

RELATIONS AND FUNCTIONS

FORMULAE TO REMEMBER

Vertical line test:

A curve drawn in a graph represents a functions, if every vertical line intersects the curve in at most one point.

Horizontal line test:

A function represented in a graph is one - one, if every horizontal line intersect the curve in at most one point.

Linear functions has applications in Cryptography as well as in several branches of Science and Technology.

PUBLIC EXAM FREQUENTLY ASKED QUESTIONS

1 MARK

If n(A) = p, n(B) = q then the total number of relations that exist between A and B is [PTA -1]

(A) 2^{p}

- (B) 2^{q}
- (C) 2^{p+q}
- (D) 2^{pq}

[Ans. (D) 2^{pq}]

Hint: P $(n(A \times B)) = 2^{n(A \times B)} = 2^{pq}$

Given $f(x) = (-1)^x$ is a function from \mathbb{N} to \mathbb{Z} . Then the range of f is [PTA - 3]

(A) $\{1\}$ (B) N

- (C) $\{1, -1\}$ (D) \mathbb{Z}
 - [Ans. $(C)\{1, -1\}$]

Hint:

$$f(1) = (-1)^1 = (-1)$$

$$f(2) = (-1)^2 = 1$$

:. Range of $f = \{1, -1\}$

The given diagram represents

- [PTA 6] 2 18
- (B) constant function (C) an one-one function

(A) an onto function

(D) not a function

[Ans. (D) not a function]

4. $f = \{(2, a), (3, b), (4, b), (5, c)\}$ is a

[Govt. MQP - 2019]

- (A) identity function
- (B) one-one function
- (C) many-one function (D) constant function

[Ans. (C) many-one function]

Hint:

Let $f(x) = x^2 - x$, then f(x - 1) - f(x + 1) is :

- (A) 4x
- (B) 2-2x (C) 2-4x (D) 4x-2

[Ans. (C) 2 - 4x]

Hint:

$$f(x-1) = (x-1)^2 - (x-1)$$

$$= x^2 - 2x + 1 - (x-1)$$

$$= x^2 - 2x + 1 - x + 1$$

$$= x^2 - 3x + 2$$

$$f(x+1) = (x+1)^2 - (x+1)$$

$$= x^2 + 2x + x - x - x$$

enquiry@surabooks.com

PH: 8124201000 / 8124301000

 $= x^2 + x$

[1]

$$f(x-1) - f(x+1)$$

$$= (x^2 - 3x + 2) - (x^2 + x)$$

$$= x^2 - 3x + 2 - x^2 - x$$

$$= -4x^2 + 2$$

6. If n(A) = p and n(B) = q then $n(A \times B) =$ [Qy. - 2019]

(A)
$$p + q$$
 (B) $p - q$ (C) $p \times q$ (D) $\frac{p}{q}$

[Ans. (C)
$$p \times q$$
]

Hint: $n(A \times B) = n(A) \times n(B) = p \times q$

- 7. For any two sets P and Q, $P \cap Q$ is [FRT 2022]
 - (A) $\{x : x \in P \text{ or } x \in Q\}$
 - (B) $\{x : x \in P \text{ and } x \notin Q\}$
 - (C) $\{x : x \in P \text{ and } x \in Q\}$
 - (D) $\{x : x \notin P \text{ and } x \in Q\}$

[Ans. (C) $\{x : x \in P \text{ and } x \in Q\}$]

2 MARKS

- 1. A relation 'f' is defined by $f(x) = x^2 2$ where, $x \in \{-2, -1, 0, 3\}$ (i) List the elements of f (ii) Is f a function? [PTA 1; Qy. 2019]
- Sol. $f(x) = x^2 2$ where $x \in \{-2, -1, 0, 3\}$ (i) $f(-2) = (-2)^2 - 2 = 2$; $f(-1) = (-1)^2 - 2 = -1$ $f(0) = 0^2 - 2 = -2$ $f(3) = 3^2 - 2 = 9 - 2 = 7$
 - $\therefore f = \{(-2, 2), (-1, -1), (0, -2), (3, 7)\}$ (ii) We note that each element in the domain

Therefore *f* is a function.

2. A relation R is given by the set $\{(x, y)/y = x^2 + 3, x \in \{0, 1, 2, 3, 4, 5\}\}$ Determine its domain and range. [PTA - 2]

of f has a unique image.

Domain =
$$\{0, 1, 2, 3, 4, 5\}$$

 $x = 0, y = 0^2 + 3 = 3$
 $x = 1, y = 1^2 + 3 = 4$
 $x = 2, y = 2^2 + 3 = 7$
 $x = 3, y = 3^2 + 3 = 12$
 $x = 4, y = 4^2 + 3 = 19$
 $x = 5, y = 5^2 + 3 = 28$
Range = $\{3, 4, 7, 12, 19, 28\}$

3. Find k, if f(k)=2k-1 and fof(k)=5. [PTA - 4]

$$f(k) = 2k - 1$$
Consider $f(k) = f(f(k)) = f(2k - 1)$

$$[::f(x) = 2k - 1]$$

$$= 2(2k - 1) - 1$$

$$[In f(k) = 2k - 1, replace k by 2k - 1]$$

$$= 4k - 2 - 1 = 4k - 3$$

$$\Rightarrow 4k-3 = 5 \Rightarrow 4k = 5 + 3 = 8$$

$$\Rightarrow k = \frac{8}{4} = 2$$

$$\therefore k = 2$$

- 4. Let A = {1, 2, 3, ..., 100} and R be the relation defined as "is cube of" on A. Find the domain and range of R. [PTA-4]
- Sol. $R = \{(1,1) (2,8), (3,27), (4,64)\}$ $Domain = \{1, 2, 3, 4,...100\}$ $Range = \{1, 8, 27, 64\}$
- 5. Let $A = \{1, 2, 3, 4\}$ and $B = \mathbb{N}$. Let $f : A \to B$ be defined by $f(x) = x^2$ (i) the range of f (ii) identify the type of function. [PTA 5]
- Sol. f(1)=1; f(2)=4; f(3)=9; f(4)=16(i) Range = $\{1,4,9,16\}$ (ii) One - one and into function
- 6. Let f be a function from \mathbb{R} to \mathbb{R} defined by f(x) = 3x 5 Find the values of a and b given that (a, 4) and (1, b) belong to f. [PTA 6]
- f(x) = 3x 5 can be written as $f = \{(x, 3x - 5) | x \in \mathbb{R}\}$ (a, 4) mean the image of a is 4. That is, f(a) = 4 $3a - 5 = 4 \Rightarrow a = 3$
 - $3a-5 = 4 \Rightarrow a=3$ (1, b) means the image of 1 is b. That is, That is, $f(1) = b \Rightarrow b=-2$ $3(1)-5 = b \Rightarrow b=-2$
- 7. R = $\{(x, -2), (-5, y) \text{ represents the identity function, find the values } x \text{ and } y.$ [PTA 6] Sol. x = -2y = -5
- 8. Define a function. [Govt. MQP 2019]
- A relation f between two non-empty sets X and Y is called a function from X to Y if, for each $x \in X$ there exists only one $y \in Y$ such that $(x, y) \in f$.

That is, $f = \{(x, y) \mid \text{for all } x \in X, y \in Y\}$

- 9. Let f be a function $f: \mathbb{N} \to \mathbb{N}$ be defined by $f(x) = 3x + 2, x \in \mathbb{N}$. [Govt. MQP 2019]
 - (i) Find the images of 1, 2, 3
 - (ii) Find the pre-images of 29, 53
 - (iii) Identify the type of function
- Sol. $f: \mathbb{N} \to \mathbb{N}$ is defined by f(x) = 3x + 2,

(i)
$$f(1) = 3(1) + 2 = 3 + 2 = 5$$

 $f(2) = 3(2) + 2 = 6 + 2 = 8$
 $f(3) = 3(3) + 2 = 9 + 2 = 11$

The images of 1, 2, 3 are 5, 8, 11 respectively.

(ii) If x is the pre-image of 29, then f(x) = 29.

$$\Rightarrow 3x + 2 = 29$$
$$3x = 27 \Rightarrow x = 9$$

Similarly, if x is the pre-image of 53, then f(x) = 53. $\Rightarrow 3x + 2 = 53$

$$3x = 51$$

$$\Rightarrow$$
 $x = 17.$

∴ The pre-images of 29 and 53 are 9 and 17 respectively.

(iii) Since different elements of \mathbb{N} have different images in the co-domain, the function f is one – one function. The co-domain of f is \mathbb{N} .

But the range of $f = \{5, 8, 11, 14, 17, ...\}$ is a proper subset of \mathbb{N} .

 \therefore f is not an onto function. That is, f is an into function.

Thus f is one – one and into function.

10. Let $A = \{1, 2, 3, 4, 5\}$, B = W and $f : A \rightarrow B$ is defined by $f(x) = x^2 - 1$ find the range of f. [Qy. - 2019]

Sol.
$$f(1) = 0$$
; $f(2) = 3$; $f(3) = 8$; $f(4) = 15$; $f(5) = 24$
Range of $f = \{0, 3, 8, 15, 24\}$

- 11. Let $A = \{1, 2, 3, 4\}$ and B = N. Let $f : A \rightarrow B$ be defined by $f(x) = x^3$ then, [Hy. 2019]
 - (i) Find the range of f.
 - (ii) Identify the type of function

A = {1, 2, 3, 4}
B = N

$$f: A \to B, f(x) = x^3$$

(i) $f(1) = 1^3 = 1$

$$f(1) = f(1) - f(2) = f(2) = f(2) = f(2) = f(2)$$

$$f(3) = 3^3 = 27$$

 $f(4) = 4^3 = 64$

range of
$$f = \{1, 8, 27, 64,\}$$

(ii) one - one function and into function

12. If $A = \{1, 3, 5\}$ and $B = \{2, 3\}$ then show that $n(A \times B) = n\{B\}$. [Sep. - 2021]

Sol.
$$A = \{1, 3, 5\} B = \{2, 3\}$$

 $n(A) = 3; n(B) = 2$
 $\therefore n(A) \times n(B) = 3 \times 2 = 6$...(1)
 $A \times B = \{(1, 2), (1, 3), (3, 2), (3, 3)\}$

$$\therefore n(A \times B) = 6$$
 (5, 2) (5, 3)} ...(2)

From (1) and (2)

$$n(A \times B) = n(A) \times n(B)$$

13. For the given relation R = {(1, 3), (2,5), (4, 7), (5, 9), (3, 1)}, write the domain and range.

Domain =
$$\{1, 2, 3, 4, 5\}$$
 [FRT - 2022]
Range = $\{1, 3, 5, 7, 9\}$

14. The arrow diagram shows a relationship between the sets P and Q. Write the releation in (i) set builder form (ii) Roster form. [May - 2022]

- Sol. (i) Set builder form of $R = \{(x, y) \mid y = x 2, x \in P, y \in Q\}$
 - (ii) Roster form $R = \{(5, 3), (6, 4), (7, 5)\}$

5 MARKS

1. f(x) = 2x + 3, g(x) = 1 - 2x and h(x) = 3x, prove that $fo(g \circ h) = (f \circ g) \circ h$. [PTA - 5]

Sol.
$$f(x) = 2x + 3, g(x) = 1 - 2x,$$

 $h(x) = 3x$
Now, $(f \circ g)(x) = f(g(x)) = f(1 - 2x)$
 $= 2(1 - 2x) + 3 = 5 - 4x$

Then.

$$(f \circ g)oh(x) = (f \circ g)h(x)) = (f \circ g)(3x)$$

$$= 5 - 4(3x) = 5 - 12x \dots (1)$$

$$= g(h(x)) = g(3x) = 1 - 2(3x)$$

$$= 1 - 6x$$

So,
$$fo(g \circ h)(x) = f(1-6x) = 2(1-6x) + 3$$

= 5-12x ...(2)

From (1) and (2), we get $(f \circ g) \circ h = f \circ (g \circ h)$

2. Let $A = \{x \in \mathbb{W} / 0 < x < 5\}$, $B = \{x \in \mathbb{W} / 0 \le x \le 2\}$, $C = \{x \in \mathbb{W} / x < 3\}$ then verify that $A \times (B \cap C)$ [PTA - 3]

Sol.
$$A = \{1, 2, 3, 4\}$$

$$B = \{0, 1, 2\}$$

$$C = \{0, 1, 2\}$$

$$B \cap C = \{0, 1, 2\} \cap \{0, 1, 2\} = \{0, 1, 2\}$$

$$A \times (B \cap C) = \{1, 2, 3, 4\} \times \{0, 1, 2\}$$

$$= \{(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)\}$$

$$A \times B = \{1, 2, 3, 4\} \times \{0, 1, 2\}$$

$$= \{(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 2), (3, 0), (3, 1), (3, 2), (4, 0), (4, 1), (4, 2)$$

$$A \times C = \{1, 2, 3, 4\} \times \{0, 1, 2\}$$

$$= \{(1, 0), (1, 1), (1, 2), (2, 0), (2, 1), (2, 0), (2, 1), (2, 2), (2, 0), (2, 1), (2, 2), (2, 0), (2, 1), (2, 2), (2, 0), (2, 1), (2, 2), (2, 0), (2, 1), (2, 0$$

$$(A \times B) \cap (A \times C) = \begin{cases} (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), \\ (3,0), (3,1), (3,2), (4,0), (4,1), (4,2) \\ (1,0), (1,1), (1,2), (2,0), (2,1), (2,2), \\ (3,0), (3,1), (3,2), (4,0), (4,1), (4,2) \\ \dots (2) \end{cases}$$

(1) = (2) Hence it is proved.

- 3. Let $A = \{1, 2, 3, 4\}$ and $B = \{2, 5, 8, 11, 14\}$ be two sets. Let $f: A \to B$ be a function given by f(x) = 3x 1 Represent this function. [PTA 3]
 - (i) by arrow diagram

[Sep. - 2020]

- (ii) in a table form
- (iii) as a set of ordered pairs
- (iv) in a graphical form
- Let $A = \{1, 2, 3, 4\}$; $B = \{2, 5, 8, 11, 14\}$; f(x) = 3x 1 f(1) = 3(1) 1 = 3 1 = 2; f(2) = 3(2) 1 = 6 1 = 5

$$f(3) = 3(3) - 1 = 9 - 1 = 8$$
; $f(4) = 4(3) - 1 = 12 - 1 = 11$

(i) Arrow diagram

Let us represent the function $f:A \to B$ by an arrow diagram

(ii) Table form

The given function f can be represented in a tabular form as given below

8					
	х	1	2	3	4
	f(x)	2_	5	8	11

(iii) Set of ordered pairs

The function f can be represented as a set of ordered pairs as f = (1, 2), (2, 5), (3, 8), (4, 11)

(iv) Graphical form

In the adjacent xy -plane the points (1,2), (2,5), (3,8), (4,11) are plotted

4. If f(x) = 3x-2, g(x) = 2x + k and if $f \circ g = g \circ f$, then find the value of k. [Qy. -2019]

$$f(x) = 3x - 2, g(x) = 2x + k$$

$$fog(x) = f(g(x)) = f(2x + k)$$

$$= 3(2x + k) - 2 = 6x + 3k - 2$$

- Thus, $f \circ g(x) = 6x + 3k 2$ $g \circ f(x) = g(3x - 2) = 2(3x - 2) + k$ Thus, $g \circ f(x) = 6x - 4 + k$ Given that $f \circ g = g \circ f$ $\therefore 6x + 3k - 2 = 6x - 4 + k$ $6x - 6x + 3k - k = -4 + 2 \Rightarrow k = -1$
- 5. Let $A = \{x \in \mathbb{N} / 1 < x < 4\}$, $B = \{x \in \mathbb{W} / 0 \le x < 2\}$ and $C = \{x \in \mathbb{N} / x < 3\}$. Then verify that $A \times (B \cap C) = (A \times B) \cap (A \times C)$. [Hy. 2019]

Sol.
$$A = \{x \in \mathbb{N} / 1 < x < 4\} = \{2, 3\}$$

$$B = \{x \in \mathbb{W} / 0 \le x < 2\} = \{0, 1\}$$

$$C = \{x \in \mathbb{N} / x < 3\} = \{1, 2\}$$
To prove A×(B \cap C) = (A×B) \cap (A×C)
$$B \cap C = \{0,1\} \cap \{1,2\} = \{1\}$$

$$A \times (B \cap C) = \{2,3\} \times \{1\} = \{(2,1),(3,1)\}$$

$$A \times B = \{2,3\} \times \{0,1\}$$

$$A \times C = \{2,3\} \times \{1,2\}$$

$$= \{(2,1),(2,2),(3,1),(3,2)\}$$

$$(A \times B) \cap (A \times C) = \{(2,0),(2,1),(3,0),(3,1)\}$$

 $\{(2,0),(2,1),(3,0),(3,1)\}$

$$(A \times B) \cap (A \times C) = \{(2,0),(2,1),(3,0),(3,1)\}$$
$$\cap \{(2,1),(2,2),(3,1),(3,2)\}$$
$$= \{(2,1),(3,1)\}$$

$$A \times (B \cap C) = (A \times B) \cap (A \times C)$$
 is verified.

8 MARKS

- 1. Let X = {1, 2, 3, 4, 5}, Y = {1, 3, 5, 7, 9}, which of the following are relation from X to Y?
 - (i) $R_1 = \{(1, 3) (2,4) (3,5) (4,6) (5,7)\}$
 - (ii) $R_2 = \{(1, 1) (2, 1) (3,3) (4,3) (5,5)\}$
 - (iii) $R_3 = \{(1, 1) (1, 3) (3,5) (3,7) (5,7)\}$
 - (iv) $R_4 = \{(1, 3) (2, 5) (4,7) (5,9) (3,1)\}$

[FRT - 2022]

Sol. (i) $R_1 = \{(1, 3), (2, 4), (3, 5), (4, 6), (5, 7)\}$ Here 1 is related to 3, 3 is related to 5, 5 is related to 7.

But $4 \notin y$ and $6 \notin y$, we can say that 2 cannot be related to 4 and 4 cannot be related to 6. Hence R_1 is a not a relation from X to Y.

- (ii) $R_2 = \{(1, 1) (2, 1) (3, 3) (4, 3) (5, 5)\}$ R_2 is a relation since $\{1, 3, 5\}$, belongs to Y and $\{1, 2, 3, 4, 5\}$ belongs to X.
- (iii) $R_3 = \{(1, 1) (1,3) (3,5) (3,7) (5,7)\}$ R_3 is a relation
- (iv) $R_4 = \{(1,3) (2,5) (4,7) (5,9) (3,1)\}$ R_4 is a relation