CENTUM ACHIEVERS' ACADEMY		
56,KASTHURI BAI 4TH STREET,GANAPATHY, CBE-06.PH.N0.7667761819		
XII STD(MATHS)	FULL PORTION -8	TIME : $21 / 2 \mathrm{Hrs}$
		MARKS : 90

PART-I

Choose the correct answer from the given four alternatives:

1. If $\rho(A) \neq \rho([A \mid B])$, then the system $A X=B$ of linear equations is
(1) consistent and has a unique solution
(2) consistent
(3) consistent and has infinitely many solution
(4) inconsistent
2. If $0 \leq \theta \leq \pi$ and the system of equations $x+(\sin \theta) y-(\cos \theta) z=0,(\cos \theta) x-y+z=0$, $(\sin \theta) x+y-z=0$ has a non-trivial solution then θ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{4}$
3. The principal argument of the complex number $\frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})}$ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{2}$
4. The value of $\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)^{10}$ is
(1) $\operatorname{cis} \frac{2 \pi}{3}$
(2) $\operatorname{cis} \frac{4 \pi}{3}$
(3) $-\operatorname{cis} \frac{2 \pi}{3}$
(4) $-\operatorname{cis} \frac{4 \pi}{3}$
5. If α, β, and γ are the roots of the equation $x^{3}+p x^{2}+q x+r=0$, then the value of $\sum \frac{1}{\beta \gamma}$
(1) $-\frac{q}{r}$
(2) $-\frac{p}{q}$
(3) $\frac{q}{r}$
(4) $-\frac{q}{p}$
6. The polynomial $x^{3}-2 x+3$ has
(1) one negative and two imaginary zeros
(2) two positive and one negative
(3) three real zeros
(4) no zeros
7. If $x=\frac{1}{5}$, the value of $\cos \left(\cos ^{-1} x+2 \sin ^{-1} x\right)$ is
(1) $-\sqrt{\frac{24}{25}}$
(2) $\sqrt{\frac{24}{25}}$
(3) $\frac{1}{5}$
(4) $-\frac{1}{5}$
8. If $\cot ^{-1} x=\frac{2 \pi}{5}$ for some $x \in R$, the value of $\tan ^{-1} x$ is
(1) $-\frac{\pi}{10}$
(2) $\frac{\pi}{5}$
(3) $\frac{\pi}{10}$
(4) $-\frac{\pi}{5}$
9. The locus of a point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=\frac{-9}{2}$ is
(1) a parabola
(2) a hyperbola
(3) an ellipse
(4) a circle
10. Area of the greatest rectangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(1) $2 a b$
(2) $a b$
(3) $\sqrt{a b}$
(4) $\frac{a}{b}$
11. If the planes $\vec{r} \cdot(2 \hat{\imath}-\lambda \hat{\jmath}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{\imath}+\hat{\jmath}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are
(1) $\frac{1}{2},-2$
(2) $-\frac{1}{2}, 2$
(3) $-\frac{1}{2},-2$
(4) $\frac{1}{2}, 2$
12. One of the closest points on the curve $x^{2}-y^{2}=4$ to the point $(6,0)$ is
(1) $(2,0)$
(2) $(\sqrt{5}, 1)$
(3) $(3, \sqrt{5})$
(4) $(\sqrt{13},-\sqrt{3})$
13. The slope of the line normal to the curve $f(x)=2 \cos 4 x$ at $x=\frac{\pi}{12}$ is
(1) $-4 \sqrt{3}$
(2) -4
(3) $\frac{\sqrt{3}}{12}$
(4) $4 \sqrt{3}$
14. If $w(x, y)=x^{y}, x>0$, then $\frac{\partial w}{\partial x}$ is equal to
(1) $x^{y} \log x$
(2) $y \log x$
(3) $y x^{y-1}$
(4) $x \log y$
15. The value of $\int_{0}^{1} x(1-x)^{99} d x$ is
(1) $\frac{1}{11000}$
(2) $\frac{1}{10100}$
(3) $\frac{1}{10010}$
(4) $\frac{1}{10001}$
16. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is
(1) $\frac{1}{2}$
(2) 2
(3) 1
(4) $\frac{3}{4}$
17. The degree of the differential equation $y(x)=1+\frac{d y}{d x}+\frac{1}{1 \cdot 2}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{1 \cdot 2 \cdot 3}\left(\frac{d y}{d x}\right)^{3}+\cdots$ is
(1) 2
(2) 3
(3) 1
(4) 4
18. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
(1) $x \phi\left(\frac{y}{x}\right)=k$
(2) $\phi\left(\frac{y}{x}\right)=k x$
(3) $y \phi\left(\frac{y}{x}\right)=k$
(4) $\phi\left(\frac{y}{x}\right)=k y$
19. $\operatorname{var}(5 X+4)$ is
(1) $25 \operatorname{var}(X)$
(2) $5 \operatorname{var}(X)$
(3) $\operatorname{var}(X)$
(4) $4 \operatorname{var}(X)$
20. In the last column of the truth table for $\neg(p \vee \neg q)$ the number of final outcomes of the truth value ' F ' are
(1) 1
(2) 2
(3) 3
(4) 4

PART-II

(i) Answer any SEVEN questions.

(ii) Qn.No. 30 is compulsory

21. Prove that $\left[\begin{array}{cc}\cos \theta & -\sin \theta \\ \sin \theta & \cos \theta\end{array}\right]$ is orthogonal.
22. Find the value of $\sum_{k=1}^{8}\left(\cos \frac{2 k \pi}{9}+i \sin \frac{2 k \pi}{9}\right)$.
23. If α and β are the roots of the quadratic equation $17 x^{2}+43 x-73=0$, construct a quadratic equation whose roots are $\alpha+2$ and $\beta+2$.
24. Solve $\tan ^{-1}\left(\frac{1-x}{1+x}\right)=\frac{1}{2} \tan ^{-1} x$ for $x>0$.
25. Find the equations of tangent and normal to the parabola $x^{2}+6 x+4 y+5=0$ at $(1,-3)$.
26. Find the local extremum of the function $f(x)=x^{4}+32 x$.
27. Find the area of the region bounded by x-axis, the sine curve $y=\sin x$, the lines $x=0$ and $x=2 \pi$.
28. Express physical statements in the form of differential equation - For a certain substance, the rate of change of vapor pressure P with respect to temperature T is proportional to the vapor pressure and inversely proportional to the square of the temperature.
29. On \mathbb{Z}, define $*$ by $(m * n)=m^{n}+n^{m}: \forall m, n \in \mathbb{Z}$. Is $*$ binary on \mathbb{Z} ?
30. Find the acute angle between the planes $\vec{r} \cdot(2 \hat{\imath}+2 \hat{\jmath}+2 \hat{k})=11$ and $4 x-2 y+2 z=15$

PART-III

(i) Answer any SEVEN questions.
$(7 \times 3=21)$
(ii) Qn.No. 40 is compulsory
31. Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.
32. Simplify $\left(\sin \frac{\pi}{6}+i \cos \frac{\pi}{6}\right)^{18}$.
33. Obtain the condition that the roots of $x^{3}+p x^{2}+q x+r=0$ are in A.P.
34. The parabolic communication antenna has a focus at 2 m distance from the vertex of the antenna.

Find the width of the antenna 3 m from the vertex.
35. Evaluate the limits, if necessary use l'Hôpital Rule: $\lim _{x \rightarrow \frac{\pi}{2}}(\sin x)^{\tan x}$
36. A circular plate expands uniformly under the influence of heat. If it's radius increases from 10.5 cm to 10.75 cm , then find an approximate change in the area and the approximate percentage change in the area.
37. Evaluate the integrals using properties of integration : $\int_{0}^{2 \pi} x \log \left(\frac{3+\cos x}{3-\cos x}\right) d x$
38. Solve the differential equations: $\sin \frac{d y}{d x}=a, y(0)=1$
39. The probability density function of the random variable X is given by $f(x)= \begin{cases}16 x e^{-4 x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{cases}$ find the mean and variance of X.
40. Solve $\tan ^{-1} 2 x+\tan ^{-1} 3 x=\frac{\pi}{4}$, if $6 x^{2}<1$.

PART-IV

Answer the following questions.

41. a) Find the inverse of $A=\left[\begin{array}{lll}2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2\end{array}\right]$ by Gauss-Jordan method, (OR)
b) Find all zeros of the polynomial $x^{6}-3 x^{5}-5 x^{4}+22 x^{3}-39 x^{2}-39 x+135$, if it is known that $1+2 i$ and $\sqrt{3}$ are two of its zeros.
42. a) a) Solve:(i) $\sin ^{-1} \frac{5}{x}+\sin ^{-1} \frac{12}{x}=\frac{\pi}{2}$
(ii) $\cot ^{-1} x-\cot ^{-1}(x+2)=\frac{\pi}{12}, x>0$. (OR)
b) Find the coordinate of the foot of the perpendicular drawn from the point $(-1,2,3)$ to the line $\vec{r}=(\hat{\imath}-4 \hat{\jmath}+$ $3 \hat{k})+t(2 \hat{\imath}+3 \hat{\jmath}+\hat{k})$. Also, find the shortest distance from the given point to the line
43. a) Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below.Vertical Cables are to be spaced every 6 m along this portion of the roadbed. Calculate the lengths of first two of these vertical cables from the vertex.

(OR)
b) Let z_{1}, z_{2}, and z_{3} be complex numbers such that $\left|z_{1}\right|=\left|z_{2}\right|=\left|z_{3}\right|=r>0$ and $z_{1}+z_{2}+z_{3} \neq 0$.

Prove that $\left|\frac{z_{1} z_{2}+z_{2} z_{3}+z_{3} z_{1}}{z_{1}+z_{2}+z_{3}}\right|=r$.
44. a) A hollow cone with base radius $a \mathrm{~cm}$ and height $b \mathrm{~cm}$ is placed on a table. Show that the volume of the largest cylinder that can be hidden underneath is $\frac{4}{9}$ times volume of the cone.(OR)
b) Prove by vector method that the perpendiculars (attitudes) from the vertices to the opposite sides of a triangle are concurrent.
45. a) Find the intervals of monotonicities and hence find the local extremum for the function $f(x)=2 x^{3}+3 x^{2}-12 x($ OR $)$
b) Let X be a random variable denoting the life time of an electrical equipment having probability density
function $f(x)=\left\{\begin{array}{ll}k e^{-2 x} & \text { for } x>0 \\ 0 & \text { for } x \leq 0\end{array}\right.$ Find (i) the value of k (ii) Distribution function
(iii) $P(X<2)$ (iv) calculate the probability that X is at least for four unit of time (v) $P(X=3)$.
46. a) Find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.(OR)
b) Let $f(x, y)=\sin \left(x y^{2}\right)+e^{x^{3}+5 y}$ for all $(x, y) \in \mathbb{R}^{2}$. Prove $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
47. a) Let $M=\left\{\left(\begin{array}{ll}x & x \\ x & x\end{array}\right): x \in R-\{0\}\right\}$ and let $*$ be the matrix multiplication. Determine whether M is closed under $*$. If so, examine the commutative and associative properties, the existence of identity, existence of inverse properties for the operation $*$ on M. (OR)
b) A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $t=0$ and left to cool in the kitchen. After 5 minutes, the water temperature has decreased to $80^{\circ} \mathrm{C}$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen.

SARATH KUMAR S, P.G.ASST. CBE-6

