

ST. ANNE'S ACADEMY

(MATHS & PHYSICS TUITION CENTRE)

I FLOOR, JAFRO DENTAL CLINIC, HOLY CROSS COLLEGE ROAD, PUNNAI NAGAR, NAGERCOIL - 629004

Unit Test (Chapter 1)
CLASS – XII - MATHEMATICS

Time Allowed : 2 Hrs Marks : 60

I. Answer ALL questions.

6x2 = 12

1) Find the inverse (if it exists) of the following:

$$\begin{bmatrix} -2 & 4 \\ 1 & -3 \end{bmatrix}$$

- 2) Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing it to a row-echelon form.
- 3) State Rouché Capelli theorem.
- 4) If A is a non-singular matrix of odd order, prove that |adj A| is positive.

5) If
$$adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$$
, find A^{-1} .

6) If $A^{T}A^{-1}$ is symmetric, then show that, $A^{2} = (A^{T})^{2}$

II. Answer ALL questions.

6x3 = 18

7) Verify the property
$$(A^T)^{-1} = (A^{-1})^T$$
 with $A = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$.

- 8) Find the inverse of the non-singular matrix $A = \begin{bmatrix} 0 & 5 \\ -1 & 6 \end{bmatrix}$, by Gauss-Jordan method.
- 9) Four men and 4 women can finish a piece of work jointly in 3 days while 2 men and 5 women can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.
- 10) Solve, by Cramer's rule, the system of equations $x_1 x_2 = 3,2x_1 + 3x_2 + 4x_3 = 17, x_2 + 2x_3 = 7.$
- 11) Investigate for what values of λ and μ the system of linear equations x + 2y + z = 7, $x + y + \lambda z = \mu$, x + 3y 5z = 5 has (i) no solution (ii) a unique solution (iii) an infinite number of solutions.

-Please Turn Over-

12) If
$$A = \begin{bmatrix} 1 & \tan\frac{\theta}{2} \\ -\tan\frac{\theta}{2} & 1 \end{bmatrix}$$
 and $AB = I_2$, then, show that $B = \left(\cos^2\frac{\theta}{2}\right)A^T$

III. Answer ALL questions.

6x5 = 30

- 13) If $A = \frac{1}{7} \begin{bmatrix} 6 & -3 & a \\ b & -2 & 6 \\ 2 & c & 3 \end{bmatrix}$ is orthogonal, find a, b and c, and hence A^{-1} .
- 14) If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, find the products AB and BA and hence solve the system of equations x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1.
- 15) The upward speed v(t) of a rocket at time t is approximated by $v(t) = at^2 + bt + c$, $0 \le t \le 100$ where a,b, and c are constants. It has been found that the speed at times t=3, t=6, and t=9 second are, 64, 133, and 208 miles per second respectively. Find the speed at time t=15 seconds. (Use Gaussian elimination method.)
- 16) Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1 have (i) no solution (ii) unique solution (iii) infinitely many solution
- 17) By using Gaussian elimination method, balance the chemical reaction equation: $C_5H_8 + O_2 \rightarrow CO_2 + H_2O$.
- 18) If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and $p \neq a, q \neq b, r \neq c$, prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.