DIRECTORATE OF GOVERNMENT EXAMINATIONS, CHENNAI – 6 HIGHER SECONDARY FIRST YEAR EXAMINATION- MARCH/APRIL-2023 PHYSICS KEY ANSWER

NOTE:

- 1. Answers written with **blue or black ink** only to be evaluated.
- 2. Choose the most suitable answer in part A from the given alternatives and write the option code and their corresponding answer
- 3. For answers in Part-II, Part III, Part IV like reasoning, explanation, narration, description and listing of points, students may write in their own words but without changing the concepts and without skipping any point.
- 4. In numerical problems if formula is not written, marks should be given for the remaining correct steps.
- 5. In graphical representation, physical variables for X-axis and Y-axis should be marked.

TOTAL MARKS: 70

PART – 1

Answ	Answer all the questions : 15×1=15						
Q.No	Option	TYPE - A	Q.No	Option	TYPE - B		
1	d	M L ⁻¹ T ⁻¹	1	b	1		
2	a	2 s	2	d	20.0		
3	b	remains same	3	a	a straight line		
4	a	a straight line	4	a	10 Hz		
5	а	Momentum	5	d	Less than potential energy		
6	Ь	4.30	6	d	Only in rotating frames		
7	а	10 Hz	7	а	2 s		
8	а	12 s	8	b	2.5 vHz		
9	b	2.5 vHz	9	а	12 s		
10	а	10 J	10	b	remains same		
11	С	$\frac{L}{\sqrt{2}}$	11	а	10 J		
12	d	Only in rotating frames	12	С	$\frac{L}{\sqrt{2}}$		
13	d	Less than potential energy	13	а	Momentum		
14	b	1	14	d	M L ⁻¹ T ⁻¹		
15	d	20.0	15	b	4.30		

PART – II

Answer any	, six questions	: Question No. 24 is compulsory.
------------	-----------------	----------------------------------

6×2=12

16	Any two rules		2
17	Scalar - Definition Example (any two)	1 ½+½	2
18	If the static friction is not able to provide enough centripetal force to turn, the vehicle will start to skid. (or)		2
	$\left \frac{mv^2}{r} > \mu_s mg \right $ (or) $\mu_s < \frac{v^2}{rg}$ (if formula alone)1Mark		
19	Any two differences		2
20	1. The torque is zero when \vec{r} and \vec{F} are parallel or antiparallel (or)	1	
	If $\theta = 0^{\circ}$, $\sin 0^{\circ} = 0$ if $\theta = 180^{\circ}$, $\sin 180^{\circ} = 0$ hence $\tau = 0$		2
	2. The torque is zero if the force acts at the reference point (or) $\vec{r} = 0$, $\tau = 0$	1	
21	Newton's universal law of gravitation – correct statement (or)		2
	$\vec{F} = -\frac{GM_1M_2}{r^2}\hat{r}$ (If, formula alone)1Mark		
22	Poisson's ratio is defined as the ratio of relative contraction (lateral strain) to relative expansion		
	(longitudinal strain) (or) Poisson's ratio $\mu = \frac{lateral\ strain}{longitudinal\ strain}$		2
23	Zero th law of thermodynamics - Correct statement		2
24	$KE = \frac{p^2}{2m}$	1/2	
	$KE_1 = \frac{(30)^2}{2x3} = \frac{900}{6} = 150 \text{ J}$	1/2	
	$KE_2 = \frac{(30)^2}{2x6} = \frac{900}{12} = 75 \text{ J}$	1/2	2
	(or) (Any other alternate method) (1½)		
	$KE_1 \neq KE_2$ (They will not have same kinetic energy)	1/2	

PART – III

Answer any Six questions: Question No. 33 is compulsory. 6×3=18

25	The error caused due to the shear carelessness of an observer is called gross error	1	
	Any Two Reasons	1	3
	Gross errors can be minimized only when an observer is	1	
	careful and mentally alert		
26	Any Three properties	3×1	3
27	Any Three differences	3×1	3
28	 Gravitational potential energy (statement) U=mgh 	1/2 1/2	
	where m-mass, g-acceleration due to gravity, h-height	1/2	
	2. Elastic potential energy (statement)	1/2	3
	$U=\frac{1}{2}kx^2$	1/2	3
	where k-spring constant, x-Elongation or compression	1/2	
	(or)		
	Electrostatic potential energy is alone mentioned1 Mark		
29	Satellites that orbiting the Earth at the height of about	1	
	36000 km and appears to be stationary when seen from		
	Earth are called geo stationary satellite		
$V \setminus V$	The satellite orbiting the Earth have different time periods	1/2	
	corresponding to different radii.		3
	$R_{E} + h = \left(\frac{GM_{E}T^{2}}{4\pi^{2}}\right)^{1/3}$		
	India uses INSAT group of satellites that are basically	1	
	geo- stationary satellites for the purpose of		
	telecommunication		
30	Any Three applications	3×1	3
31	Laws of simple pendulum	1	
	Law of length – Statement	'	
	(or)		
	T α \sqrt{l} equation only - ½ Mark		
	2. Law of acceleration- Statement		3
	(or)		
	T $\alpha \frac{1}{\sqrt{g}}$ equation only - ½ Mark		
	3. Time period of simple pendulum is independent of	1	
	mass of the bob and amplitude of the oscillation	'	

32	Any Three postulates	3×1	3
33	The efficiency of heat engine $\eta = 1 - \frac{Q_L}{Q_H}$	1	
	$\eta = 1 - \frac{200}{600}$	1	3
	$\eta = 0.6666$ (or) $\eta = 66.7\%$	1	

PART - IV

Answer all the questions

5×5=25

	ionor an are queenere		
34	T α m ^a l ^b g ^c	1/2	
(a)	$T = k m^a l^b g^c$	1/2	
	$[T^1] = [M^a] [L^b] [LT^{-2}]^c$ (or) $[M^0 L^0 T^1] = [M^a L^{b+c} T^{-2c}]$	1	
	a=0, b=1/2, c= -1/2	1	5
	T = k m ⁰ l ^{1/2} g ^{-1/2} (or) T= k $(\frac{l}{g})^{1/2}$ (or) T= k $\sqrt{\frac{l}{g}}$	_1	
	T=2π √1/2 Padasala	1	
	(OR)		
34	\	1	
b)	Explanation & Diagram R B B sin θ	1	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$		
	$AN = B \cos \theta$		5
	$BN = B \sin \theta$	1	
	Upto R= $\sqrt{A^2 + B^2 + 2ABcos\theta}$	1	
	$\alpha = \tan^{-1}(\frac{B \sin \theta}{A + B \cos \theta})$		

35	Explanation & Diagram	1	
a)	The state of the s	•	
	mg cos θ θ		
	$N = mg \cos \theta$	4	
		1	
	$f_s = f_s^{max} = \mu_s N = \mu_s mg \cos \theta$ $f_s^{max} = mg \sin \theta$	1	5
		1	
	$\mu_s = \frac{\sin \theta}{\cos \theta}$		
	(or)	1	
	$\tan \theta = \mu_s$	•	
	(or) angle of repose is the same as angle of friction		
0.5	(OR)	4	
35 b)	$W = \int \vec{F} \cdot \overrightarrow{dr}$	1	
,	$W = \int dw = \int \frac{dW}{dt} dt$	1	
	ut		
	$\int \vec{F} \cdot \overrightarrow{dr} = \int (\vec{F} \cdot \frac{\overrightarrow{dr}}{dt}) dt = \int (\vec{F} \cdot \vec{v}) dt$	1	5
$\sqrt{\Lambda}$		1	
	$\int \frac{dW}{dt} dt = \int (\vec{F} \cdot \vec{v}) dt (\text{or}) \int (\frac{dW}{dt} - \vec{F} \cdot \vec{v}) dt = 0$		
	$\frac{dW}{dt} - \vec{F} \cdot \vec{v} = 0$ (or) $\frac{dW}{dt} = \vec{F} \cdot \vec{v} = P$	1	
36	Explanation & Diagram	1	
a)	dm		
	dx ←		
	0		
	x		
	<		5
	$dI = (dm) x^2$	1	
	$dm = \lambda dx = \frac{M}{L} dx$	1	
	derivation upto $I = \frac{M}{l} \int x^2 dx$	1	
	derivation upto $I = \frac{1}{12}Ml^2$	1	

	(OR)		
36 b)	Explanation & Diagram	1	
ŕ	m (Pg)		
	$g' = \frac{GM'}{(R_e - d)^2}$	1	5
	Upto $M' = \frac{M}{R_e^3} (R_e - d)^3$	1	
	upto $g' = g (1 - \frac{d}{R_e})$ (or) $g' = GM \frac{(1 - \frac{d}{R_e})}{R_e^2}$	1	
	g' < g (or) As depth increases g' decreases	1	
37	Explanation & Diagram	1	
a)	vw.P Jasala	i.	
	$F_G = \text{mg} \text{(or) } F_G = \frac{4}{3}\pi r^3 \rho g$	1/2	
	$U = \frac{4}{\pi} \pi r^3 \sigma g$	1/2	

37 b)	$dU = \mu C_v dT$ $Q = \mu C_p dT$	1			
	W = PdV Q = dU + W	1			
	$\mu C_p dT = \mu C_v dT + PdV$	1/2	_		
	$PV = \mu RT$ (or) $PdV+VdP = \mu RdT$	1/2	5		
	dP = 0	1/2			
	$C_p dT = C_v dT + RdT$	1/2			
	$C_p = C_v + R$ (or) $C_p - C_v = R$	1			
38	Explanation & Diagram	1			
a)					
/\	Change in momentum of the molecule = $-2mv_x$ Change in momentum of the wall = $2mv_x$	i.			
	$ \begin{array}{c} upto \\ \Delta p = A v_x^2 \; mn \Delta t \end{array} \right\} $	1	5		
	$F = \frac{\Delta p}{\Delta t} = \text{nm } A v_x^2$ $P = \frac{F}{A} = \text{nm } v_x^2$	1			
	$P = \frac{1}{3} \operatorname{nm} \overline{v^2} \text{(or) } P = \frac{1}{3} \frac{N}{V} \operatorname{m} \overline{v^2}$	1			
	(OR)				

ı				1	Ī
	38 b)	Newton assumed that when sound propagates in air, temperature of the medium remains constant(or) isothermal process	1/2		
		PV= constant	1/2		
		$P = -V \frac{dP}{dV} = K_I$	1/2		
		$v_T = \sqrt{\frac{\kappa_I}{\rho}} = \sqrt{\frac{P}{\rho}}$	1/2		
		$v_T \approx 280~\mathrm{ms}^{\text{-1}}$	1/2	5	
		Laplace correction: Temperature is no longer considered as constant (or) adiabatic process	1/2	3	
		$PV^{\gamma} = \text{constant}$	1/2		
		$\gamma P = -V \frac{dP}{dV} = K_A$ $v_A = \sqrt{\frac{K_A}{\rho}} = \sqrt{\frac{\gamma P}{\rho}} = \sqrt{\gamma} v_T$	1/2		et
		$v_A = 331.30 \text{ ms}^{-1}$	1/2		