CENTUM ACHIEVERS' ACADEMY 56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.NO.7667761819 TIME: 2 ½ Hrs XII STD(MATHS) **FULL PORTION -9** MARKS: 90 **PART-I** Choose the correct answer from the given four alternatives : $(20 \times 1 = 20)$ 1. If adj $A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and adj $B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj (AB) is $(1)\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad (2)\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (3)\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (4)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$ 2. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then the value of x is (3) 3 (1)2(4) 13. The principal argument of $\frac{3}{-1+i}$ is $(1)\frac{-5\pi}{6} \qquad (2)\frac{-2\pi}{3} \qquad (3)\frac{-3\pi}{4}$ 4. The solution of the equation |z| - z = 1 + 2i is $(1)\frac{3}{2}-2i$ $(2)-\frac{3}{2}+2i$ $(3)2-\frac{3}{2}i$ $(4)2+\frac{3}{2}i$ 5. The number of real numbers in $[0,2\pi]$ satisfying $\sin^4 x - 2\sin^2 x + 1$ is $(1) 2 \qquad (2) 4$ (3) 16. $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$ is equal to $(1)\frac{1}{2}\cos^{-1}\left(\frac{3}{5}\right) \qquad (2)\frac{1}{2}\sin^{-1}\left(\frac{3}{5}\right) \qquad (3)\frac{1}{2}\tan^{-1}\left(\frac{3}{5}\right) \qquad (4)\tan^{-1}\left(\frac{1}{2}\right)$ 7. $\sin(\tan^{-1} x)$, |x| < 1 is equal to $(1)\frac{x}{\sqrt{1-x^2}} \qquad (2)\frac{1}{\sqrt{1-x^2}} \qquad (3)\frac{1}{\sqrt{1+x^2}}$ (1) 10 (2) $2\sqrt{5}$ (3) 6

8. The radius of the circle passing through the point (6,2) two of whose diameter are x + y = 6 and

9. The circle passing through (1, -2) and touching the axis of x at (3,0) passing through the point

(1)(-5,2)

(2)(2,-5)

(3)(5,-2)

(4)(-2,5)

10. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{1}{4}$, then the angle between \vec{a} and \vec{b} is

 $(1)^{\frac{\pi}{6}}$

 $(2)^{\frac{\pi}{4}}$

 $(3)^{\frac{\pi}{2}}$

11. The number given by the Mean value theorem for the function $\frac{1}{x}$, $x \in [1,9]$ is

(1)2

(2)2.5

(3)3

(4)3.5

12.	12. The maximum value of the product of two positive numbers, when their sum of the squares is 200 , is							
	(1) 100	(2) 25	$\sqrt{7}$	(3) 28	(4) 2	$24\sqrt{14}$		
13. If $w(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is								
	(1) xy + yz + zx		(2) x(y+z)		(3) y(z+x))	(4) 0	
14. If $f(x) = \int_0^x t \cos t dt$, then $\frac{df}{dx} =$								
	$(1)\cos x - x\sin x$	c	$(2)\sin x + x \mathrm{c}$	os x	(3)	x cos x	$(4) x \sin x$	
15.	15. The value of $\int_0^\pi \frac{dx}{1+5\cos x}$ is							
	$(1)\frac{\pi}{2}$	$(2) \pi$		$(3)\frac{3\pi}{2}$		(4) 2π	0.	
16. If sin <i>x</i> is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then <i>P</i> is								
	(1) $\log \sin x$	M	$(2)\cos x$	1	(3) tan <i>x</i>		(4) cot <i>x</i>	
17.	If the solution of t	the diffe	rential equation	$n\frac{dy}{dx} = \frac{a}{2x}$	$\frac{x+3}{y+f}$ represen	ts a circle,	then the value of a is	
	(1) 2	(2) -2	_	(3) 1		(4) -1		
18.	18. A random variable X has binomial distribution with $n=25$ and $p=0.8$ then standard deviation of X is							
	(1) 6	(2) 4	(3) 3		(4) 2			
19.	19. If X is a binomial random variable with expected value 6 and variance 2.4, then $P(X=5)$ is							
	$(1) \binom{10}{5} \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^6$	4	$(2) \binom{10}{5} \left(\frac{3}{5}\right)^{10}$		$(3) \binom{10}{5} \left(\frac{3}{5}\right)$	$\binom{4}{5}^6$	$(4) \binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$	
20. Which one is the contrapositive of the statement $(p \lor q) \rightarrow r$?								
	$(1) \neg r \to (\neg p \land \neg q) \qquad (2) \neg r \to (p \lor q)$							
	$(3) r \to (p \land q) \qquad (4) p \to (q \lor r)$							
PART-II								
(i)	Answer any	SEVEN	questions.				$(7\times2=14)$	
(ii)	(ii) Qn.No.30 is compulsory							
21. If $ z = 2$ show that $3 \le z + 3 + 4i \le 7$								
22. Solve : $\sin^2 x - 5\sin x + 4 = 0$								
PART-II (i) Answer any SEVEN questions. $(7 \times 2 = 14)$ (ii) Qn.No.30 is compulsory 21. If $ z = 2$ show that $3 \le z + 3 + 4i \le 7$ 22. Solve: $\sin^2 x - 5\sin x + 4 = 0$ 23. Is $\cos^{-1}(-x) = \pi - \cos^{-1}(x)$ true? Justify your answer.								
24. If $y = 4x + c$ is a tangent to the circle $x^2 + y^2 = 9$, find c .								
25. Prove that $[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}] = [\vec{a}, \vec{b}, \vec{c}]^2$.								
26. If the mass $m(x)$ (in kilograms) of a thin rod of length x (in metres) is given by, $m(x) = \sqrt{3x}$ then what is the rate of change of mass with respect to the length when it is $x = 3$ and $x = 27$ metres.								
27.	27. Find Δf and df for the function f for the indicated values of x , Δx and compare							
	$f(x) = x^2 + 2x + 3$; $x = -0.5, \Delta x = dx = 0.1$							

- 28. Evaluate $\int_0^{\frac{\pi}{2}} \left| \cos^4 x 7 \right|_{\sin^5 x} dx.$
- 29. Using binomial distribution find the mean and variance of *X* for the following experiments
 - (i) A fair coin is tossed 100 times, and *X* denote the number of heads.
- 30. If F is the constant force generated by the motor of an automobile of mass M, its velocity V is given by $M\frac{dV}{dt} = F kV$, where k is a constant. Express V in terms of t given that V = 0 when t = 0.

PART-III

(i) Answer any SEVEN questions.

 $(7\times 3=21)$

- (ii) Qn.No.40 is compulsory
- 31. If $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, find x and y such that $A^2 + xA + yI_2 = O_2$. Hence, find A^{-1} .
- 32. If $\omega \neq 1$ is a cube root of unity, show that

(i)
$$(1 - \omega + \omega^2)^6 + (1 + \omega - \omega^2)^6 = 128$$
.

(ii)
$$(1 + \omega)(1 + \omega^2)(1 + \omega^4)(1 + \omega^8) \cdots (1 + \omega^{2^{11}}) = 1$$
.

- 33. Find all real numbers satisfying $4^x 3(2^{x+2}) + 2^5 = 0$.
- 34. Solve : $2\tan^{-1}(\cos x) = \tan^{-1}(2\csc x)$
- 35. Find the magnitude and the direction cosines of the torque about the point (2,0,-1) of a force $2\hat{i}+\hat{j}-\hat{k}$, whose line of action passes through the origin.
- 36. Find the smallest possible value of $x^2 + y^2$ given that x + y = 10.
- 37. Solve : $\frac{dy}{dx} = (3x + y + 4)^2$.
- 38. Find the area of the region bounded between the parabola $y^2 = 4ax$ and its latus rectum.
- 39. Establish the equivalence property connecting the bi-conditional with conditional:

$$p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$$

40. If $w(x, y, z) = x^2 + y^2 + z^2$, $x = e^t$, $y = e^t \sin t$ and $z = e^t \cos t$, find $\frac{dw}{dt}$.

PART-IV

Answer the following questions.

- $(7 \times 5 = 35)$
- 41. a) The upward speed v(t) of a rocket at time t is approximated by $v(t) = at^2 + bt + c$, $0 \le t \le 100$ where a, b, and c are constants. It has been found that the speed at times t 3, t 6, and t 9 seconds are respectively, 64, 133, and 208 miles per second respectively. Find the speed at time t = 15 seconds. (Use Gaussian elimination method.). **(OR)**
 - b) Solve $x^4 + 3x^3 3x 1 = 0$
- 42. a) If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and hence solve the system of equations x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1. **(OR)**

- b) Suppose z_1, z_2 , and z_3 are the vertices of an equilateral triangle inscribed in the circle |z|=2. If $z_1=1+i\sqrt{3}$, then find z_2 and z_3 .
- 43. a) Two coast guard stations are located 600 km apart at points A(0,0) and B(0,600). A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km farther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship. **(OR)**
 - b) Prove that $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \tan^{-1} \left[\frac{x + y + z xyz}{1 xy yz zx} \right]$. if $\tan^{-1} x + \tan^{-1} y + \tan^{-1} z = \pi$, show that x + y + z = xyz.
- 44. a) Solve: $(1 + x + xy^2) \frac{dy}{dx} + (y + y^3) = 0$ (OR)
 - b) If $w(x, y) = xy + \sin(xy)$, then prove that $\frac{\partial^2 w}{\partial y \partial x} = \frac{\partial^2 w}{\partial x \partial y}$.
- 45. a) Find the vector parametric, vector non-parametric and Cartesian form of the equation of the plane passing through the points (-1,2,0), (2,2-1) and parallel to the straight line $\frac{x-1}{1} = \frac{2y+1}{2} = \frac{z+1}{-1}$. (OR)
 - b) Find the dimensions of the rectangle with maximum area that can be inscribed in circle of radius 10 cm.
- 46. a) Solve: $\frac{dy}{dx} = \frac{x-y+5}{2(x-y)+7}$. (OR)
 - b) Find the area of the region bounded by the curve $2 + x x^2 + y = 0$, x-axis, x = -3 and x = 3.
- 47. a) Define an operation * on \mathbb{Q} as follows: $a*b=\left(\frac{a+b}{2}\right)$; $a,b\in\mathbb{Q}$. Examine the closure, commutative, associative, the existence of identity and the existence of inverse for the operation * on \mathbb{Q} . **(OR)**
 - b) If the probability that a fluorescent light has a useful life of at least 600 hours is 0.9, find the probabilities that among 12 such lights
 - (i) exactly 10 will have a useful life of at least 600 hours;
 - (ii) at least 11 will have a useful life of at least 600 hours;
 - (iii) at least 2 will not have a useful life of at least 600 hours.

SARATH KUMAR.S, P.G.ASSISTANT, COIMBATORE-6.