KALAIMAGAL MATRIC HIGHER SECONDARY SCHOOL, MOHANUR.

STD:XI **MATHEMATICS MARKS: 20 DATE:** ONE MARK TEST-1 (BB FULLY) TIME: 15 min

Choose the correct answer:

 $20 \times 1 = 20$

- 1. If two sets A and B have 17 elements in common, then the number of elements common to the set $A \times B$ and $B \times A$ is
 - 1) insufficient data
- $2) 17^2$
- 3) 34
- 4) 2^{17}
- 2. If the function $f: [-3,3] \rightarrow S$ defined by $f(x) = x^2$ is onto, then S is
 - 1) [-3,3]
- 2) [0,9]
- 3)[-9,9]
- 4) R

- 3. If 3 is the logarithm of 343, then the base is
 - 1)9

2) 5

- 3) 7

- 4. Which of the following is not true?
 - 1) $\tan \theta = 25$
- 2) $\sec \theta = \frac{1}{4}$ 3) $\sin \theta = -\frac{3}{4}$ 4) $\cos \theta = -1$

- 5. If $\sin \alpha + \cos \alpha = b$, then $\sin 2\alpha$ is equal to
 - 1) $b^2 1$ if $b > \sqrt{2}$
- 2) $b^2 1$, if $b \le \sqrt{2}$ 3) $b^2 1$, if $b \ge \sqrt{2}$ 4) $b^2 1$, if $b \ge 1$
- 6. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is
 - 1) 40

- 2) 45
- 3) 38
- 4) 39

- 7. The number of rectangles that a chess board has
 - $1) 9^9$

- 2) 81
- 3) 6561
- 4) 1296

- 8. The value of $1 \frac{1}{2} \left(\frac{2}{3} \right) + \frac{1}{3} \left(\frac{2}{3} \right)^2 \frac{1}{4} \left(\frac{2}{3} \right)^3 + \dots$ is

 - 1) $\frac{5}{3}\log\left(\frac{5}{3}\right)$ 2) $\frac{2}{3}\log\left(\frac{2}{3}\right)$ 3) $\log\left(\frac{5}{3}\right)$ 4) $\frac{3}{2}\log\left(\frac{5}{3}\right)$
- 9. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is
 - 1) x-2y-5=0
- 2) 2x y = 5 3) $2x y = \sqrt{5}$ 4) $x 2y = \sqrt{5}$
- 10. If a vertex of a square is at the origin and its one side lies along the line 4x + 3y 20 = 0, then the area of the square is
 - 1) 25 sq. units
- 2) 4 sq. units
- 3) 20 sq. units
- 4) 16 sq. units
- 11. If $A = \begin{bmatrix} a & x \\ y & a \end{bmatrix}$ and if xy = 1, then det (AA^T) is equal to
 - 1) $(a^2-1)^2$
- 2) $a^2 1$
- 3) $(a^2+1)^2$
- 4) $(a-1)^2$

	a	2 <i>b</i>	2c			
12. If $a \neq b$, b,c satisfy	3	b	c	= 0, then $abc =$		
	4	a	b			
1) $a + b + c$		2	h^3		3) ()	4) ab± b

13. If \vec{a}, \vec{b} are the position vectors A and B, then which of the following points whose position vector lies on AB is

1)
$$\frac{\vec{2a} + \vec{b}}{3}$$
 2) $\frac{\vec{a} - \vec{b}}{3}$ 3) $\vec{a} + \vec{b}$ 4) $\frac{\vec{a} + \vec{b}}{2}$

14. If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at angle 60° , then the angle between \vec{a} and $\vec{a} + \vec{b}$ is

1) 90° 2) 45° 3) 60° 4) 30° 15. $\lim_{x \to 3} \lfloor x \rfloor =$

 $x \rightarrow 3$ 1) 0
2) 2
3) does not exist 4) 3

16. If the derivative of (ax-5) e^{3x} at x=0 is -13, then the value of a is

1) 5 2) 2 3) 8 4) -2 17. The derivative of f(x) = x|x| at x = -3 is

1) 0 2) 6 3) does not exist

 $18. \int \frac{x^2 + \cos^2 x}{x^2 + 1} \csc^2 x dx \text{ is}$

1) $-\tan x + \cot^{-1} x + c$ 2) $-\cot x + \tan^{-1} x + c$ 3) $\cot x + \sin^{-1} x + c$ 4) $-\cot x - \tan^{-1} x + c$ 19. A bag contains 5 white and 3 black balls. Five balls are drawn successively without replacement. The

4) -6

probability that they are alternately of different colours is

1) $\frac{1}{14}$ 2) $\frac{9}{14}$ 3) $\frac{3}{14}$ 4) $\frac{5}{14}$

20. If a and b are chosen randomly from the set $\{1,2,3,4\}$ with replacement, then the probability of the real roots of the equation $x^2 + ax + b = 0$ is

1) $\frac{7}{16}$ 2) $\frac{11}{16}$ 3) $\frac{3}{16}$ 4) $\frac{5}{16}$