CENTUM ACHIEVERS' ACADEMY		
56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.N0.7667761819		
XII STD(MATHS)	FULL PORTION -9	TIME : $21 / 2 \mathrm{Hrs}$
		MARKS : 90

PART-I

Choose the correct answer from the given four alternatives :
($20 \times 1=20$)

1. If adj $A=\left[\begin{array}{cc}2 & 3 \\ 4 & -1\end{array}\right]$ and adj $B=\left[\begin{array}{cc}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is
(1) $\left[\begin{array}{cc}-7 & -1 \\ 7 & -9\end{array}\right]$
(2) $\left[\begin{array}{cc}-6 & 5 \\ -2 & -10\end{array}\right]$
(3) $\left[\begin{array}{cc}-7 & 7 \\ -1 & -9\end{array}\right]$
(4) $\left[\begin{array}{cc}-6 & -2 \\ 5 & -10\end{array}\right]$
2. Let $A=\left[\begin{array}{ccc}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $4 B=\left[\begin{array}{ccc}3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$. If B is the inverse of A, then the value of x is
(1) 2
(2) 4
(3) 3
(4) 1
3. The principal argument of $\frac{3}{-1+i}$ is
(1) $\frac{-5 \pi}{6}$
(2) $\frac{-2 \pi}{3}$
(3) $\frac{-3 \pi}{4}$
(4) $\frac{-\pi}{2}$
4. The solution of the equation $|z|-z=1+2 i$ is
(1) $\frac{3}{2}-2 i$
(2) $-\frac{3}{2}+2 i$
(3) $2-\frac{3}{2} i$
(4) $2+\frac{3}{2} i$
5. The number of real numbers in $[0,2 \pi]$ satisfying $\sin ^{4} x-2 \sin ^{2} x+1$ is
(1) 2
(2) 4
(3) 1
(4) ∞
6. $\tan ^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$ is equal to
(1) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
(2) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{5}\right)$
(3) $\frac{1}{2} \tan ^{-1}\left(\frac{3}{5}\right)$
(4) $\tan ^{-1}\left(\frac{1}{2}\right)$
7. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(1) $\frac{x}{\sqrt{1-x^{2}}}$
(2) $\frac{1}{\sqrt{1-x^{2}}}$
(3) $\frac{1}{\sqrt{1+x^{2}}}$
(4) $\frac{x}{\sqrt{1+x^{2}}}$
8. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and
$x+2 y=4$ is
(1) 10
(2) $2 \sqrt{5}$
(3) 6
(4) 4
9. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point
(1) $(-5,2)$
(2) $(2,-5)$
(3) $(5,-2)$
(4) $(-2,5)$
10. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{1}{4}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
11. The number given by the Mean value theorem for the function $\frac{1}{x}, x \in[1,9]$ is
(1) 2
(2) 2.5
(3) 3
(4) 3.5
12. The maximum value of the product of two positive numbers, when their sum of the squares is 200 , is
(1) 100
(2) $25 \sqrt{7}$
(3) 28
(4) $24 \sqrt{14}$
13. If $w(x, y, z)=x^{2}(y-z)+y^{2}(z-x)+z^{2}(x-y)$, then $\frac{\partial w}{\partial x}+\frac{\partial w}{\partial y}+\frac{\partial w}{\partial z}$ is
(1) $x y+y z+z x$
(2) $x(y+z)$
(3) $y(z+x)$
(4) 0
14. If $f(x)=\int_{0}^{x} t \cos t d t$, then $\frac{d f}{d x}=$
(1) $\cos x-x \sin x$
(2) $\sin x+x \cos x$
(3) $x \cos x$
(4) $x \sin x$
15. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is
(1) $\frac{\pi}{2}$
(2) π
(3) $\frac{3 \pi}{2}$
(4) 2π
16. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$, then P is
(1) $\log \sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
17. If the solution of the differential equation $\frac{d y}{d x}=\frac{a x+3}{2 y+f}$ represents a circle, then the value of a is
(1) 2
(2) -2
(3) 1
(4) -1
18. A random variable X has binomial distribution with $n=25$ and $p=0.8$ then standard deviation of X is
(1) 6
(2) 4
(3) 3
(4) 2
19. If X is a binomial random variable with expected value 6 and variance 2.4 , then $P(X=5)$ is
(1) $\binom{10}{5}\left(\frac{3}{5}\right)^{6}\left(\frac{2}{5}\right)^{4}$
(2) $\binom{10}{5}\left(\frac{3}{5}\right)^{10}$
(3) $\binom{10}{5}\left(\frac{3}{5}\right)^{4}\left(\frac{2}{5}\right)^{6}$
(4) $\binom{10}{5}\left(\frac{3}{5}\right)^{5}\left(\frac{2}{5}\right)^{5}$
20. Which one is the contrapositive of the statement $(p \vee q) \rightarrow r$?
(1) $\neg r \rightarrow(\neg p \wedge \neg q)$
(2) $\neg r \rightarrow(p \vee q)$
(3) $r \rightarrow(p \wedge q)$
(4) $p \rightarrow(q \vee r)$

PART-II

(i) Answer any SEVEN questions.

(ii) Qn.No. 30 is compulsory

21. If $|z|=2$ show that $3 \leq|z+3+4 i| \leq 7$
22. Solve : $\sin ^{2} x-5 \sin x+4=0$
23. Is $\cos ^{-1}(-x)=\pi-\cos ^{-1}(x)$ true? Justify your answer.
24. If $y=4 x+c$ is a tangent to the circle $x^{2}+y^{2}=9$, find c.
25. Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]=[\vec{a}, \vec{b}, \vec{c}]^{2}$.
26. If the mass $m(x)$ (in kilograms) of a thin rod of length x (in metres) is given by, $m(x)=\sqrt{3 x}$ then what is the rate of change of mass with respect to the length when it is $x=3$ and $x=27$ metres.
27. Find Δf and $d f$ for the function f for the indicated values of $x, \Delta x$ and compare

$$
f(x)=x^{2}+2 x+3 ; x=-0.5, \Delta x=d x=0.1
$$

28. Evaluate $\int_{0}^{\frac{\pi}{2}}\left|\begin{array}{ll}\cos ^{4} x & 7 \\ \sin ^{5} x & 3\end{array}\right| d x$.
29. Using binomial distribution find the mean and variance of X for the following experiments
(i) A fair coin is tossed 100 times, and X denote the number of heads.
30. If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by $M \frac{d V}{d t}=F-k V$, where k is a constant. Express V in terms of t given that $V=0$ when $t=0$.

PART-III

(i) Answer any SEVEN questions.
(ii) Qn.No. 40 is compulsory
31. If $A=\left[\begin{array}{ll}4 & 3 \\ 2 & 5\end{array}\right]$, find x and y such that $A^{2}+x A+y I_{2}=O_{2}$. Hence, find A^{-1}.
32. If $\omega \neq 1$ is a cube root of unity, show that
(i) $\left(1-\omega+\omega^{2}\right)^{6}+\left(1+\omega-\omega^{2}\right)^{6}=128$.
(ii) $(1+\omega)\left(1+\omega^{2}\right)\left(1+\omega^{4}\right)\left(1+\omega^{8}\right) \cdots\left(1+\omega^{2^{11}}\right)=1$.
33. Find all real numbers satisfying $4^{x}-3\left(2^{x+2}\right)+2^{5}=0$.
34. Solve : $2 \tan ^{-1}(\cos x)=\tan ^{-1}(2 \operatorname{cosec} x)$
35. Find the magnitude and the direction cosines of the torque about the point $(2,0,-1)$ of a force $2 \hat{\imath}+\hat{\jmath}-\hat{k}$, whose line of action passes through the origin.
36. Find the smallest possible value of $x^{2}+y^{2}$ given that $x+y=10$.
37. Solve $: \frac{d y}{d x}=(3 x+y+4)^{2}$.
38. Find the area of the region bounded between the parabola $y^{2}=4 a x$ and its latus rectum.
39. Establish the equivalence property connecting the bi-conditional with conditional:

$$
p \leftrightarrow q \equiv(p \rightarrow q) \wedge(q \rightarrow p)
$$

40. If $w(x, y, z)=x^{2}+y^{2}+z^{2}, x=e^{t}, y=e^{t} \sin t$ and $z=e^{t} \cos t$, find $\frac{d w}{d t}$.

PART-IV

Answer the following questions.

41. a) The upward speed $v(t)$ of a rocket at time t is approximated by $v(t)=a t^{2}+b t+c, 0 \leq t \leq 100$ where a, b, and c are constants. It has been found that the speed at times $t-3, t-6$, and $t-9$ seconds are respectively, 64, 133 , and 208 miles per second respectively. Find the speed at time $t=15$ seconds. (Use Gaussian elimination method.). (OR)
b) Solve $x^{4}+3 x^{3}-3 x-1=0$
42. a) If $A=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$, find the products $A B$ and $B A$ and hence solve the system of equations $x-y+z=4, x-2 y-2 z=9,2 x+y+3 z=1$. (OR)
b) Suppose z_{1}, z_{2}, and z_{3} are the vertices of an equilateral triangle inscribed in the circle $|z|=2$. If $z_{1}=1+i \sqrt{3}$, then find z_{2} and z_{3}.
43. a) Two coast guard stations are located 600 km apart at points $A(0,0)$ and $B(0,600)$. A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship. (OR)
b) Prove that $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}\left[\frac{x+y+z-x y z}{1-x y-y z-z x}\right]$. if $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\pi$, show that $x+y+z=x y z$.
44. a) Solve: $\left(1+x+x y^{2}\right) \frac{d y}{d x}+\left(y+y^{3}\right)=0$ (OR)
b) If $w(x, y)=x y+\sin (x y)$, then prove that $\frac{\partial^{2} w}{\partial y \partial x}=\frac{\partial^{2} w}{\partial x \partial y}$.
45. a) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points $(-1,2,0),(2,2-1)$ and parallel to the straight line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$. (OR)
b) Find the dimensions of the rectangle with maximum area that can be inscribed in circle of radius 10 cm .
46. a) Solve: $\frac{d y}{d x}=\frac{x-y+5}{2(x-y)+7}$ (OR)
b) Find the area of the region bounded by the curve $2+x-x^{2}+y=0, x$-axis, $x=-3$ and $x=3$.
47. a) Define an operation $*$ on \mathbb{Q} as follows: $a * b=\left(\frac{a+b}{2}\right) ; a, b \in \mathbb{Q}$. Examine the closure, commutative, associative , the existence of identity and the existence of inverse for the operation * on \mathbb{Q}. (OR)
b) If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9 , find the probabilities that among 12 such lights
(i) exactly 10 will have a useful life of at least 600 hours;
(ii) at least 11 will have a useful life of at least 600 hours;
(iii) at least 2 will not have a useful life of at least 600 hours.
