## ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT.

XI COMMON PUBLIC EXAMINATION, MARCH -2023 (24-03-2023)

TENTATIVE ANSWER KEY
Question type A
SUB: BOTANY
MARKS: 70

| Q.NO | CONTENT | MARKS | MODE OF QUESTION |
| :---: | :---: | :---: | :---: |
| I. | PART -I <br> CHOOSE THE CORRECT ANSWER | $15 \times 1=15$ | BOOK BACK / BOOK INSIDE CREATIVE |
| 1 | a. Phyllode - Acacia | 1 | BOOK INSIDE |
| 2 | d. All of the above | 1 | BOOK BACK |
| 3 | a. Arachis hypogea | 1 | BOOK INSIDE |
| 4 | b. Fabaceae | 1 | BOOK BACK |
| 5 | b. Mitchell | 1 | BOOK INSIDE |
| 6 | d. Watson and Crick | 1 | BOOK INSIDE |
| 7 | b. Prevent the uptake of $\mathrm{Fe}, \mathrm{Mg}$ but not Ca | 1 | BOOK BACK |
| 8 | c. Synapsis | 1 | BOOK BACK |
| 9 | d. 2,4 - D and 2,4,5-T | 1 | BOOK INSIDE |
| 10 | c. Methanobacterium | 1 | BOOK BACK |
| 11 | a. Cambium for secondary growth | 1 | BOOK BACK |
| 12 | a. (1)-(ii), (2)-(iv), (3)-(i), (4)-(iii) | 1 | BOOK INSIDE |
| 13 | b. Ernest Ruska | 1 | BOOK INSIDE |
| 14 | d. Tyloses | 1 | BOOK INSIDE |
| 15 | a. Pinites succinifera | 1 | BOOK INSIDE |


| Q.NO |  | MARKS | MODE OF QUESTION |
| :---: | :---: | :---: | :---: |
| II. | PART -II ANSWER ANY SIX OF THE FOLLOWING QUESTION NUMBER 24 IS COMPULSORY | $6 \mathrm{X} 2=12$ | BOOK BACK / BOOK INSIDE CREATIVE |
| 16 | Bacteria which require CO 2 for their growth are called as capnophilic bacteria. <br> Example: Campylobacter | 2 | BOOK INSIDE |
| 17 |  | 2 | BOOK BACK |
| 18 | Xylem plates alternates with phloem plates. Example: Lycopodium clavatum. | 2 | BOOK BACK |
| 19 | - This maintains a definite constant number of chromosomes in organisms. <br> - Crossing over takes place and exchange of genetic material leads to variations among species. These variations are the raw materials to evolution. Meiosis leads to genetic variability by partitioning different combinations of genes into gametes through independent assortment. <br> - Adaptation of organisms to various environmental stress. | 2 | BOOK INSIDE |
| 20 | (i) Sclerenchyma and tracheids are cells which have nucleus initially but it soon degenerates. They become dead cells. <br> (ii) Sclerenchyma functions to give mechanical strength to the plant. Tracheids are a part of xylem and help to conduct water. <br> (iii) They have functions inspite of being dead cells. | 2 | BOOK BACK |


| 21 | Porous wood or <br> Hard wood, <br> Example: Morus | Non porous wood or <br> Soft wood, <br> Example: Pinus |  | 2 |
| :---: | :--- | :---: | :---: | :---: |
| Common in <br> angiosperms | Common in <br> gymnosperms |  |  |  |
| Porous because it <br> contains vessels | Non-porous because <br> it does not contain <br> vessels |  | BOOK BACK |  |
| 22 | In some succulent plants like Opuntia, Bryophyllum <br> carbohydrates are partially oxidised to organic acid, <br> particularly malic acid without corresponding <br> release of CO2 but O2 is consumed hence the RQ <br> value will be zero. | 2 | BOOK BACK |  |
| 23 | Nitrosomonas bacterium. <br> Nitrobacter bacterium | 2 | BOOK BACK |  |
| 24 | (a) Staminode <br> (b) epipetalous stamen | 2 | BOOK INSIDE |  |


| Q.NO | CONTENT | MARK | MODE OF QUESTION |
| :---: | :---: | :---: | :---: |
| III. | PART -III <br> ANSWER ANY SIX OF THE FOLLOWING QUESTION NUMBER 33 IS COMPULSORY | $6 \times 3=$ | BOOK BACK / BOOK INSIDE CREATIVE |
| 25 | 1. Yes. In Bryophytes sexual reproduction occurs in Gametophyte (dominant phase). <br> 2. The antherozoids <br> have flagella and swim in a thin film of water to reach the Archegonium. <br> 3. They fuse with the egg and form the zygote which initiates the sporophyte. <br> 4. Thus without water the life cycle of a Bryophyte cannot be completed. | 3 | BOOK BACK |
| 26 | - They promote cell elongation in stem and coleoptile. <br> - At higher concentrations auxins inhibit the elongation of roots but induce more lateral roots. Promotes growth of root only at extremely low concentrations. <br> - Suppression of growth in lateral bud by apical bud due to auxin produced by apical | 3 | BOOK INSIDE |


|  | bud is termed as apical dominance. <br> - Auxin prevents abscission. <br> - It is responsible for initiation and promotion of cell division in cambium, which is responsible for the secondary growth and tumor. This property of induction of cell division has been exploited for tissue culture techniques and for the formation of callus. <br> - Auxin stimulates respiration. <br> - Auxin induces vascular differentiation <br> (ANY THREE POINT) |  |  |
| :---: | :---: | :---: | :---: |
| 27 | When deficiency symptoms appear first, we can notice the differences in old and younger leaves. It is mainly d to mobility of minerals. Based on this, they are classified into 1 . Actively mobile minerals and 2. Relatively immobile minerals (a) Actively mobile minerals: Nitrogen,Phosphorus, Potassium, Magnesium, Chlorine,Sodium, Zinc and Molybdenum. Deficiency symptoms first appear on old and senescent leaves due to active movement of minerals to younger leaves. (b) Relatively immobile minerals: Calcium, Sulphur, Iron, Boron and Copper. Here, deficiency symptoms first appear on young leaves due to the immobile nature of minerals <br> (ANY THREE POINT) | 3 | BOOK BACK |
| 28 |  | 3 | BOOK BACK |
| 29 | Class: Dicotyledonae (Dicots with two cotyledons) <br> Sub class: Polypetalae (Free petals) <br> Series: Calyciflorae (cup shaped thalamus) | 3 | BOOK BACK |



|  | power is 2-10 £. It is used for studying detailed <br> structrue of viruses, mycoplasma, cellular organelles. |  |  |
| :---: | :--- | ---: | :--- |
| 33 | Water will move from low DPD to high DPD <br> (hypodermis 2 atm to cortex 5 atm) | 3 | CREATIVE |


reticulate venation.
Inflorescence: Solitary and axillary cyme.
Flower: Flowers are large, greenish white, bracteate, ebracteolate, pedicellate, complete, heterochlamydeous, pentamerous, regular, actinomorphic, bisexual and hypogynous.
Calyx: Sepals 5, green synsepalous showing valvate aestivation. Calyx is mostly persistant, odd sepal is posterior in position.
Corolla: petals 5, greenish white, sympetalous, plicate (folded like a fan) showing twisted aestivation, funnel shaped with wide mouth and 10 lobed.
Androecium: Stamens 5, free from one another, epipetalous, alternipetalous and are inserted in the middle of the corolla tube. Anthers are basifixed, dithecous, with long filament, introse and longitudinally dehiscent.
Gynoecium: Ovary bicarpellary, syncarpous superior ovary, basically biloculear but tetralocular due to the formation of false septum. Carpels are obliquely placed and ovules on swollen axile placentation. Style simple long and filiform, stigma two lobed. Fruit: Spinescent capsule opening by four apical valves with persistent calyx.
Seed: Endospermous.

## Floral Formula:




|  |  |  | 5 |
| :--- | :--- | :--- | :--- |
|  |  |  |  |
|  | (a) Protostele: In protostele phloem surrounds xylem. <br> 1. Pre type includes Haplostele, Actinostele, Plectostele, <br> and Mixed protostele. <br> (i) Haplostele: Xylem surrounded by phloem is <br> known as haplostele. Example: Selaginella. <br> (ii) Actinostele: Star shaped xylem core is surrounded <br> phloem is known as actinostele. Example: <br> Lycopodium serratum. <br> (iii) Plectostele: Xylem plates alternates with phloem <br> plates. Example: Lycopodium clavatum. <br> (iv) Mixed prototostele: Xylem groups uniformly <br> scattered in the phloem. Example: Lycopodium <br> cernuum. | BOOK |  |


| 35 (b) | S. No | Plant cell | Animal Cell |  | BOOK BACK |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | 1 | Usully y the are larger than animal cells | Usually smaller than plant cells |  |  |
|  | 2 | Cell wall present in addition to plasma membrane and consists of middle lamellae, primary and secondary walls | Cell wall absent |  |  |
|  | 3 | Plasmodesmata present | Plasmodesmata absent |  |  |
|  | 4 | Chloroplast present | Chloroplast absent |  |  |
|  | 5 | Vacuole large and permnent | Vacule small and temporary |  |  |
|  | 6 | Tonoplast present around vacule | Tonoplast absent |  |  |
|  | 7 | Centrioles absent except motile cells of lower plants | Centrioles present |  |  |
|  |  | Nucleus present along the periphery of the cell | Nucleus at the centre of the cell |  |  |
|  | 9 | Lysosomes are rare | Lysosmes present |  |  |
|  | 10 | Storage material is starch grains | Storage material is aglyogen granules |  |  |
|  |  | (ANY FIVE POINT) | г) |  |  |
| 36 (a) |  |  |  | , | BOOK INSIDE |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
|  |  |  |  |  |  |
| 36 (b) | Mitosis is divided into four stages prophase, metaphase, anaphase and telophase. <br> Prophase <br> Prophase is the longest phase in mitosis. Chromosomes. become visible as long thin thread |  |  | 5 | BOOK INSIDE |
| ISLAMIAH MAT HR SEC SCHOOL |  |  | M.MATHAN., M.Sc., M.Phil., M.Ed., |  | 9865330431 |

like structure, condenses to form compact mitotic chromosomes. In plant: cells initiation of spindle fibres takes place, nucleolus disappears. Nuclear envelope breaks down. Golgi apparatus and endoplasmic reticulum are not seen.
In animal cell the centrioles extend a radial array of rnicrotubules towards the plasma membrane when they reach the poles of the cell. Th is arrangement of micrdtubules is called an aster. Plant cells do not form asters.

## Metaphase

Chromosomes (two sister chromatids) are attached to the spindle -fibres by-kinetochore of the centromere. The spindle fibres is made up of tubulin. The alignment of chromosome into compact group at the equator of the cell is known as metaphase plate. This is the stage where the chromosome morphology can be easily studied. Kinetochore is a DNA-Protein complex present in the centromere DNAwhere the microtubules are attached. It is a trilaminar disc like plate. The spindle assembly checkpoint which decides the cell to enter anaphase

## Anaphase

Each chromosome split simultaneously and two daughter chromatids begins to migrate towards two opposite poles of a cell. Each centromere splits longitudinally into two, freeing the two sister chromatids from each other. Shortening of spindle fibre and longitudinal splitting of centromere creates a pull which divides chromosome into two halves. Eachhalf receive two chromatids (that is sister chromatids are separated). When the sister chromatids separate the actual partitioning of the replicated genome is complete. A ubiquitine ligase is activated called as the napha e-promotlng complex cyclosome (APC/C) leads to degradation of the key regulatory proteins at the transition of metaphase to anaphase. APC is a cluster of proteins that induces the breaking down of cohesion proteins which leads to the separation of chromatids during mitosis

|  | Telophase <br> Two sets of daughter chromosomes reach opposite poles of the cell, mitotic spindle disappears. Division of genetic material is com leted after this karyokinesis cytokinesis (division of cytoplasm) is completed, nucleolus and nuclear membranes reforms. Nuclear membranes form around each set of sister chromatids now called chromosomes, each has its own centromere. Now the chromosomes decondense. In plants, phragmoplast are formed between the daughter cells. Cell plate is formed between the two daughter cells, reconstruction of cell wall takes place. Finally the cells are separated by the distribution of organelles, macromolecules into two newly formed daughter cells |  |  |
| :---: | :---: | :---: | :---: |
| 37 (a) | Biosynthetic phase of photosynthesis utilises assimilatory powers(ATP and NADPH 1 H1) produced during light reaction are used to fix and reduce carbon dioxide into carbohydrates. This reaction does not require light. Therefore, it is named Dark reaction. Ribulose 1,5 bisphosphate (RUBP) act acceptor molecule of carbon dioxide and fix the CO2 by RUBISCO enzyme. The first product of the pathway is a 3- carbon compound (Phospho Glyceric Acid) and so it is also called as C3 Cycle. It takes place in the stroma of the chloroplast. M. Melvin Calvin, A.A. Benson and their co-workers in the year 1957 found this path way of carbon fixation. Melvin Calvin was awarded Nobel Prize for this in 1961 and this pathway named after the discoverers as CalvinBenson Cycle. Dark reaction is temperature dependent and so it is also called thermo-chemical reaction. Dark reaction consists of three phases: <br> 1. Carboxylation (fixation) 2. Reduction (Glycolytic Reversal) 3. Regeneration Phase 1- Carboxylation (Fixation) The acceptor molecule Ribulose 1,5 Bisphosphate (RUBP) a 5 carbon compound with the help of RUBP carboxylase oxygenase (RUBISCO) enzyme accepts one molecule of carbon dioxide to form an unstable 6 carbon compound. This 6C compound is broken down into two molecules of 3- | $\eta$ | BOOK INSIDE |

carbon compound phospho glyceric acid (PGA)
RUBP $+\mathrm{CO}_{2} \xrightarrow{\text { Rubisco }} 2$ molecules PGA

Phase 2 - Glycolytic Reversal / Reduction Phospho glyceric acid is phosphorylated by ATP and produces 1,3 bis phospho glyceric acid by PGA kinase. 1,3 bis phospho glyceric acid is reduced to glyceraldehyde 3 Phosphate (G-3-P) by using the reducing power NADPH 1 H 1 . Glyceraldehyde 3 phosphate is converted into its isomeric form di hydroxy acetone phosphate (DHAP).
$\mathrm{PGA} \underset{\text { ATP }}{\stackrel{\text { PGA Kinase }}{\longrightarrow}} 1,3$ bisphosphoglyceric acid


Glyceraldehyde-3-Phosphate

Phase 3 - Regeneration Regeneration of RUBP involves the formation of several intermediate compounds of 6-carbon, 5-carbon, 4-carbon and 7carbon skeleton. Fixation of one carbon dioxide requires 3 ATPs and 2 NADPH 1 H 1 , and for the fixation of 6 CO 2 requires 18 ATPs and 12
NADPH 1 H1 during C3 cycle. One 6 carbon compound is the net gain to form hexose sugar.


Overall equation for dark reaction:

$$
\begin{aligned}
& 6 \mathrm{CO}_{2}+18 \mathrm{ATP}^{2}+12 \mathrm{NADPH}+\mathrm{H}^{+} \longrightarrow \\
& \mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{H}_{2} \mathrm{O}+18 \mathrm{ADP}+18 \mathrm{Pi}+ \\
& 12 \mathrm{NADP}^{+}
\end{aligned}
$$




| For example, actual growth in length $=\frac{10 \times 4 \text { inches }}{20 \text { inches }}$ |
| :--- | :--- | :--- | :--- |
| $=2$ inches |$\quad$.

M.MATHAN., M.Sc., M.Ed., M.Phil., PGT IN BOTANY,<br>ISLAMIAH MAT HR SEC SCHOOL, KILAKARAI, RAMANATHAPURAM DT., 9865330431

- Daily classes by Namakkal Well Experienced Staff
- Two year integrated program for XI and XII - NEET.
- We provide online test for both NEET.
- Weekly intensive test for NEET.
- We teach from basics make you achievers.
- Learn with interest without stress.
- Daily practice test and monthly cumulative test for state board.
- Extra care for slow learners.

