frac{\pi^2}{4} - 1$	2) $\frac{\pi^2}{4} + 2$	3) $\frac{\pi^2}{4} + 1$	4) $\frac{\pi^2}{4}$ – 2				
39.	39. The solution of the differential equation $2x\frac{dy}{dx} - y = 3$ represents							
	1) straight lines	2) circles	3) parabola	4) ellipse				
40. The solution of the differential equation $\frac{dy}{dx} = 2xy$ is								
	$1) y = ce^{x^2}$		3) $y = ce^{-x^2} + c$	$y = x^2 + c$				
41.	,			and $n+1$ are respectively				
	1) $n-1$, n	2) $n, n+1$	3) $n+1$, $n+2$	4) $n+1$, n				

www.Padasalai.Net - No.1 Educational Website in Tamilnadu

42.	. The number of arbitrary constants in the particular solution of a differential equation of third order							
	is 1) 3			2) 2		3) 1	4) 0	
13	,	m varia	hla V ha	2) 2	mial distribution	,	4)0 a = 0.8 then standard deviation of	
43. A random variable <i>X</i> has binomial distribution with $n = 25$ and $p = 0.8$ then standard deviat <i>X</i> is							- 0.8 then standard deviation of	
	1) 6			2) 4		3) 3	4) 2	
44.		= 0) =	1 - P(Z)	X = 1). If E[X] = 3	Var(X), then $P(X)$	$\mathbf{K} = 0$).	
				2) 2				
	1) $\frac{2}{3}$			2) - 5		$3)\frac{1}{5}$	4) $\frac{1}{3}$	
45.	5. Let <i>X</i> have a Bernoulli distribution with mean 0.4, then the variance of $(2X-3)$ is							
	1) 0.24			2) 0.	48	3) 0.6	4) 0.96	
46.	46. If in 6 trials, X is a binomial variate which follows the relation $9P(X=4) = P(X=2)$, then the							
	probabil							
	1) 0.125	•		2) 0.	25	3) 0.375	4) 0.75	
47.	A binar	y operat	ion on a	set S	is a function from	n		
	1) $S \rightarrow$, ,	$S \times S) \longrightarrow S$		$4)(S \times S) \longrightarrow (S \times S)$	
48.		npound s	tatemen		lves 3 simple sta		number of rows in the truth table is	
40	1) 9			2) 8	6.1	3) 6	4) 3	
49.						$nt (p \lor q) \to r ?$		
	1) $\neg r$ –	$\rightarrow (\neg p \land $	$\neg q$)	2)	$\neg r \rightarrow (p \lor q)$	3) $r \rightarrow (p \land q)$	$_{4)} p \rightarrow (q \lor r)$	
50.	The trut	th table f	for $(p \land$	$q)\vee -$	q is given below	W		
		p		q	$(p \land q) \lor (\neg q)$			
		T		T	(a)			
				1	(4)			
		T		\overline{F}	(b)			
		F		T	(c)			
		\overline{F}		\overline{F}	(d)			
		r		Γ	(<i>a</i>)			
			•					
	Whic	ch one o	f the fol	lowing	g is true?			
	VV 111C	(a)	(b)	(c)	(d)			
	(1)	T	T	T	T			
	(2)	T	$\boldsymbol{\mathit{F}}$	T	T			
	(3)	T	T	$\boldsymbol{\mathit{F}}$	T			
	(4)	T	F	F	F			