KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR.

STD:XII **MATHEMATICS DATE:** ONE MARK TEST-IV (BB FULLY)

TIME: 30 min

MARKS: 50

Choose the correct answer:

 $50 \times 1 = 50$

1. If
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
, Then
$$1) \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \qquad 2) \begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix} \qquad 3) \begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix} \qquad 4) \begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$$

$$adj A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix} \quad adj B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix} \quad \text{then } adj(AB) \text{ is}$$

$$1) \begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad 2) \begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad 3) \begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad 4) \begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$

- 3. Which of the following is/are correct?
 - i) Adjoint of a symmetric matrix is also a symmetric matrix.
 - ii) Adjoint of a diagonal matrix is also a diagonal matrix.
 - iii) If A is a square matrix of order n and λ is a scalar, then $adj(\lambda A) = \lambda^n adj(A)$
 - (iv) A(adjA) = (adjA)A = |A|I
- 1) Only (i)
 2) (ii) and (iii)
 3) (iii) and (iv)
 4) (i),(ii) and (iv)
 4. The augmented matrix of a system of linear equation is 0 1 4 6 the system has

1)
$$\lambda = 7, \mu \neq -5$$
 2) $\lambda = -7, \mu = 5$ 3) $\lambda \neq 7, \mu \neq -5$

3)
$$\lambda \neq 7, \mu \neq -5$$
 4) $\lambda = 7, \mu = -5$

infinitely many solution if

1)
$$\lambda = 7, \mu \neq -5$$
2) $\lambda = -7, \mu = 5$
3) $\lambda \neq 7, \mu \neq -5$
4) $\lambda = 7, \mu = -5$
5. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then $adj(adjA)$ is

$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix} \qquad \begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix} \qquad \begin{bmatrix} 3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

6. The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is

$$\frac{1}{i+2}$$
 $\frac{-1}{i+2}$ $\frac{-1}{3}$ $\frac{1}{i-2}$ $\frac{1}{i-2}$

7. The principal argument of $\frac{3}{-1+i}$ is

1)
$$\frac{-5\pi}{6}$$
 2) $\frac{-2}{3}$ 3) $\frac{-3\pi}{4}$ 4) $\frac{-\pi}{2}$

8. The principal argument of the complex number $\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$ is

1)
$$\frac{2\pi}{3}$$
 2) $\frac{\pi}{6}$ 3) $\frac{5\pi}{6}$ 4) $\frac{\pi}{2}$

		3				
9. The product of all four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{\pi}{4}}$ is						
1) -2	2) -1	3) 1	4) 2			
10. The value of $\left(\frac{1+}{1-}\right)$	$\left(\frac{\sqrt{3}i}{\sqrt{3}i}\right)^{10}$ is					
3	2) $cis \frac{4\pi}{3}$	3) – cis $\frac{2\pi}{3}$	$4) - cis \frac{4\pi}{3}$			
11. A zero of $x^3 + 64$ 1) 0	is 2) 4	3) 4 <i>i</i>	4) -4			
*	$3-kx^2+9x$ has three re	,	,			
$1) k \le 6$	2) k = 0	3) $ k > 6$	$4) k \ge 6$			
13. $\sin^{-1}(\cos x) = \frac{\pi}{2}$	x is valid for		- 2-			
$1) - \pi \le x \le 0$	$2) 0 \le x \le \pi$	$3) -\frac{\pi}{2} \le x \le \frac{\pi}{2}$	$4) -\frac{\pi}{4} \le x \le \frac{3\pi}{4}$			
14. If $ x \le 1$, then $2 \tan^{-1} x - \sin^{-1} \frac{2x}{1+x^2}$ is equal to						
1) $\tan^{-1} x$	$2)\sin^{-1}x$	3) 0	4) π			
15. The equation tan^{-1}	$x - \cot^{-1} x = \tan^{-1} \left(\frac{1}{\sqrt{3}} \right)$	has				
1) no solution	2) unique solution	3) two solutions	4) infinite number of solutions			
16. If $\sin^{-1} \frac{x}{5} + \cos ec^{-1} \frac{5}{4} = \frac{\pi}{2}$, then the value of x is						
1) 4	2) 5	3) 2	4) 3			
	rcle $3x^2 + by^2 + 4bx - 6$	$by + b = 0 \text{ is}$ $3) \sqrt{10}$	4) $\sqrt{11}$			
1) 1 18 If $x + y - k$ is a not	2) 3 ormal to the parabola y^2					
	2) -1		4) 9			
			are at right angles then the locus of P is			
1) $2x+1=0$		3) $2x-1=0$	x = 1			
20. The locus of a point whose distance from (-2,0) is $\frac{2}{3}$ times its distance from the line $x = -\frac{9}{2}$ is						
1) a parabola	2) a hyperbola	3) an ellipse	4) a circle			
		eter of the circle x^2	$+y^2 - 8x - 4y + c = 0$ are (11,2), the			
coordinates of the o		2) (「 2)	4) (25)			
1) $(-5,2)$ 22. If $[\vec{a}, \vec{c}, \vec{b}] = 1$, then	$(-3,2)$ $\vec{a}.(\vec{b}\times\vec{c})$	$\vec{b}(\vec{c} \times \vec{b}) = \vec{c}.(\vec{a} \times \vec{b})$.	4) (-2,5)			
,	(2) -1	3) 2	4) 3			
23. If the line $\frac{x-2}{3} = \frac{y-3}{-5}$	· -					
	2) (-6.7) origin to the plane $3x-$		4) (6, -7)			
1) 0	2) 1	3) 2	4) 3			
25. If the distance of the point (1,1,1) from the origin is half of its distance from the plane						
	then the values of k are		0.2			
1) \pm 3	$2) \pm 6$	3) -3,9	4) 3, –9			
26. If the length of the	perpendicular from the	e origin to the plane 2x	$+3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the			

Kindly send me your questions and answerkeys to us: Padasalai. Net@gmail.com

value of λ is

	1) $2\sqrt{3}$	2) $3\sqrt{2}$	3) 0	4) 1			
27.	27. The minimum value of the function $ 3-x +9$ is						
	1) 0	2) 3	3) 6	4) 9			
28.	The maximum	value of the function x^2e^{-2x}	x > 0 is				
	$1)\frac{1}{a}$	$2)\frac{1}{2e}$	$3)\frac{1}{a^2}$	$4)\frac{4}{e^4}$			
29.	29. One of the closest points on the curve $x^2 - y^2 = 4$ to the point (6,0) is						
	1) (2,0)	$(\sqrt{5},1)$	$(3,\sqrt{5})$	$\left(\sqrt{13},-\sqrt{3}\right)$			
30.		flection of the curve $y = (x - \frac{1}{2})^{-1}$	$-1)^{3}$ is	,			
	(0,0)	2) (0,1)	3) (1,0)	4) (1,1)			
21	-/	′	<i>'</i>	7)			
31.	If $v(x, y) = \log(x)$	$(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is eq	ual to				
	$1) e^x + e^y$	$2) \frac{1}{e^x + e^y}$	3) 2	4) 1			
32.	If $f(x) = \frac{x}{x+1}$, then its differential is give					
	$1) \frac{-1}{(x+1)^2} dx$	$2) \frac{1}{(x+1)^2} dx$	$3) \frac{1}{x+1} dx$	$4) \frac{-1}{x+1} dx$			
33. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is							
	$x + \frac{\pi}{2}$	$-x + \frac{\pi}{2}$	3) $x - \frac{\pi}{2}$	$-x - \frac{\pi}{2}$			
34.	The value of \int_{-1}^{4}	$\int_{4}^{4} \left[\tan^{-1} \left(\frac{x^{2}}{x^{4} + 1} \right) + \tan^{-1} \left(\frac{x^{4} - 1}{x^{2}} \right) \right]$	$\left \frac{1}{2}\right dx$ is				
	 π 	$2) 2\pi$	$3)$ 3π	4) 4π			
35. The value of $\int_{0}^{\pi} \frac{dx}{1 + 5^{\cos x}}$ is							
	1) $\frac{\pi}{2}$	2) π	$3) \ \frac{3\pi}{2}$	 2π 			
36. If $\int_{0}^{a} \frac{1}{4+x^2} dx = \frac{\pi}{8}$ then <i>a</i> is							
	1) 4	2) 1	3) 3	4) 2			
37.	37. If $\int_{0}^{x} f(t)dt = x + \int_{x}^{1} t f(t) dt$, then the value of $f(1)$ is 1) $\frac{1}{2}$ 2) 2 3) 1 4) $\frac{3}{4}$						
	1) $\frac{1}{1}$	2) 2	3) 1	4) $\frac{3}{4}$			
38. The differential equation of the family of curves $y = Ae^x + Be^{-x}$, where A and B are arbitrary							
	constants is d^2y	d^2v	dv	dv			
	$\frac{d^2y}{dx^2} + y = 0$	$\frac{d^2y}{dx^2} - y = 0$	$\frac{dy}{dx} + y = 0$	$\frac{dy}{dx} - y = 0$			
	1) 600	2) an	<i>5)</i>	1) ·····			
39.	The solution of	the differential equation $\frac{dy}{dx}$	$\frac{1}{1} + \frac{1}{\sqrt{1-\frac{2}{1-\frac{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{2}{1-\frac{1-\frac{2}{1-1-\frac{1-\frac{1-\frac{1-\frac{1-1-\frac{1-\frac{1-\frac{1-1-\frac{1-\frac{$				
		$= c 2) x + \sin^{-1} y = 0$		$x^{-1} = c$ 4) $x^2 + 2\sin^{-1} y = 0$			

40. If $\sin x$ is the integral	grating factor of the linear differ	rential equation $\frac{dy}{dx} + \frac{dy}{dx}$	Py = Q, then P is			
1) $\log \sin x$	$2) \cos x$	3) tan <i>x</i>	4) $\cot x$			
41. The population <i>P</i> in any year <i>t</i> is such that the rate of increase in the population is proportional to the population. Then						
1) $P = Ce^{kt}$,	3) $P = Ckt$				
42. <i>P</i> is the amount of	certain substance left in after ti	me t. If the rate of eva	aporation of the substance is			
proportional to the	amount remaining, then					
1) $P = Ce^{kt}$	$2) P = Ce^{-kt}$	3) $P = Ckt$	4) $Pt = C$			
43. Consider a game w	here the player tosses a six-side	ed fair die. If the face t	hat comes up is 6, the player			
wins ₹36, otherwis	se he loses	e face that comes up k	$z = \{1, 2, 3, 4, 5\}$. The expected			
amount to win at th						
$\frac{19}{6}$	$\frac{-\frac{19}{6}}{2}$	3	$-\frac{3}{2}$			
1) 6	2) 6	$\frac{3}{2}$	4) 2			
44. If <i>X</i> is a binomial r	andom variable with expected v	value 6 and variance 2	.4, Then $P(X = 5)$ is			
	2) $\binom{10}{5} \left(\frac{3}{5}\right)^{10}$		$4) {10 \choose 5} {3 \choose 5}^5 {2 \choose 5}^5$			
	ving is a discrete random variab					
	ers crossing a particular signal in	•				
	ustomers in a queue to buy train to complete a telephone call.	n tickets at a moment.				
1) I and II	2) II only	3) III only	4) II and III			
ŕ	erson knows from his past exper		,			
	ho enter the showroom. What i					
exactly two of the r	ext three customers?					
<u>57</u>	57	19^{3}	<u>57</u>			
$\frac{57}{20^3}$	$\frac{57}{20^2}$	$\frac{19^3}{20^3}$	$\frac{1}{20}$			
47. The operation * de	fined by $a*b = \frac{ab}{7}$ is not a bin					
1) \mathbb{Q}^+	2) 🏻	3) ℝ	4) ℂ			
48. Which one of the fo	ollowing statements has truth va	alue F?				
1) Chennai is in Inc	lia or $\sqrt{2}$ is an integer					
2) Chennai is in Inc	2) Chennai is in India or $\sqrt{2}$ is an irrational number					
	ina or $\sqrt{2}$ is an integer					
	4) Chennai is in China or $\sqrt{2}$ is an irrational number					
49. Which one of the fo	ollowing is incorrect? For any ty	wo propositions p and				
1) $\neg (p \lor q) \equiv \neg p \land$	$\neg q$	$(p \land q) \equiv \neg p \lor \neg q$	$\neg q$			
$_{3)} \neg (p \lor q) \equiv \neg p \lor$	$\neg q$	2) $\neg (p \land q) \equiv \neg p \lor q$ (4) $\neg (\neg p) \equiv p$				
50. The proposition p		· /				
1) a tautology		2) a contradiction				
3) logically equival	ent to $p \wedge q$	4) logically equivale	ent to $p \vee q$			