Extra Notes Added

2nd VOLUME TEST

12th Standard Maths

	Date: 31-Dec-2				
Reg.No.:					

salai.Net

Exam Time: 00:03:00 Hrs

Total Marks: 90

20 x 1 = 20

- 1) If a particle moves in a straight line according to $s = t^3 6t^2 15t$, the time interval during which the velocity is negative and acceleration is positive is
- (a) 2 < t < 5 (b) $2 \le t \le 5$ (c) $t \ge 2$ (d) $t \le 2$

- 2) The least value of a when $f f(x) = x^2 + ax + 1$ is increasing on (1, 2) is
- (a) -2 (b) 2 (c) 1 (d) -1
- 3) If the curves $y = 2e^x$ and $y = ae^{-x}$ intersect orthogonally, then a =____
 - (a) $\frac{1}{2}$ (b) $-\frac{1}{2}$ (c) 2 (d) $2e^2$
- 4) $\lim_{x\to 0^x} \frac{a^x b^x}{c^x d^x}$ is _____
- (a) ∞ (b) 0 (c) $\log \frac{ab}{cd}$ (d) $\frac{\log \left(\frac{a}{b}\right)}{\log \left(\frac{c}{a}\right)}$
- 5) If $u = \log \sqrt{x^2 + y^2}$, then $\frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}$ is _____
- (a) $\sqrt{x^2 + y^2}$ (b) 0 (c) u (d) 2u
- 6) If $u = y^x$ then $\frac{\partial u}{\partial u} = \dots$

- 8) The percentage error in the 11th root of the number 28 is approximately times _ the percentage error in 28.
- (a) $\frac{1}{28}$ (b) $\frac{1}{11}$ (c) 11 (d) 28
- 9) $\int_{1}^{\sqrt{3}} \frac{dx}{1+x^2}$ is _____
- (a) $\frac{\pi}{3}$ (b) $\frac{\pi}{6}$ (c) $\frac{\pi}{12}$ (d) $-\frac{\pi}{6}$
- $\int_{-1}^{1} x \, dx = \dots$
- (a) -1 (b) 1 (c) 0 (d) 2
- 11) The differential equation of all circles with centre at the orgin is ____
- (a) xdy + ydx = 0
- (b) xdy ydx = 0 (c) xdxy + ydy = 0 (d) xdx ydy = 0
- 12) The differential equation of the family of parabolas $y^2 = 4ax$ is _
- (a) $2y=x\left(rac{dy}{dx}
 ight)$ (b) $y=2x\left(rac{dy}{dx}
 ight)$ (c) $y=2x^2\left(rac{dy}{dx}
 ight)$ (d) $y^2=2x\left(rac{dy}{dx}
 ight)$
- $^{13)}$ The I.F of y log y $rac{dx}{dy}+x-log\ y=0$ is _____
- (a) $\log(\log y)$ (b) $\log y$ (c) $\frac{1}{\log y}$ (d) $\frac{1}{\log(\log y)}$
- 14) The population p of a certain bacteria decreases at a rate proportional to the population p. The differential equation corresponding to the above statement is
- (a) $rac{dp}{dt}=rac{k}{p}$ (b) $rac{dp}{dt}=kt$ (c) $rac{dp}{dt}=kp$ (d) $rac{dp}{dt}=-kp$
- 15) IfF(x) is the probability distribution function, then $F\left(-\infty\right)$ is ____
- (a) 1 (b) 2 (c) ∞ (d) 0
- 16) If F(x) is a distribution function of a random variable then the false statement is _
- (a) $F(\infty)=1$ (b) $F(-\infty)=-1$ (c) $F^{'}(x)=f(x)$ (d) $0<\mathrm{F}(x)<1$

17For a Bernouli distribution

(a)
$$\sigma = \sqrt{npq}$$
 (b) $mean = \mu$ (c) $\mu = p$ (d) $\sigma^2 = pq$

The identity element of
$$\left\{ \begin{pmatrix} x & x \\ x & x \end{pmatrix} \right\}$$
 $|x \in \mathbb{R}, x \neq 0\}$ under matrix multiplication is ______

$$\text{(a)} \ \left(\begin{array}{cc} 1 & 0 \\ 0 & 1 \end{array} \right) \qquad \text{(b)} \ \left(\begin{array}{cc} \frac{1}{4x} & \frac{1}{4x} \\ \frac{1}{4x} & \frac{1}{4x} \end{array} \right) \qquad \text{(c)} \ \left(\begin{array}{cc} \frac{1}{2} & \frac{1}{2} \\ \frac{1}{2} & \frac{1}{2} \end{array} \right) \qquad \text{(d)} \ \left(\begin{array}{cc} \frac{1}{2x} & \frac{1}{2x} \\ \frac{1}{2x} & \frac{1}{2x} \end{array} \right)$$

19) '+' is not a binary operation on

(a)
$$\sim$$
 (b) z (c) c (d) Q- $\{0\}$

20) $\ln Z$, we define a * b = a + b + 1. The identity element with respect to * is

answer the seven question 10th compulsory

- $^{(21)}$ Verify Rolle 's Theorem for f(x) = |x-1| , $O \leq x \leq 2$
- 22) Find the rate of change of the area of a circle with respect to its radius. How fast is the area changing with respect to the radius when the radius is 3 cm?
- 23) A circular template has a radius of 10 cm (± 0.02). Determine the possible error in calculating the area of the templates.

Evaluate
$$\int_0^1 \left(\frac{e^{5logx} - e^{4logx}}{e^{3logx} - e^{2logx}} \right)$$

$$^{25)} \text{ If } \int_0^\infty \frac{x^2 dx}{(x^2 + a^2)(x^2 + b^2)(x^2 + c^2)} = \frac{\pi}{2(a + b)(b + c)(c + a)} \text{ then find } \int_0^\infty \frac{dx}{(x^2 + 4)(x^2 + 9)}$$

Evaluate
$$\int_0^1 rac{|x|}{x} dx$$

27)

Determine the order and degree of
$$\frac{\left[1+\left(rac{dy}{dx}
ight)^2
ight]^{rac{3}{2}}}{rac{d^2y}{dx^2}}=k$$

- 28) Suppose X is a binomial variate $X \sim B(5, p)$ and P(X = 2) = P(X = 3), then find p.
- 29) In an algebraic structure the identity element (if exists) must be unique
- 30) Let * be a binary operation on set Q of rational numbers defind as $a*b=\frac{ab}{8}$. Write the identity for *, if any.

answer the seven question 10th compulsory

- 31) Verify Rolle's theorem for f(x)=ex sinx, $0 < x < \pi$
- 32) Find the rate of change of volume of a sphere with respect to its surface area when the radius is 2 cm. r radius, V Volume, S Surface area
- 33) Using differentials find the approximate value of $\tan 46^{\circ}$ if it is given that $1^{\circ} = 0.01745$ radians
- ³⁴⁾ Find the approximate value of $\sqrt[5]{31}$
- Evaluate $\int_3^6 \frac{\sqrt{x}}{\sqrt{9}-x+\sqrt{x}} dx$
- Evaluate $\int_0^1 \log(\frac{1}{x}-1) dx$
- 37) Find the D.E of all circles in the first quadrant which touch the co-ordinate axes
- Verify that y = A $\cos 2x$ B $\sin 2x$ is the general solution of the differential equation $rac{d^2y}{dx^2}+4y=0$
- 39) 20% of the bolts produced in a factory are found to be defective. Find the probability that in a sample of 10 bolts chosen at random, exactly 2 will be defective using binomial distribution.
- 40) State and prove Uniqueness of Inverse

answer the six question 11th compulsory

 $7x\ 5 = 35$

 $7x \ 2 = 14$

 $7 \times 3 = 21$

- 41) Gas is escaping from a spherical balloon at the rate of 900 cm³/sec. How fast is the surface area and radius of the balloon shrinking when the radius of the balloon is 30 cm?
- 42) Sketch the curve $y^2 = 2x^3$
- 43) Find the approximate value of $\sqrt[3]{1.02} + \sqrt{1.02}$

⁴⁴⁾ If
$$u$$
 = $\sec^{-1}\Big(rac{x^3-y^3}{x+y}\Big)$ show that $xrac{\partial u}{\partial x}+yrac{\partial u}{\partial x}=2\cot u$

- Find the volume of the solid generated by the revolution of the loop of the curve $x = t^2 y = t \frac{t^3}{2}$ about x-axis.
- 46) Find the area bounded by the curve $y = x^3$ and the line y = x.
- 47) A population grows at the rate of 2% per year. How long does it take for the population to double?
- 48) In a culture of bacteria the rate of increase is proportional to the number present. It is found that the number doubles in 4 hours, how many may be expected at the end of the 12 hours?
- The probability function of a random variable X is $f(x) = Ce^{-|x|}$, $-\infty < x < \infty$. Find the value of C and also find the mean and variance for the random variable
- 50) Using the equivalence property , show that $p \leftrightarrow q \equiv (p \land q)_{v} (\neg p \land \neg q)$
- 51) Let A = N imes N and let * be a binary operation on A defined by (a,b)*(c,d)=(a+c,b+d). Show that
- (i) (A, *) is associative,
- (ii) (A, *) is commutative,
- (iii) identity element of (A, *) does not exist

www.Padasalai.Net