KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR.

STD:XII

DATE:

MATHEMATICS ONE MARK TEST-1 (BB FULLY)

MARKS: 20 TIME: 15 min

Choose the correct answer:

 $20 \times 1 = 20$

1. If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then B^{-1}

- $1) \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix} \qquad \qquad 2) \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} \qquad \qquad 3) \begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix} \qquad \qquad 4) \begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$

2. If
$$\rho(A) = \rho([A|B])$$
, then the system $AX = B$ of linear equation is

1) Consistent and has a unique solution

- 2) Inconsistent
- 3) Consistent and has infinitely many solution
- 4) Consistent

3. The solution of the equation
$$|z| - z = 1 + 2i$$
 is

- 1) 1

4. If
$$\alpha$$
 and β are the roots of $x^2 + x + 1 = 0$, then $\alpha^{2020} + \beta^{2020}$ is

- 1) $2 \frac{3}{2}i$ 2) $-\frac{3}{2} + 2i$ 3) $\frac{3}{2} 2i$
- 4) $2 + \frac{3}{2}i$

5. According to the rational root theorem, which number is not possible rational zero of
$$4x^7 + 2x^4 - 10x^3 - 5$$
?

- 2) $\frac{4}{5}$ 3) $\frac{5}{4}$

4) - 1

6.
$$\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$$
 is equal to

- (1) $\frac{1}{2} \tan^{-1} \left(\frac{3}{5} \right)$ (2) $\frac{1}{2} \sin^{-1} \left(\frac{3}{5} \right)$ (3) $\frac{1}{2} \cos^{-1} \left(\frac{3}{5} \right)$ (4) $\tan^{-1} \left(\frac{1}{2} \right)$

7. The area of quadrilateral formed with foci of the hyperbolas
$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$
 and $\frac{x^2}{a^2} - \frac{y^2}{b^2} = -1$ is

- (1) $a^2 + b^2$

- (2) $2(a^2+b^2)$ (3) $4(a^2+b^2)$ (4) $\frac{1}{2}(a^2+b^2)$

8. If the two tangents drawn from a point
$$P$$
 to the parabola $y^2 = 4x$ are at right angles then the locus of P is

- (1) 2x-1=0
- (2) x = 1
- (3) 2x+1=0 (4) x=-1

9. If
$$\vec{a}$$
, \vec{c} , \vec{b} are non-coplanar, non-zero vectors such that $[\vec{a}, \vec{c}, \vec{b}] = 3$ than $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is equal to

- 1) 18
- 2) 27
- 3)9

4) 81

10. The distance between the planes x+2y+3z=7=0 and 2x+4y+6z+7=0 is

	$1)\frac{\sqrt{7}}{2\sqrt{2}}$	$2)\frac{7}{2\sqrt{2}}$	$3)\frac{\sqrt{7}}{2}$	4) $\frac{7}{2}$	
11.	11. What is the value of the limit $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$ is				
	(1) 1	(2) 2	(3) 0	(4) ∞	
12.	12. The point of inflection of the curve $y = (x-1)^3$ is				
	(1) (1,0)	(2) (0,1)	(3) (0,0)	(4) (1,1)	
13.	3. If $g(x, y) = 3x^2 - 5y + 2y^2$, $x(t) = e^t$, and $y(t) = \cos t$ then $\frac{dg}{dt}$ is equal to				
	(1) $3e^{2t} + 5\sin t + 4\cos t\sin t$		(2) $6e^{2t} - 5\sin t + 4\cos t \sin t$		
	(3) $6e^{2t} + 5\sin t - 4\cos t\sin t$		(4) $3e^{2t} - 5\sin t + 4\cos t\sin t$		
14.	The value of $\int_{0}^{\pi} \frac{dx}{1 + 5^{\cos}}$	$\frac{1}{x}$ is			
	$(1) \ \frac{3\pi}{2}$	(2) π	$(3) \frac{\pi}{2}$	(4) 2π	
15.	If $\int_{0}^{x} f(t)dt = x + \int_{x}^{1} t f(t) dt$, then the value of $f(1)$ is				
	(1) $\frac{1}{2}$	(2) 1	(3) 2	$(4) \frac{3}{4}$	
16.	6. The number of arbitrary constants in the particular solution of a differential equation of third				
	order is				
	(1) 1	(2) 3	(3) 0	(4) 2	
17.	17. The integrating factor of the differential equation $\frac{dy}{dx} + P(x)y = Q(x)$ is x, then $P(x)$				
	(1) $\frac{x^2}{2}$	(2) <i>x</i>	(3) $\frac{1}{x^2}$	$(4) \frac{1}{x}$	
18.	8. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the				
	probability that a student will get 4 or more correct answers just by guessing is				
	(1) $\frac{11}{243}$	(2) $\frac{5}{243}$	$(3) \frac{1}{243}$	$(4) \frac{3}{8}$	
19.	If a compound statement involves 3 simple statements, then the number of rows in the truth				
	table is				
	(1) 3	(2) 6	(3) 8	(4) 9	
20.	Which one of the follo	owing is not true?			
	(1) Negation of a negation of a statement is the statement itself.				
	(2) If the last column of the truth table contains only T then it is a tautology.				
	(3) If the last column of its truth table contains only F then it is a contradiction				

(4) If p and q are any two statements then $p \leftrightarrow q$ is a tautology.