RK TUITION CENTRE - KUMBAKONAM
 $10{ }^{\text {TH }}$ MATHEMATICS
 TRIGONOMETRY

$21 \times 1=21$

1. If the ratio of the height of a tower and the length of its shadow is $\sqrt{3}: 1$ then the angle of elevation of the sun has measure
(a) 45°
(b) 30°
(c) 90°
(d) 60°
2. The electric pole subtends an angle of 30° at a point on the same level as its foot. At a second point ' b ' metres above the first, the depression of the foot of the tower is 60°. The height of the tower (in metres) is equal to
(a) $\sqrt{3} b$
(b) $\frac{b}{3}$
(c) $\frac{b}{2}$
(d) $\frac{b}{\sqrt{3}}$
3. A tower is 60 m height. Its shadow is x metres shorter when the sun's altitude is 45° than when it has been 30° then x is equal to
(a) 41.92 m
(b) 43.92 m
(c) 43 m
(d) 45.6 m
4. The angle of depression of the top and bottom of 20 m tall building from the top of a multi storied building are 30° and 60° respectively. The height of the multi storied building and the distance between two buildings (in metres) is
(a) $20,10 \sqrt{3}$
(b) $30,5 \sqrt{3}$
(c) 20,10
(d) $30,10 \sqrt{3}$
5. Two persons are standing ' x ' metres apart from each other and the height of the first person is double that of the other. If from the middle point of the line joining their feet an observer finds the angular elevations of their tops to be complementary, then the height of the shorter person (in metres) is
(a) $\sqrt{2} x$
(b) $\frac{x}{2 \sqrt{2}}$
(c) $\frac{x}{\sqrt{2}}$
(d) $2 x$
6. The angle of elevation of a cloud from a point h metres above a lake is β. The angle of depression of its reflection in the lake is 45°. The height of location of the cloud from the lake is
(a) $\frac{h(1+\tan \beta)}{1-\tan \beta}$
(b) $\frac{h(1-\tan \beta)}{1+\tan \beta}$
(c) $\operatorname{htan}\left(45^{\circ}-\beta\right)$
(d) none of these
7. A pole 6 m high a shadow $2 \sqrt{3} \mathrm{~m}$ long on the ground, then the sun's elevation is
(a) 60°
(b) 45°
(c) 30°
(d) 90°
8. The maximum value of $\sin \theta$ is
(a) $\frac{1}{2}$
(b) $\frac{\sqrt{3}}{2}$
(c) 1
(d) $\frac{1}{\sqrt{2}}$
9. The angle of elevation of the top of tree from a point at a distance of 250 m from its base is 60°. The height of tree is:
(a) 250 m
(b) $250 \sqrt{3}$
(c) $\frac{250}{3} m$
(d) $200 \sqrt{3}$
10. The angle of depression of a boat from a $50 \sqrt{3} \mathrm{~m}$ high bridge is ${ }^{\circ}$. The horizontal distance of the boat from the bridge is :
(a) 150 m
(b) $150 \sqrt{3}$
(c) 60 m
(d) $60 \sqrt{3}$
11. A ladder of length 14 m just reaches the top of a wall. If the ladder makes an angle of 60° with the horizontal, then the height of the wall is:
(a) $14 \sqrt{3}$
(b) $28 \sqrt{3}$
(c) $7 \sqrt{3}$
(d) $35 \sqrt{3}$

RK TUITION CENTRE - KUMBAKONAM

12. The top of two poles of height 18.5 m and 7 m are connected by a wire. If the wire makes an angle of measures 360° with horizontal, then the length of the wire is;
(a) 23 m
(b) $18 m$
(c) 28 m
(d) 25.5 m
13. The blanks of river are parallel. A swimmer starts from a point on one of the blanks and swims in a straight line to the bank at 45° and reaches the opposite bank at a point 20 m , from the point opposite to the straight point. The breadth of the river is equal to:
(a) 12.12 m
(b) 14.14 m
(c) 1016.16 m
(d) 18.18 m
14. If the angle of elevation of a tower from a distance of 100 m from its foot is 60°, then the height of the tower is
(a) $100 \sqrt{3} \mathrm{~m}$
(b) $\frac{100}{\sqrt{3}} m$
(c) $50 \sqrt{3} \mathrm{~m}$
(d) $\frac{200}{\sqrt{3}} m$
15. If the altitude of the sun is at 60°, then height of the vertical tower that will cast a shadow of length 30 m is
(a) $30 \sqrt{3} m$
(b) 15 m
(c) $\frac{30}{\sqrt{3}} m$
(d) $15 \sqrt{2} m$
16. The angles of elevation of a tower from two points distant a and $b(a>b)$ from its foot and in the same straight line from if are 30° and 60°, then the height of the tower is
(a) $\sqrt{a+b}$
(b) $\sqrt{a b}$
(c) $\sqrt{a-b}$
(d) $\sqrt{\frac{a}{b}}$
17. The angle of elevation and depression are usually measured by a device called
(a) Theodolite
(b) kaleidoscope
(c) periscope
(d) telescope
18. The angle of depression of a car, standing on the ground from the top of a 75 m tower is 30°. The distance of the car from the base of the tower in metres is
(a) $25 \sqrt{3}$
(b) $50 \sqrt{3}$
(c) $75 \sqrt{3}$
(d) 150
19. A tower subtends an angle 30° at a point on the same level as its foot. At a second point h metres above the first depression of the foot of the tower is 60°. The height of the tower is
(a) $\frac{h}{2} m$
(b) $\sqrt{3} \mathrm{hm}$
(c) $\frac{h}{3} m$
(d) $\frac{h}{\sqrt{3}} m$
20. The angles of depression of two ships from the top of a light house are 45° and 30° towards east. If the ships are 100 m apart, the height of the light house is
(a) $\frac{50}{\sqrt{3}+1} m$
(b) $\frac{50}{\sqrt{3}-1} m$
(c) $50(\sqrt{3}-1) m$
(d) $50(\sqrt{3}+1) m$
21. If the altitude of the light house is metres and from it's the anger of depression of two ships on opposite sides of the light house are observed to be 30° and 45°, then the distance between the ships are
(a) $(\sqrt{3}+1)$ hmetres
(b) $(\sqrt{3}-1)$ hmetres
(c) $\sqrt{3}$ hmetres
(d) $1+\left(1+\frac{1}{\sqrt{3}}\right) h$ metres
$15 \times 2=30$
22. A tower stands vertically on the ground from a point on the ground, which is 48 m away from the foot of the tower, the angle of elevation of the top of the tower is 30°. Find the height of the tower.
23. Find the angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of a tower of height $10 \sqrt{3} \mathrm{~m}$.
24. A road is flanked on either side by continuous rows of houses of height $4 \sqrt{3} m$ with no space is between them. A pedestrian is standing on the median of the road facing a row house. The angle of elevation from the pedestrian to the top of the house is 30°. Find the width of the road.

RK TUITION CENTRE - KUMBAKONAM

25 . From the top of a rock $50 \sqrt{3} \mathrm{~m}$ high, the angle of depression of a car on the ground is observed to be 30°. Find the distance of the car from the rock.
26. The horizontal distance between two buildings is 70 m . The angle of depression of the top of the first building when seen from the top of the second building is 45°. If the height of the second building is 120 m , find the height of the first building.
27. A player sitting on the top of a tower height 20 m observes the angle of depression of a ball lying on the ground as 60°. Find the distance between the foot of the tower and the ball. $(\sqrt{3}=1.732)$
28. The horizontal distance between two buildings is 140 m . The angle of depression of the top of the first building when seen from the top of the second building is 30°. If the height of the first building is 60 m , find the height of the second building. $(\sqrt{3}=1.732)$
29. Find the angle of elevation of the sun when the shadow of a pole h metres high is $\sqrt{3} h$ metres long.
30. A ladder 15 metres long just reaches the top of a vertical wall. If the ladder makes an angle of 60° with the wall, find the height of the wall.
31. An observer 1.5 metres tall is 20.5 metres away from a tower 22 metres high. Determine the angle of elevation of the top of the tower from eye of the observer.
32. A tower is $100 \sqrt{3}$ metres high. Find the angle of elevation of its top from a point 100 metres away from its foot.
33. The angle of elevation of the top of a tower from a point on the ground, which is 30 m away from the foot of the tower is 30°. Find the height of the tower.
34. A kite is flying at a height of 60 m above the ground. The inclination of the string with the ground where its string is tied is 60°. Find the length of the string.
35. A tower stands vertically on the ground from a point on the ground which is 20 m away from the foot of the tower, the angle of elevation of the top of the tower is found to be 60°. Find the height of the tower.
36. The angle between the top of a building and a point 80 m away from the base on level ground is 60°. How tall is the building?
$\mathbf{3 0} \times 5=150$
37. Two ships are sailing in the sea on either sides of a lighthouse as observed from the ships are 30° and 45° respectively. If the lighthouse is 200 m high, find the distance between the two ships. $(\sqrt{3}=$ 1.732).
38. A bike is flying at a height of 75 m above the ground, the string attached to the kite is temporarily tried to a point on the ground. The inclination of the string with the ground is 60°. Find the length of the string, assuming that there is no slack in the string.
39. From a point on the ground, the angles of elevation of the bottom and top of a tower fixed at the top of a 30 m high building are 45° and 60° respectively. Find the height of the tower. $(\sqrt{3}=1.732)$
40. A tv tower stands vertically on a bank of a canal. The tower is watched from a point or the other bank directly opposite to it. The angels of elevation of the top of the tower is 58°, from another point 20 m away from this points on the line joining this point of the tower, the angle of elevation of the top of the tower is 30°.find the height of the tower and the width of the canal. $\left(\tan 58^{\circ}=1.6003\right)$
41. An aeroplane sets of from G on bearing of 24° towards H, a point 250 km away, at H it changes course and heads towards J on a bearing of 55° and a distance of 180 km away.
How far is H to the north of G ?

RK TUITION CENTRE - KUMBAKONAM

$\left(\begin{array}{l}\sin 24^{\circ}=0.4067 \\ \cos 24^{\circ}=0.9135\end{array}\right.$

42. Two trees are standing on the flat ground. The angle of elevation of the top of both the trees from a point x on the ground is 40°. If the horizontal distance between x and the smaller tree is 8 m and the distance of the top of the trees is 20 m , calculate the distance between the point x and the top of the smaller tree.
43. To a man standing outside his house, the angles of elevation of the top and bottom of a window are 60° and 45° respectively. If the height of the man is 180 cm and if he is 5 m away from the wall, what is the height of the window? $(\sqrt{3}=1.732)$.
44. A statue 1.6 m tall stands on the top of a pedestal. From a point on the ground, the angle of elevation of the top of the statue is 60° and from the same point the angle of elevation of the top of the pedestal is 40°. Find the height of the pedestal. $\left(\tan 40^{\circ}=0.8391, \sqrt{3}=1.732\right)$
45. A flag pole ' h ' metres is on the top of the hemispherical dome of radius ' r ' metres. A man is standing 7 maway from the dome. Seeing the top of the pole at the angle 45° and moving 5 m away from the dome and seeing the bottom of the pole at an angle 30°. Find (i) the height of the pole (ii) radius of the dome $(\sqrt{3}=1.732)$.

Coser ? da \rightarrow (Coser (
46. The top of a 15 m high tower makes an angle of elevation of 60° with the bottom of an electronic pole and angle of elevation of 30° with the top of the pole. What is the height of the electric pole?
47. A vertical pole fixed to the ground is divided in the ratio $1: 9$ by a mark on it with lower part shorter than the upper part. If the two parts subtend equal angles at a place on the ground, 25 m away from the base of the pole, what is the height of the pole?
48. A traveller approaches a mountain on highway. He measures the angle of elevation to the peak at each milestone. At two consecutive milestones the angles measured are 4° and 8°. What is the height of the peak if the distance between consecutive milestones is 1 mile. $\left(\tan 4^{\circ}=0.0699, \tan 8^{\circ}=\right.$ 0.1405)
49. From the top of the tower 60 m high the angles of depression of the top and bottom of a vertical lamp post are observed to be 38° and 60° respectively. Find the height of the lamp post $\tan 38^{\circ}=$ $0.7812, \sqrt{3}=1.732$)
50. An aeroplane at an altitude of 1800 m finds that boats are sailing towards it in the same direction. The angles of depression of the boats as observed from the aeroplane are 60° and 30° respectively. Find the distance between the two boats. $(\sqrt{3}=1.732)$
51. From the top of a lighthouse, the angle of depression of two ships on the opposite sides of it are observed to be 30° and 60°. If the height of the lighthouse is h meters and the line joining the ships passes through the foot of the lighthouse, show that the distance between ships is $\frac{41 / 2}{\sqrt{3}} \mathrm{~m}$

RK TUITION CENTRE - KUMBAKONAM

52. A lift in a building of height 90 feet with transparent glass walls is descending from the top of the building. At the top of the building, the angle of depression to a fountain in the garden is 60°. Two minutes later, the angle of depression reduces to 30°. If the fountain is $30 \sqrt{3}$ feet from the entrance of the lift, find the speed of the lift which is descending.
53. From the top of a tree of height 13 m the angle of elevation and depression of the top and bottom of another tree are 45° and 30° respectively. Find the height of the second tree. $(\sqrt{3}=1.732)$
54. A man is standing on the deck of a ship, which is 40 m above water level. He observes the angle of elevation of the top of a hill as 30°. Calculate the distance of the hill from the ship and the height of the hill. $(\sqrt{3}=1.732)$
55. If the angle of elevation of a cloud from a point ' h ' metres above a lake is θ_{1} and the angle of depression of its reflection in the lake is θ_{2}. Prove that the height that the cloud is located from the ground is $\frac{h\left(\tan \theta_{1}+\tan \theta_{2}\right)}{\tan \theta_{2}-\tan \theta_{1}}$
56. The angle of elevation of the top of a cell phone tower from the foot of a high apartment is 60° and the angle of depression of the foot of the tower from the top of the apartment is 30°. If the height of the apartment in 50 m find the height of the cell phone tower. According to radiations control norms, the minimum height of a cell phone tower should be 120 m . State if the height of the above mentioned cell phone tower meets the radiation norms.
57. The angles of elevation and depression of the top and bottom of a lamp post from the top of a 66 m high apartment are 60° and 30° respectively. Find the height of the lamp post.
58. A bird is sitting on the top of a 80 m high tree. From a point on the ground, the angle of elevation of the bird is 45°. The bird flies away horizontally in such away that it remained at a constant height from the ground. After 2 seconds, the angle of elevation of the bird from the same point is 30°. Determine the speed at which the bird flies. $(\sqrt{3}=1.732)$
59. An aeroplane is flying parallel to the Earth's surface at a speed of $175 \mathrm{~m} / \mathrm{sec}$ and at a height of 600 m . The angle of elevation of the aeroplane from a point on the Earth's surface is 37° at a given point. After what period of time does the angle of elevation increase to
$53^{\circ} ?\left(\tan 53^{\circ}=1.3270, \tan 37^{\circ}=0.7536\right)$
60. A bird is flying from A towards B at an angle of 35° a point 30 km away from A. At B it changes its course of flight and heads towards C on a bearing of 48° and distance 32 km away.
How far is B to the north of A ?
$\left(\sin 55^{\circ}=0.8192, \cos 55^{\circ}=0.5736, \sin 42^{\circ}=0.7431\right)$
61. Two ships are sailing in the sea on either side of the lighthouse. The angles of depression of two ships as observed from the top of the lighthouse are 60° and 45° respectively. If the distance between the ships is $200\left(\frac{\sqrt{3}+1}{\sqrt{3}}\right)$ metres, find the height of the lighthouse.
62. A building and a statue are in opposite side of a street from each other $35 m$ apart. From a point on the roof of building the angle of elevation of the top of statue is 24° and the angle of depression of base of the statue is 34°. Find the height of the statue. $\left(\tan 24^{\circ}=0.4452, \tan 34^{\circ}=0.6745\right)$
63. From the top of a tower 50 m high, the angles of depression of the top and bottom of a tree are observed to be 30° and 45° respectively. Find the height of the tree. $(\sqrt{3}=1.732)$

RK TUITION CENTRE - KUMBAKONAM

64. As observed from the top of a 60 m high lighthouse from the sea level, the angles of depression of two ships are 28° and 45°. If one ship is exactly behind the other on the same side of the lighthouse, find the distance between the two ships. $\left(\tan 28^{\circ}=0.5317\right)$
65. A man is watching a boat speeding away from the top of a tower. The boat makes an angle of depression of 60° with the man's eye when at a distance of 200 m from the tower. After 10 seconds, the angle of depression becomes 45°. what is the approximate speed to the boat (in $\mathrm{km} / \mathrm{hr}$) assuming that is sailing in still water? $(\sqrt{3}=1.732)$
66. From the top of a 12 m high building, the angle of elevation of the top of a cable tower is 60° and the angle of depression of its foot is 30°. Determine the height of the tower.

WWW

