www.Padasalai.Net - No. 1 Educational Website in Tamilnadu

DEPARTMENT OF GOVERNMENT EXAMINATIONS
HIGHER SECONDARY FIRST YEAR EXAMINATION MARCH-2023
KEY ANSWER FOR CHEMISTRY - ENGLISH MEDIUM
Maximum Marks - 70

Answer all the Questions

Part -I
$15 \times 1=15$

Q.NO	Option	A Type	Q.NO	Option	B Type
1	a)	Chloropicrin	1	c)	Both (a) and (b)
2	a)	Kerosene	2	b)	Propene
3	a)	$\pi \mathrm{V}=\mathrm{nRT}$	3	c)	Increase in pressure
4	b)	Hex-4-en-2- ol	4	a)	5.6
5	c)	Both (a) and (b)	5	d)	374.4 K
6	b)	Propene	6	a)	Assertion is true but reason is false
7	d)	374.4 K	7	a)	Chloropicrin
8	c)	frictional energy	8	a)	
9	a)	5.6	9	b)	$112 \mathrm{~g} \mathrm{~mol}^{-1}$
10	a)		10	a)	$\pi \mathrm{V}=\mathrm{nRT}$
11	b)	9	11	a)	Kerosene
12	a)	Assertion is true but reason is false	12	c)	frictional energy
13	c)	bibibium	13	d)	Hex-4-en-2-ol
14	b)	$112 \mathrm{~g} \mathrm{~mol}-1$	14	c)	bibibium
15	c)	Increase in pressure	15	b)	9

SHANMUGAM S, ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI - 600116

Kindly send me your questions and answerkeys to us: Padasalai.Net@gmail.com

Part - II

Answer any SIX Questions and Questions No. 24 is Compulsory.

\begin{tabular}{|c|c|c|c|}
\hline 16 \& \begin{tabular}{l}
As per the classical concept, \\
i) Addition of oxygen (or) removal of hydrogen is called oxidation \\
\(\mathrm{C}+\mathrm{O}_{2} \rightarrow \mathrm{CO}_{2} \quad\) (addition of oxygen) \\
\(\mathrm{H}_{2} \mathrm{~S}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl}+\mathrm{S}\) (removal of hydrogen) \\
i) Addition of hydrogen (or) removal of oxygen is called reduction \\
\(\mathrm{H}_{2}+\mathrm{Cl}_{2} \rightarrow 2 \mathrm{HCl} \quad\) (addition of hydrogen) \\
\(\mathrm{ZnO}+\mathrm{C} \rightarrow \mathrm{Zn}+\mathrm{CO}\) (removal of oxygen) \\
(OR) \\
As per the classical concept, addition of oxygen (or) removal of hydrogen is called oxidation and the reverse is called reduction.
\end{tabular} \& 1

1 \& 2

\hline 17 \& | Heisenberg's uncertainty principle |
| :--- |
| 'It is impossible to accurately determine both the position and the momentum of a microscopic particle simultaneously'. |
| (Correct Statement \qquad |
| (or) |
| $\Delta x \cdot \Delta p \geq h / 4 \pi$ where, Δx and Δp are uncertainties in determining the position and momentum, h - Planck's constant | \& 2 \& 2

\hline 18 \& | Uses: Plaster of Paris is used as/in, |
| :--- |
| 1. The building industry as well as plasters. |
| 2. For immobilising the affected part of organ where there is a bone fracture or sprain. |
| 3.Employed in dentistry, in ornamental work and for making casts of statues and busts. (any two correct point. \qquad | \& 1

1 \& 2

\hline 19 \& | Le-Chatelier's Principle |
| :--- |
| "If a system at equilibrium is disturbed, then the system shifts itself in a direction that nullifies the effect of that disturbance." |
| (Correct Statement | \& 2 \& 2

\hline 20. \& | Thus, osmotic pressure can be defined as "the pressure that must be applied to the solution to stop the influx of the solvent (to stop osmosis) through the semipermeable membrane" |
| :--- |
| Correct definition | \& 2 \& 2

\hline
\end{tabular}

\begin{tabular}{|c|c|c|c|}
\hline 21 \& \begin{tabular}{l}
i) Lewis structure of water
\[
{ }^{\circ} \ddot{O}_{\mathrm{H}} \text { OR } \mathrm{H}: \ddot{\mathrm{O}}: \mathrm{H} \text { OR } \mathrm{H}-\ddot{\mathrm{O}}-\mathrm{H}
\] \\
ii) Lewis structure of Nitric acid
\end{tabular} \& 1

1 \& 2

\hline 22 \& | Write short notes on Friedel Craft's reaction: |
| :--- |
| a) Friedel Craft's Alkylation: (Methylation) |
| When benzene is treated with methyl chloride in the presence of anhydrous aluminium chloride, toluene is formed. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{Cl} \xrightarrow{\text { anhydrous } \mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{CH}_{3}+\mathrm{HCl}$ |
| (or) |
| c) Friedel Craft's Acylation : (Acetylation) |
| When benzene is treated with acetyl chloride in the presence of AlCl_{3}, acyl benzene is formed. $\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{CH}_{3} \mathrm{COCl} \xrightarrow{\text { anhydrous } \mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{COCH}_{3}+\mathrm{HCl}$ | \& 2 \& 2

\hline 23 \& | Particulate pollutants are small solid particles and liquid droplets suspended in air. Many of particulate pollutants are hazardous. |
| :--- |
| Examples: dust, pollen, smoke, soot and liquid droplets (aerosols) etc,. | \& 1

1 \& 2

\hline 24 \& $$
\begin{aligned}
& \Delta \mathrm{S}_{\text {fusion }}=\frac{\Delta \mathrm{H}}{\mathrm{~T}_{\mathrm{f}}} \\
& \Delta \mathrm{~S}_{\text {fusion }}=\frac{6008}{0^{\circ} \mathrm{C}+273}=22.007 \mathrm{JK}^{-1} \mathrm{~mole}^{-1}
\end{aligned}
$$ \& 1

1 \& 2

\hline
\end{tabular}

SHANMUGAM S, ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI - 600116

Part - III

Answer any SIX Questions and Questions No. 33 is Compulsory.

\begin{tabular}{|c|c|c|}
\hline 25 \& \begin{tabular}{l}
i) \(\mathrm{KMnO}_{4}+\mathrm{Na}_{2} \mathrm{SO}_{3} \rightarrow \mathrm{MnO}_{2}+\mathrm{Na}_{2} \mathrm{SO}_{4}+\mathrm{KOH}\) \\
iii) \(\mathrm{Cu}+\mathrm{HNO}_{3} \rightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}\)
\[
\stackrel{0}{\mathrm{Cu}}+\mathrm{H}^{+5} \mathrm{O}_{3} \longrightarrow \mathrm{C} \mathrm{Cu}^{+2}\left(\mathrm{NO}_{3}\right)_{2}+\stackrel{+4}{\mathrm{NO}_{2}}+\mathrm{H}_{2} \mathrm{O}
\]
\[
\mathrm{Cu}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+\mathrm{NO}_{2}+\mathrm{H}_{2} \mathrm{O}
\]
\[
\mathrm{Cu}+2 \mathrm{HNO}_{3}+2 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\]
\[
\mathrm{Cu}+4 \mathrm{HNO}_{3} \longrightarrow \mathrm{Cu}\left(\mathrm{NO}_{3}\right)_{2}+2 \mathrm{NO}_{2}+2 \mathrm{H}_{2} \mathrm{O}
\]
\end{tabular} \& 1/2 \\
\hline 26 \& \begin{tabular}{l}
1) Principal quantum number (n): \\
2. \(2 \mathrm{n}^{2}\) \\
3. Energy of the electron and the distance of the electron from the nucleus
\[
E_{\mathrm{n}}=\frac{(-1312.8) \mathrm{Z}^{2}}{\mathrm{n}^{2}} \mathrm{k} \mathrm{jmol}^{-1} \text { and } \mathrm{r}_{\mathrm{n}}=\frac{(0.529) \mathrm{n}^{2}}{\mathrm{Z}} \stackrel{o}{\mathrm{~A}}
\]
\end{tabular} \& 1

1
1

\hline
\end{tabular}

27	Diagonal Relationship1. On moving diagonally across the periodic table, the second and third period elements show certain similarities. 2. Na Mg Al Si 3.The similarity in properties existing between the diagonally placed elements is called 'diagonal relationship'.	1 1 1	3
28	Conversion of Para hydrogen into ortho hydrogen 1.The para-form can be catalytically transformed into ortho-form using platinum or iron. 2.Alternatively, it can also be converted by passing an electric discharge, heating above $800^{\circ} \mathrm{C}$ 3.mixing with paramagnetic molecules such as $\mathrm{O}_{2}, \mathrm{NO}, \mathrm{NO}_{2}$ or with nascent/atomic hydrogen.	1 1 1	3
29	Ideal gas equation Boyle's law $\quad \mathrm{V} \alpha \frac{1}{\mathrm{P}}$ Charles law $\quad \mathrm{V} \alpha \mathrm{T}$ Avogadro's law $V a n$ We can combine these equations we get , $\begin{aligned} & \mathrm{V} \alpha \frac{\mathrm{nT}}{\mathrm{P}} \\ & \mathrm{~V}=\frac{\mathrm{nRT}}{\mathrm{P}} \end{aligned}$ Ideal gas equation: $\mathrm{PV}=\mathrm{n} R T$	$1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$ $1 / 2$	3
30	State function A thermodynamic system can be defined by using the variables P, V, T and ' n '. A state function is a thermodynamic property of a system, which has a specific value for a given state and does not depend on the path (or manner) by which the particular state is reached. Example : Pressure (P), Volume (V), Temperature(T), Internal energy (U), Enthalpy (H), free energy (G) etc. Path functions: A path function is a thermodynamic property of the system whose value depends on the path by which the system changes from its initial to final states. Example: Work (w), Heat (q).	1 $1 / 2$ $1 / 2$	3

34 a)	Element Na S H O i) Empirical form ii) Empirical form iii) Molar mass = Molecular formu Since all the hyd \therefore Molecular form		Relative no. of atoms$\frac{14.31}{23}=0.62$$\frac{9.97}{32}=0.31$$\frac{6.22}{1}=6.22$$\frac{69.5}{16}=4.34$$+(1 \times 32)+(20$ ss formula mass $=$ present as wat	Simple ratio $\frac{0.62}{0.31}$ $=2$ $\frac{0.31}{0.31}$ $=1$ $\frac{6.22}{0.31}$ $=20$ $\frac{4.34}{0.31}$ $=14$$+(14 \times 16)=322$$=1$	$\begin{aligned} & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	5
34 b)	i) Pauli Exclus "No two electron quantum numbe ii) Modern perio "the physical an their atomic num	le m ca prop	the same set of the elements a	es of all four eriodic functions of	$21 / 2$ $21 / 2$	5
35 a)	i) Isotopes are atomic number Hydrogen has i) Protium ii) Deuterium iii) Tritium	the a t mas urally H) D) T)	the same eleme er. ng isotopes,	aving the same	$\begin{aligned} & 1 \\ & 1 / 2 \\ & 1 / 2 \\ & 1 / 2 \end{aligned}$	

	ii) Uses of calcium 1. As a reducing agent in the metallurgy of uranium, zirconium and thorium. 2. As a deoxidiser, desulphuriser or decarboniser for various ferrous and nonferrous alloys. 3. In making cement and mortar to be used in construction. 4. As a getter in vacuum tubes. 5. In dehydrating oils 6. In fertilisers, concrete and plaster of paris.	1 1 $1 / 2$	5
	(OR)		
$\begin{aligned} & 35 \\ & \text { b) } \end{aligned}$	The van der Waals equation for n moles is $\begin{equation*} \left(\mathrm{P}+\frac{\mathrm{an}^{2}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{nb})=\mathrm{nRT} \tag{1} \end{equation*}$ For 1 mole $\begin{equation*} \left(\mathrm{P}+\frac{\mathrm{a}}{\mathrm{~V}^{2}}\right)(\mathrm{V}-\mathrm{b})=\mathrm{RT} \tag{.2} \end{equation*}$ On expanding the above equation $\begin{equation*} \mathrm{PV}+\frac{\mathrm{a}}{\mathrm{~V}}-\mathrm{Pb}-\frac{\mathrm{ab}}{\mathrm{~V}^{2}}-\mathrm{RT}=0 \tag{i3:} \end{equation*}$ Multiply equation (3:) by $\mathrm{V}^{2} / \mathrm{P}$ $\begin{align*} & \frac{\mathrm{V}^{2}}{\mathrm{P}}\left(\mathrm{PV}+\frac{\mathrm{a}}{\mathrm{~V}}-\mathrm{Pb}-\frac{\mathrm{ab}}{\mathrm{~V}^{2}}-\mathrm{RT}\right)=0 \\ & \mathrm{~V}^{3}+\frac{\mathrm{aV}}{\mathrm{P}}+-\mathrm{bV}^{2}-\frac{\mathrm{ab}}{\mathrm{P}}-\frac{\mathrm{RTV}^{2}}{\mathrm{P}}=0- \tag{4} \end{align*}$ When the above equation is rearranged in powers of V $\begin{equation*} \mathrm{V}^{3}-\left[\frac{\mathrm{RT}}{\mathrm{P}}+\mathrm{b}\right] \mathrm{V}^{2}+\left[\frac{\mathrm{a}}{\mathrm{P}}\right] \mathrm{V}-\left[\frac{\mathrm{ab}}{\mathrm{P}}\right]=0-- \tag{5} \end{equation*}$ The equation (5) is a cubic equation in V.	$1 / 2$	5

As equation (5) is identical with equation (6), we can equate the coefficients of

$$
-3 \mathrm{~V}_{\mathrm{C}} \mathrm{~V}^{2}=-\left[\frac{\mathrm{RT}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}+\mathrm{b}\right] \mathrm{V}^{2}
$$

$$
\begin{equation*}
3 \mathrm{~V}_{\mathrm{C}}=\frac{\mathrm{RT}_{\mathrm{C}}}{\mathrm{P}_{\mathrm{C}}}+\mathrm{b} \quad \ldots--(\mathbf{7}) \tag{7}
\end{equation*}
$$

$$
3 \mathrm{~V}_{\mathrm{C}}^{2}=\frac{\mathrm{a}}{\mathrm{P}_{\mathrm{C}}} \quad-\cdots\left(\mathbf{8}^{\prime}\right)
$$

$\mathrm{V}^{2}, \mathrm{~V}$ and constant terms in (5) and (6).

$$
\begin{equation*}
\mathrm{V}_{\mathrm{C}}^{3}=\frac{\mathrm{ab}}{\mathrm{P}_{\mathrm{C}}} \tag{.9}
\end{equation*}
$$

Divide equation (9) by equation (8)

$$
\frac{\mathrm{V}_{\mathrm{C}}^{3}}{3 \mathrm{~V}_{\mathrm{C}}^{2}}=\frac{\mathrm{ab} / \mathrm{P}_{\mathrm{C}}}{\mathrm{a} / \mathrm{P}_{\mathrm{C}}} \quad \frac{\mathrm{~V}_{\mathrm{C}}}{3}=\mathrm{b}
$$

i.e. $V_{C}=3 b$ \qquad (10)
when equation (10) is substituted in (8)

$$
\begin{align*}
& 3 \mathrm{~V}_{\mathrm{C}}^{2}=\frac{\mathrm{a}}{\mathrm{P}_{\mathrm{C}}} \\
& \mathrm{P}_{\mathrm{C}}=\frac{\mathrm{a}}{3 \mathrm{~V}_{\mathrm{C}}^{2}}=\frac{\mathrm{a}}{3\left(3 \mathrm{~b}^{2}\right)}=\frac{\mathrm{a}}{3 \times 9 \mathrm{~b}^{2}}=\frac{\mathrm{a}}{27 \mathrm{~b}^{2}} \\
& \mathrm{P}_{\mathrm{C}}=\frac{\mathrm{a}}{27 \mathrm{~b}^{2}} \cdots \cdots(11) \tag{11}
\end{align*}
$$

substituting the values of Vc and Pc in equation (7),

$$
\begin{aligned}
& 3 \mathrm{~V}_{\mathrm{C}}=\mathrm{b}+\frac{\mathrm{R} \mathrm{~T}_{\mathrm{C}}}{\mathrm{P}} \quad 3(3 \mathrm{~b})=\mathrm{b}+\frac{\mathrm{R} \mathrm{~T}_{\mathrm{C}}}{\left(\mathrm{a} / 27 \mathrm{~b}^{2}\right)} \\
& 9 \mathrm{~b}-\mathrm{b}=\left(\frac{\mathrm{R} \mathrm{~T}_{\mathrm{C}}}{\mathrm{a}}\right) 27 \mathrm{~b}^{2} \quad 8 \mathrm{~b}=\frac{\mathrm{T}_{\mathrm{C}} \mathrm{R} 27 \mathrm{~b}^{2}}{\mathrm{a}}
\end{aligned}
$$

$\therefore \quad \mathrm{T}_{\mathrm{C}}=\frac{8 \mathrm{ab}}{27 \mathrm{R} \mathrm{b}^{2}}=\frac{8 \mathrm{a}}{27 \mathrm{Rb}}$
The critical constants can be calculated using the values of van der waals constant of a gas and vice versa.

$$
\mathrm{a}=3 \mathrm{~V}_{\mathrm{C}}^{2} \mathrm{P}_{\mathrm{C}} \text { and } \mathrm{b}=\frac{\mathrm{V}_{\mathrm{C}}}{3}
$$

\begin{tabular}{|c|c|c|c|}
\hline \begin{tabular}{l}
\[
36
\] \\
a)
\end{tabular} \& \begin{tabular}{l}
Entropy statement: \\
"the entropy of an isolated system increases during a spontaneous process". \\
(or) \\
Entropy is a measure of the molecular disorder (randomness) of a system. \\
(or) \\
It is defined as, \(d S=d q r e v / T\) \\
Kelvin-Planck statement: \\
It is impossible to construct a machine that absorbs heat from a hot source and converts it completely into work by a cyclic process without transferring a part of heat to a cold sink. \\
Clausius statement: \\
It is impossible to transfer heat from a cold reservoir to a hot reservoir without doing some work.
\end{tabular} \& 1

2
2 \& 5

\hline \& (OR) \& \&

\hline \[
$$
\begin{aligned}
& 36 \\
& \text { b) }
\end{aligned}
$$

\] \& | i) Law of mass action |
| :--- |
| "At any instant, the rate of a chemical reaction at a given temperature is directly proportional to the product of the active masses of the reactants at that instant". Rate $\alpha[\text { Reactant }]^{x}$ |
| ii) Limitations of Henry's law |
| 1 Henry's law is applicable at moderate temperature and pressure only. |
| 2 Only the less soluble gases obeys Henry's law |
| 3 The gases reacting with the solvent do not obey Henry's law. |
| For example, ammonia or HCl reacts with water and hence does not obey this law. $\mathrm{NH}_{3}{ }^{+} \mathrm{H}_{2} \mathrm{O} \leftrightarrows \mathrm{NH}_{4}^{+}+\mathrm{OH}^{-}$ |
| 4 The gases obeying Henry's law should not associate or dissociate while dissolving in the solvent. | \& 2

1
1
1
1 \& 5

\hline | 37 |
| :--- |
| a) | \& | The salient features of Molecular orbital |
| :--- |
| 1. When atoms combines to form molecules, their individual atomic orbitals lose their identity and forms new orbitals called molecular orbitals. |
| 2. The shapes of molecular orbitals depend upon the shapes of combining atomic orbitals. |
| 3. The molecular orbital with lower energy is called bonding molecular orbital and the one with higher energy is called anti-bonding molecular orbital. | \& 1

1
1 \& 5

\hline
\end{tabular}

| | The bonding molecular orbitals are represented as σ (Sigma), π (pi), δ (delta)
 and the corresponding antibonding orbitals are denoted as σ^{*}, π^{*} and δ^{*}.
 4. The filling of electrons in these orbitals follows Aufbau's principle, Pauli's
 exclusion principle and Hund's rule as in the case of filling of electrons in
 atomic orbitals.
 5. Bond order gives the number of covalent bonds between the two combining
 atoms. The bond order of a molecule can be calculated using the following
 equation | 1 |
| :--- | :--- | :--- | :--- |

38 Structure of benzene:
a) 1. Molecular formula - $\mathrm{C}_{6} \mathrm{H}_{6}$

This indicates that benzene is a highly unsaturated compound.
2. Straight chain structure not possible:

It did not decolourise bromine in carbon tetrachloride or acidified KMnO_{4}. It did not react with water in the presence of acid.
3. Evidence of cyclic structure:
I) substitution of benzene:

$$
\mathrm{C}_{6} \mathrm{H}_{6}+\mathrm{Br}_{2} \xrightarrow{\mathrm{AlCl}_{3}} \mathrm{C}_{6} \mathrm{H}_{5} \mathrm{Br}+\mathrm{HBr}
$$

Formation of only one mono bromo compound indicates that all the six hydrogen atoms in benzene were identical.
II) addition of hydrogen:
$\mathrm{C}_{6} \mathrm{H}_{6}+3 \mathrm{H}_{2} \xrightarrow{\text { Raney } \mathrm{Ni}} \mathrm{C}_{6} \mathrm{H}_{12}$ cyclohexane

4. Kekule's structure of benzene:

In 1865, August Kekule suggested that benzene consists of a cyclic planar structure of six carbon with alternate single and double bonds.
Kekule's structure failed to explain why benzene with three double bonds did not give addition reactions like other alkenes.

Presence of single bond between the substituents

5. Resonance description of benzene

The phenomenon in which two or more structures can be written for a substance which has identical position of atoms is called resonance

6. Spectrosscopic measurments

Spectroscopic measurements show that benzene is planar and all of its carbon-carbon bonds are of equal length $1.40 \mathrm{~A}^{\circ}$. This value lies between

\begin{tabular}{|c|c|c|c|}
\hline \& \begin{tabular}{l}
carbon-carbon single bond length \(1.54 \mathrm{~A}^{\circ}\) and carbon-carbon double bond length \(1.34 \mathrm{~A}^{\circ}\). \\
7. Molecular orbital structure \\
All the six carbon atoms of benzene are \(\mathrm{sp}^{2}\) hybridized. Six \(\mathrm{sp}^{2}\) hybrid orbitals of carbon linearly overlap with six 1s orbitals of hydrogen atoms to form six C H sigma bonds. Overlap between the remaining \(\mathrm{sp}^{2}\) hybrid orbitals of carbon forms six C-C sigma bonds. \\
All the \(\sigma\) bonds in benzene lie in one plane with bond angle \(120^{\circ}\). Each carbon atom in benzene possess an un hybridized p-orbital containing one electron. The lateral overlap of their \(p\)-orbital produces \(3 \pi\)-bond The six electrons of the p-orbitals cover all the six carbon atoms and are said to be delocalised. \\
Due to delocalization, strong \(\pi\)-bond is formed \\
8. Representation of benzene:
 \\
Expanded form \\
Kekule structure \\
Short hand representation
\end{tabular} \& 1

$1 / 2$ \&

\hline \& (OR) \& \&

\hline \[
$$
\begin{aligned}
& \text { 38) } \\
& \text { b) }
\end{aligned}
$$

\] \& | A) $\mathrm{H}-\mathrm{CHO}+\mathrm{CH}_{3} \mathrm{MgI} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OMgI} \longrightarrow \mathrm{CH}_{3} \mathrm{CH}_{2} \mathrm{OH}+\mathrm{Mg}(\mathrm{OH}) \mathrm{I}$ |
| :--- |
| B) $\mathrm{CH}_{3}-\mathrm{CHO}+\mathrm{CH}_{3} \mathrm{MgI} \rightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CH}-\mathrm{OMgI} \longrightarrow\left(\mathrm{CH}_{3}\right)_{2} \mathrm{CHOH}+\mathrm{Mg}(\mathrm{OH}) \mathrm{I}$ |
| C) $\mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{Cl}+\mathrm{CH}_{3} \mathrm{MgI} \longrightarrow \mathrm{CH}_{3}-\mathrm{O}-\mathrm{CH}_{2} \mathrm{CH}_{3}+\mathrm{Mg}(\mathrm{Cl}) \mathrm{I}$ |
| ii) Eutrophication: |
| Eutrophication is a process by which water bodies receive excess nutrients that stimulates excessive plant growth (algae, other plant weeds). This enhanced plant growth in water bodies is called as algae bloom. |
| SHANMUGAM S |
| ST. JOHN'S MAT.HR.SEC.SCHOOL PORUR, CHENNAI - 600116 9841945665 | \& 1

1
1

2 \& 5

\hline
\end{tabular}

