

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

Model Exam (2022 – 23) CLASS – XII - MATHEMATICS

Time Allowed: 3 Hrs Maximum Marks: 90

	P.A	ART – I							
I. Answer ALL questio	essing through (1, -2) and touching the axis of x at (3,0) passing through the point (2) (2, -5) (3) (5, -2) (4) (-2,5) are of $n \in \mathbb{Z}$, $\int_0^{\pi} e^{\cos^2 x} \cos^3 \left[(2n+1)x \right] dx$ is (2) π (3) 0 (4) 2 or the rational root theorem, which number is not possible rational zero of $0x^3 - 5$? (2) $\frac{5}{4}$ (3) $\frac{4}{5}$ (4) 5 are the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our of the volume is (2) 0.45 cu.cm (3) 2 cu.cm (4) 4.8 cu.cm (4) 4.8 cu.cm (5) the differential equation of all circles with centre at (h, k) and radius 'a' is (2) 3 (3) 4 (4) 1 \mathbb{Q} define $a \odot b = a + b + ab$. For what value of y , $3 \odot (y \odot 5) = 7$? (2) $y = \frac{-2}{3}$ (3) $y = \frac{-3}{2}$ (4) $y = 4$ is the adjoint of 3×3 matrix A and $ A = 4$, then x is $\frac{0}{1 + 2}$ is the adjoint of $\frac{3}{1 + 4}$ is								
1) The circle passing	through (1, -2) and touchi	ng the axis of x at (3,0) passing through the point						
(1) (-5,2)	(2) (2,-5)	(3) (5,-2)	(4) (-2,5)						
2) For any value of	$n \in \mathbb{Z}, \int_0^{\pi} e^{\cos^2 x} \cos^3 \left[(2n^2)^{\frac{1}{2}} \right]^{\frac{1}{2}}$	(x+1)x] dx is							
(1) $\frac{\pi}{2}$	(2) π	(3) 0	(4) 2						
3) According to the	3) According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$?								
$4x^{7} + 2x^{4} - 10x^{3} - $ (1)-1	$5?$ (2) $\frac{5}{4}$	$(3)\frac{4}{5}$	(4) 5						
4) If we measure the calculation of the (1) 0.4 cu.cm	volume is								
5) The order of the	differential equation o	f all circles with cer	ntre at (h, k) and radius 'a' is						
(1) 2									
6) In the set \mathbb{Q} define $a \odot b = a + b + ab$. For what value of y, $3 \odot (y \odot 5) = 7$?									
5	3								
7) If $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$	is the adjoint of 3×3 m	natrix A and $ A = 4$,	then x is						
(1) 15	(2) 12	(3) 14	(4) 11						
8)The principal argu	ument of $\frac{3}{-1+i}$ is								
(1) $\frac{-5\pi}{6}$	(2) $\frac{-2\pi}{3}$	(3) $\frac{-3\pi}{4}$	(4) $\frac{-\pi}{2}$						

Ph: 948 99 00 886

(1)0

9) The minimum value of the function |3-x|+9 is

(2)3

ST. ANNE'S ACADEMY

(MATHS & PHYSICS TUITION CENTRE)

(3)6

(4)9

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

10) If $\vec{a} = 2\hat{i} + 3\hat{j} - k$, $\vec{b} = \hat{i} + 2\hat{j} - 5k$, $\vec{c} = 3\hat{i} + 5\hat{j} - k$, then a vector perpendicular to \vec{a} and lies in the plane containing \vec{b} and \vec{c} is										
(1) $-17\hat{i} + 21\hat{j} - 97\hat{k}$		(2) $17\hat{i} + 21\hat{j} - 123\hat{k}$								
(3) $-17\hat{i} - 21\hat{j} + 97\hat{k}$		$(4) -17\hat{i} - 21\hat{j} - 97\hat{k}$								
11) Let X have a Bernoulli distribution with mean 0.4, then the variance of $(2X-3)$ is										
(1) 0.24	b) 0.48	(3) 0.6	(4) 0.96							
	3 are two angles of a tria		_							
(1) $\frac{\pi}{4}$	(2) $\frac{3\pi}{4}$	(3) $\frac{\pi}{6}$	(4) $\frac{\pi}{3}$							
13) If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$, then										
	(2) $c = \pm \sqrt{3}$		(4) 0 < c < 1							
14) The volume of sol (1) πa^3	id of revolution of the result (2) $\frac{\pi a^3}{4}$		$= x(a-x) \text{ about x-axis}$ $(4) \frac{\pi a^3}{6}$							
15) If $A^T A^{-1}$ is symme	etric, then $A^2 =$									
(1) A ⁻¹	(2) $(A^T)^2$	(3) A ^T	(4) (A ⁻¹) ²							
16) The degree of the	differential equation y($f(x) = 1 + \frac{dy}{dx} + \frac{1}{1 \cdot 2} \left(\frac{dy}{dx}\right)^2$	$\frac{1}{1\cdot 2\cdot 3}\left(\frac{dy}{dx}\right)^3 + \dots$ is							
(1) 2	(2) 3	(3) 1	(4) 4							
17) Tangents are drawn t	to the hyperbola $\frac{x^2}{9} - \frac{y^2}{4} =$	1 parallel to the straight li	ine $2x - y = 1$. One of							
the points of contact of tangents on the hyperbola is										
$(1)\left(\frac{9}{2\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$	$(2)\left(\frac{-9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$	$(3)\left(\frac{9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$	(4) $(3\sqrt{3}, -2\sqrt{2})$							

is

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

- 18) The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand's diagram is
- (1) $\frac{1}{2}|z|^2$ (2) $|z|^2$ (3) $\frac{3}{2}|z|^2$ (4) $2|z|^2$
- 19) If $w(x, y, z) = x^2(y z) + y^2(z x) + z^2(x y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is
 - (1) xy + yz + zx (2) x(y+z) (3) y(z+x) (4) 0

- 20) A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?
 - (1) $\frac{57}{20^3}$
- (2) $\frac{57}{20^2}$

- (3) $\frac{19^3}{20^3}$
- $(4) \frac{57}{20}$

PART - II

II. Answer any SEVEN questions. Question 30 is compulsory

7x2 = 14

21) The time to failure in thousands of hours of an electronic equipment used in a manufactured computer has the density function

$$f(x) = \begin{cases} 3e^{-3x} & x > 0\\ 0 & \text{elsewhere} \end{cases}.$$

Find the expected life of this electronic equipment.

- 22) Find the value of $\sin^{-1} \left| \sin \left(\frac{5\pi}{4} \right) \right|$.
- 23) Find the value of the following:

$$\int_0^{\frac{\pi}{2}} \sin^5 x \cos^4 x \, dx$$

24) Find the rank of the following matrix

$$\begin{bmatrix} 2 & 0 & -7 \\ 0 & 3 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

25) Find the equation of the ellipse with foci $(\pm 2,0)$, vertices $(\pm 3,0)$.

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

- 26) Find the values in the interval (1,2) of the mean value theorem satisfied by the function $f(x) = x x^2$ for $1 \le x \le 2$.
- 27) Find the coordinates of the point where the straight line $\vec{r} = (2\hat{i} \hat{j} + 2\hat{k}) + t(3\hat{i} + 4\hat{j} + 2\hat{k})$ intersects the plane x y + z 5 = 0.
- 28) Prove that, in an algebraic structure the identity element (if exists) is unique.
- 29) If z = 2 2i, find the rotation of z by θ radians in the counter clockwise direction about the origin when $\theta = \frac{\pi}{2}$
- 30) Show that, if $x = r \cos\theta$, $y = r \sin\theta$, then $\frac{\partial r}{\partial x}$ is equal to $\cos\theta$.

PART - III

III. Answer any SEVEN questions. Question 40 is compulsory

7x3 = 21

31) Solve:
$$(x-5)(x-7)(x+6)(x+4) = 504$$

32) Solve
$$\frac{dy}{dx} + 2y = e^{-x}$$
.

- 33) The probability that Mr.Q hits a target at any trial is $\frac{1}{4}$. Suppose he tries at the target 10 times. Find the probability that he hits the target (i) exactly 4 times (ii) at least one time.
- 34) If $\frac{1+z}{1-z} = \cos 2\theta + i \sin 2\theta$, show that $z = i \tan \theta$.
- 35) Salt is poured from a conveyer belt at a rate of 30 cubic metre per minute forming a conical pile with a circular base whose height and diameter of base are always equal. How fast is the height of the pile increasing when the pile is 10 metre high?
- 36) Find the equations of tangent and normal to the ellipse $x^2 + 4y^2 = 32$ when $\theta = \frac{\pi}{4}$.
- 37) Given $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$, $B = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, find a matrix X such that AXB = C.
- 38) With usual notations, in any triangle ABC, prove by vector method that $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$.
- 39) Evaluate the following:

$$\int_{0}^{\frac{1}{\sqrt{2}}} \frac{e^{\sin^{-1}x} \sin^{-1}x}{\sqrt{1-x^{2}}} dx$$

Ph: 948 99 00 886

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

40) Sketch the graph of cosine function and inverse cosine function in their principal domain.

PART - IV

IV. Answer ALL questions.

7x5 = 35

41) a) Suppose that f(x) given below represents a probability mass function,

x	1	2	3	4	5	6
f(x)	c^2	$2c^2$	$3c^2$	$4c^2$	С	2c

Find (i) the value of c (ii) Mean and variance.

OR

- b) A conical water tank with vertex down of 12 metres height has a radius of 5 metres at the top. If water flows into the tank at a rate 10 cubic m/min, how fast is the depth of the water increases when the water is 8 metres deep?
- 42) a) Find, by integration, the volume of the container which is in the shape of a right circular conical frustum as shown in the Fig 42.(a).

- b) On lighting a rocket cracker it gets projected in a parabolic path and reaches a maximum height of 4m when it is 6m away from the point of projection. Finally it reaches the ground 12m away from the starting point. Find the angle of projection.
- 43) a) Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1 have

(i) no solution

- (ii) unique solution
- (iii) infinitely many solution

OR

b) In a murder investigation, a corpse was found by a detective at exactly 8 p.m. Being alert, the detective also measured the body temperature and found it to be 70° F. Two hours later, the detective measured the body temperature again and found it to be 60° F. If the room temperature is 50° F, and assuming that the body temperature of the person before death was 98.6° F, at what time did the murder occur? $\lceil \log(2.43) = 0.88789; \log(0.5) = -0.69315 \rceil$

Ph: 948 99 00 886 E-mail: berkmansja@gmail.com

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

44) a) If
$$u = \sin^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$$
, Show that $x\frac{\partial u}{\partial x} + y\frac{\partial u}{\partial y} = \frac{1}{2}\tan u$.

OR

- b) Suppose z_1 , z_2 , and z_3 are the vertices of an equilateral triangle inscribed in the circle |z| = 2. If $z_1 = 1 + i\sqrt{3}$, then find z_2 and z_3 .
- 45) a) Solve the equation $6x^6 35x^5 + 56x^4 56x^2 + 35x 6 = 0$

OR

- b) Find the area of the region bounded between the curves $y = \sin x$ and $y = \cos x$ and the lines x = 0 and $x = \pi$.
- 46) a) Solve: $2 \tan^{-1} x = \cos^{-1} \frac{1 - a^2}{1 + a^2} - \cos^{-1} \frac{1 - b^2}{1 + b^2}, \ a > 0, \ b > 0.$

OR

- b) Find the parametric form of vector equation of a straight line passing through the point of intersection of the straight lines $\vec{r} = (\hat{i} + 3\hat{j} \hat{k}) + t(2\hat{i} + 3\hat{j} + 2\hat{k})$ and $\frac{x-2}{1} = \frac{y-4}{2} = \frac{z+3}{4}$, and perpendicular to both straight lines.
- 47) a) Identify the type of conic and find centre, foci, vertices, and directrices of each of the following:

$$18x^2 + 12y^2 - 144x + 48y + 120 = 0$$

OR

b) Let $M = \left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} : x \in R - \{0\} \right\}$ and let * be the matrix multiplication. Determine

whether M is closed under *. If so, examine the commutative and associative properties satisfied by * on M. Also, examine the existence of identity, existence of inverse properties for the operation * on M.

St. Anne's Academy

Holy Cross College Road, I Floor - Jafro Dental Clinic, Punnai Nagar, Nagercoil - 4

Ph: 948 99 00 886