

SAKTHI VIGNESWARA KALVI NILAYAM HR. SEC SCHOOL Pongupalayam(PO), Perumanallur, Tiruppur – 641666

HIGHER SECONDARY SECOND YEAR - MATHEMATICS

Chapter: I Applications of Matrices & Determinants
Theorems & Properties

Theorem: 1

If a square matrix has an inverse then it is unique Proof

Let A be a square matrix of order n, such that A⁻¹ exists.

Let B and C be two inverses of A

By definition

$$AB = BA = I_n$$

$$AC = CA = I_n$$
Let $B = BI_n = B(AC) = (BA)C = I_nC = C$

$$\Rightarrow B = C$$

Hence an inverse of a square matrix is unique.

Theorem: 2

Let A be a square matrix of order n. then A^{-1} exists if and only iff A is non - singular

Proof

Let A be a square matrix of order n

Suppose that A^{-1} exists

$$\Rightarrow AA^{-1} = A^{-1}A = I_n$$

$$|AA^{-1}| = |A||A^{-1}|$$

$$= |A^{-1}||A|$$

$$= |I_n|$$

$$= 1$$

$$\Rightarrow |A| \neq 0$$

Hence A is non singular.

Conversely,

Suppose that A is non singular

$$\Rightarrow |A| \neq 0$$
Let $A(adjA) = (adjA)A = |A|I_n$

$$\Rightarrow by |A| \Rightarrow A \frac{adjA}{|A|} = \frac{adjA}{|A|}A = I_n$$

$$A\left(\frac{1}{|A|}adjA\right) = \left(\frac{1}{|A|}adjA\right)A = I_n, \text{ Hence } A^{-1} = \frac{1}{|A|}adjA$$

Theorem: 3

If A is non singular then
$$|A^{-1}| = \frac{1}{|A|}$$

Proof

Let A be a non singular

$$\Rightarrow |A| \neq 0$$

Hence A⁻¹ exists

By definition

$$AA^{-1} = A^{-1}A = I_n$$

$$|AA^{-1}| = |A^{-1}A| = |I_n|$$

$$Let |AA^{-1}| = |I_n|$$

$$\Rightarrow |A||A^{-1}| = 1$$

Hence
$$|A^{-1}| = \frac{1}{|A|}$$

Theorem: 4

If A is non singular then $(A^T)^{-1} = (A^{-1})^T$

Proof

Let A be a non singular

$$\Rightarrow |A| \neq 0$$

Hence A⁻¹ exists

By definition

$$AA^{-1} = A^{-1}A = I_n$$

$$(AA^{-1})^T = (A^{-1}A)^T = (I_n)^T$$

$$(A^{-1})^T A^T = A^T (A^{-1})^T = I_n$$

$$\Rightarrow (A^T)^{-1} = (A^{-1})^T$$

Theorem: 5

If A is non singular then
$$(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$$

where λis a non zero scalar $\,$

Proof

Let A be a non singular

$$\Rightarrow |A| \neq 0$$

Hence A⁻¹ exists

By definition

$$AA^{-1} = A^{-1}A = I_n$$

Since λ is a non zero scalar

$$\Rightarrow (\lambda A) \left(\frac{1}{\lambda} A^{-1}\right) = \left(\frac{1}{\lambda} A^{-1}\right) (\lambda A) = I_n$$

Hence
$$(\lambda A)^{-1} = \frac{1}{\lambda} A^{-1}$$

Theorem: 6 (Left cancellation law)

Let A, B and C be square matrices of order n. If A is non singular and AB = ACthen B = C

Proof

Since A is non singular, A⁻¹ exists

$$\Rightarrow AA^{-1} = A^{-1}A = I_n$$
Let $AB = AC$

$$A^{-1}(AB) = A^{-1}(AC)$$

$$(A^{-1}A)B = (A^{-1}A)C$$

$$I_nB = I_nC$$
Hence $B = C$

Theorem: 7 (Right cancellation law)

Let A, B and C be square matrices of order n. If A is non singular and BA = CAthen B = C

Proof

Since A is non singular, A⁻¹ exists

$$\Rightarrow AA^{-1} = A^{-1}A = I_n$$
Let $BA = CA$

$$(BA)A^{-1} = (CA)A^{-1}$$

$$B(AA^{-1}) = C(AA^{-1})$$

$$BI_n = CI_n$$
Hence $B = C$

Hence B = C

Theorem: 8 (Reversal Law for Inverses)

If A and B are non - singular matrices of the same order then the product AB is also non - singular and $(AB)^{-1} = B^{-1}A^{-1}$

Proof

Assume that A and B are non – singular matrices of same order n

$$\Rightarrow |A| \neq 0, |B| \neq 0$$

$$\Rightarrow$$
 A⁻¹ and B⁻¹ exists

Let
$$|AB| = |A||B| \neq 0$$

$$\Rightarrow |AB| \neq 0$$

$$\therefore$$
 (AB)⁻¹ exists

$$\therefore (AB)^{-1} \text{ exists}$$
Let $(AB)(B^{-1}A^{-1}) = A(BB^{-1})A^{-1} = A(I_n)A^{-1}$

$$= AA^{-1}$$

$$= I_n \qquad (1)$$

$$= I_n \qquad ----- (1)$$

Let
$$(B^{-1}A^{-1})(AB) = B^{-1}(A^{-1}A)B = B^{-1}(I_n)B$$

= $B^{-1}B$

$$= I_n$$
 (2)

From (1) & (2)
$$\Rightarrow$$
 (AB)(B⁻¹A⁻¹) = (B⁻¹A⁻¹)(AB) = I_n

$$\therefore (AB)^{-1} = B^{-1}A^{-1}$$

Theorem: 9 (Law of Double Inverse)

If A is non – singular, then A^{-1} is also non – singular and $(A^{-1})^{-1} = A$

Proof

Assume that A is non - singular

$$\Rightarrow |A| \neq 0$$

Let
$$\left| A^{-1} \right| = \frac{1}{\left| A \right|} \neq 0$$

$$\Rightarrow$$
 A⁻¹ is also non – singular

Let
$$AA^{-1} = A^{-1}A = I_n$$

$$AA^{-1} = I \Longrightarrow (AA^{-1})^{-1} = I$$

$$\Rightarrow$$
 $(A^{-1})^{-1}A^{-1} = I$

Pre multiply by A on both sides

$$\Rightarrow (A^{-1})^{-1}A^{-1}A = IA$$

$$\therefore \left(A^{-1}\right)^{-1} = A$$

If A is a non – singular square matrix of order n, then $(adjA)^{-1} = adj(A^{-1}) = \frac{1}{|A|}A$

Proof

Since A is a non – singular square matrix

$$\Rightarrow |A| \neq 0$$

Let
$$A^{-1} = \frac{1}{|A|} adjA$$

$$\Rightarrow$$
 adjA = $|A|A^{-1}$

Replacing A by A⁻¹ we get

$$adj(A^{-1}) = |A^{-1}|(A^{-1})^{-1}$$

$$=\frac{1}{|A|}A$$
 ----- (2)

From (1) and (2)

$$\Rightarrow$$
 $(adjA)^{-1} = adj(A^{-1}) = \frac{1}{|A|}A$

Theorem: 11

If A is a non – singular square matrix of order n, then $|adjA| = |A|^{n-1}$

Since A is non – singular square matrix of order n

Let
$$A(adjA) = (adjA)A = |A|I_n$$

 $|A(adjA)| = |(adjA)A| = |(|A|I_n)|$
 $\Rightarrow |A||adjA| = |adjA||A| = |A|^n$
 $\Rightarrow |A||adjA| = |A|^n$
 $\therefore |adjA| = |A|^{n-1}$

Theorem: 12

If A is a non – singular square matrix of order n, then $adj(adjA) = |A|^{n-2}A$

Proof

Let B be a non - singular matrix of order n

$$\Rightarrow$$
 B(adjB)=(adjB)(B)=|B|I_n

Put B = adjA

$$\Rightarrow$$
 (adjA)(adj(adjA)) = (adj(adjA))(adjA) = |adjA|I_n

$$\Rightarrow$$
 $(adjA)(adj(adjA)) = |adjA|I_n$

Since
$$|adjA| = |A|^{n-1}$$

$$\Rightarrow$$
 (adjA)(adj(adjA)) = $|A|^{n-1}I_n$

Pre - multiplying both sides by A

$$\Rightarrow$$
 A [(adjA)(adj(adjA))] = A(|A|ⁿ⁻¹ I_n)

$$\Rightarrow$$
 [A(adjA)] adj(adjA) = A(|A|ⁿ⁻¹ I_n)

$$\Rightarrow$$
 $(|A|I_n)adj(adjA) = |A|^{n-1}A$

$$\therefore adj(adjA) = |A|^{n-2}A$$

Theorem: 13

If A is a non – singular square matrix of order n, then $adj(\lambda A) = \lambda^{n-1} adj(A)$, λ is a non – zero scalar

Proof

Let A be a non - singular square matrix of order n

$$adj(A) = |A|A^{-1}$$

Replacing A by λA

$$\operatorname{adj}(\lambda A) = |\lambda A| (\lambda A)^{-1}$$

$$= \lambda^{n} |A| \frac{1}{\lambda} A^{-1}$$

$$= \lambda^{n-1} |A| A^{-1}$$

$$= \lambda^{n-1} \operatorname{adj}(A)$$

Theorem: 14

If A is a non – singular square matrix of order n, then $|\operatorname{adj}(\operatorname{adj} A)| = |A|^{(n-1)^2}$

Proof

Let A be a non – singular square matrix of order n

Let
$$adj(adjA) = |A|^{n-2}A$$

$$\begin{vmatrix} adj(adjA) \end{vmatrix} = \begin{vmatrix} A \end{vmatrix}^{n-2} A \begin{vmatrix} \\ A \end{vmatrix}$$
$$= (\begin{vmatrix} A \end{vmatrix}^{n-2})^n |A|$$
$$= |A|^{n^2 - 2n + 1}$$
$$= |A|^{(n-1)^2}$$

Theorem: 15

If A is a non – singular square matrix of order n then $(adjA)^T = adj(A^T)$ Proof

Let A be a non – singular square matrix of order n

Let
$$A^{-1} = \frac{1}{|A|} adjA$$

Replacing A by A^T

$$(A^{T})^{-1} = \frac{1}{|A^{T}|} adj(A^{T})$$

$$\Rightarrow adj(A^{T}) = |A^{T}|(A^{T})^{-1}$$

$$= |A^{T}|(A^{-1})^{T}$$

$$= (|A|A^{-1})^{T}$$

$$= (|A|\frac{1}{|A|} adjA)^{T}$$

$$= (adjA)^{T}$$

Theorem: 16

If A and B are any two non – singular square matrices of order n then adj(AB) = (adjB)(adjA)

Proof

Let A and B are any two non – singular square matrices of order n Let $adj(A) = |A|A^{-1}$

Replacing A by AB

$$adj(AB) = |AB|(AB)^{-1}$$

$$= (|A||B|)(B^{-1}A^{-1})$$

$$= |A|(|B|B^{-1})A^{-1}$$

$$= (|B|B^{-1})(|A|A^{-1})$$

$$= (adjB)(adjA)$$
∴ $adj(AB) = (adjB)(adjA)$