INSTANT SUPPLEMENTARY EXAM - JUNE - 2023

PART - III

Instructions: (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.
Note: This question paper contains four parts.

Part - I

Note: (i) Answer all the questions. $14 \times 1=14$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. If there are 1024 relations from a set $\mathrm{A}=\{1,2,3,4,5\}$ to a set B , then the number of elements in B is :
(a) 3
(b) 2
(c) 4
(d) 8
2. $\quad 7^{4 k} \equiv$ \qquad $(\bmod 100)$
(a) 1
(b) 2
(c) 3
(d) 4
3. The next term of the sequence $\frac{1}{2} \cdot \frac{1}{6}, \frac{1}{10}, \frac{1}{14} \ldots$ is :
(a) $\frac{1}{15}$
(b) $\frac{1}{16}$
(c) $\frac{1}{18}$
(d) $\frac{1}{20}$
4. $y^{2}+\frac{1}{y^{2}}$ is not equal to :
(a) $\frac{y^{4}+1}{y^{2}}$
(b) $\left(y+\frac{1}{y}\right)$
(c) $\left(y-\frac{1}{y}\right)^{2}+2$
(d) $\left(y+\frac{1}{y}\right)^{2}-2$
5. Graph of a linear equation is a \qquad -
(a) straight line
(b) circle
(c) parabola
(d) hyperbola
6. If in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC}, \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is :
(a) 1.4 cm
(b) 1.8 cm
(c) 1.2 cm
(d) 1.05 cm
7. How many tangents can be drawn to the circle from an exterior point?
(a) one
(b) two
(c) infinite
(d) zero
8. The straight line given by the equation $x=11$ is
(a) parallel to X axis
(b) parallel to Y axis
(c) passing through the origin
(d) passing through the point $(0,11)$
9. If the slope of the line PQ is $\frac{1}{\sqrt{3}}$, then the slope of the perpendicular bisector of PQ is
(a) $\sqrt{3}$
(b) $-\sqrt{3}$
(c) $\frac{1}{\sqrt{3}}$
(d) 0
10. $\tan \theta \operatorname{cosec}^{2} \theta-\tan \theta$ is equal to :
(a) $\sec \theta$
(b) $\cot ^{2} \theta$
(c) $\sin \theta$
(d) $\cot \theta$
11. The total surface area of a hemisphere is how much times the square of its radius?
(a) π
(b) 4π
(c) 3π
(d) 2π
12. The curved surface area of a right circular cone of height 15 cm and base diameter 16 cm is
(a) $60 \pi \mathrm{~cm}^{2}$
(b) $68 \pi \mathrm{~cm}^{2}$
(c) $120 \pi \mathrm{~cm}^{2}$
(d) $136 \pi \mathrm{~cm}^{2}$
13. The range of the data $8,8,8,8,8 \ldots 8$ is :
(a) 0
(b) 1
(c) 8
(d) 3
14. The probability a red marble selected at random from a jar containing p red, q blue and r green marbles is
(a) $\frac{q}{p+q+r}$
(b) $\frac{p}{p+q+r}$
(c) $\frac{p+q}{p+q+r}$
(d) $\frac{p+r}{p+q+r}$

Part - II

Note: Answer any 10 questions. Question No. 28 is compulsory.
$10 \times 2=20$
15. A relation \mathbb{R} is given by the set $\{(x, y) / y=x+3$, $x \in\{0,1,2,3,4,5\}\}$. Determine its domain and range.
16. Check whether $f \circ g=g \circ f$ if $f(x)=x-6, g(x)=x^{2}$.
17. Find the least number that is divisible by the first ten natural numbers.
18. Find the $8^{\text {th }}$ term of the G.P. $9,3,1, \ldots$
19. Determine the nature of the roots for the quadratic equations $15 x^{2}+11 x+2=0$.

20．If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right]$ then verify $\left(A^{T}\right)^{T}=A$ ．
21．Check whether $A D$ is bisector of $\angle A$ of $\triangle A B C$ in which $\mathrm{AB}=4 \mathrm{~cm}, \mathrm{AC}=6 \mathrm{~cm}, \mathrm{BD}=1.6 \mathrm{~cm}$ and $C D=2.4 \mathrm{~cm}$ ．
22．Find the slope of the line joining the points $(5, \sqrt{5})$ with the origin．
23．Prove that $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta \sin ^{2} \theta$ ．
24．The curved surface area of a right circular cylinder of height 14 cm is $88 \mathrm{~cm}^{2}$ ．Find the diameter of the cylinder．
25．The volume of a solid right circular cone is $11088 \mathrm{~cm}^{3}$ ． If its height is 24 cm ，then find the radius of the cone．
26．Find the standard deviation of first 21 natural numbers．
27．A die is rolled and a coin is tossed simultaneously． Find the probability that the die shows an odd number and the coin shows a head．
28．Find the equation of a straight line which is parallel to the line $3 x-7 y=12$ and passing through the point $(6,4)$ ．

Part－III

Note：Answer any 10 questions．Question No． 42 is compulsory． $10 \times 5=50$

29．Let $\mathrm{A}=\{x \in \mathbb{W} \mid x<2\}, \mathrm{B}=\{x \in \mathbb{N} \mid 1<x \leq 4\}$ and $\mathrm{C}=\{3,5\}$ ．Verify that $\mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})$
30．Find the sum to n terms of the series $3+33+333+$ ．．．．to n terms
31．Rekha has 15 square colour papers of sizes 10 cm ， $11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$ ．How much area can be decorated with these colour papers？
32．Solve the system of linear equations given in three variables $3 x-2 y+z=2,2 x+3 y-z=5, x+y+z=6$ ．
33．Find the square root of the following polynomial $121 x^{4}-198 x^{3}-183 x^{2}+216 x+144$

34．If $\mathrm{A}=\left[\begin{array}{cc}3 & 1 \\ -1 & 2\end{array}\right]$ show that $\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2}=0$ ．
35．State and prove Pythagoras Theorem．
36．Find the area of the quadrilateral formed by the points $(-9,-2),(-8,-4),(2,2)$ and $(1,-3)$ ．
37．Find the equation of the perpendicular bisector of the line joining the points $\mathrm{A}(-4,2)$ and $\mathrm{B}(6,-4)$ ．

38．Prove that $\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}=2 \sec \theta$

1

39．A metallic sphere of radius 16 cm is melted and recast into small spheres each of radius 2 cm ．How many small spheres can be obtained？
40．Find the co－efficient of variation of $24,26,33,37$ ， 29， 31.
41．Two dice are rolled once．Find the probability of getting an even number on the first die or a total of face sum 8 ．
42．Two ships are sailing in the sea on either sides of a lighthouse．The angle of elevation of the top of the lighthouse as observed from the ships are 30° and 45° respectively．If the lighthouse is 200 m high，find the distance between the two ships．$(\sqrt{3}=1.732)$

Part－IV

Note ：Answer all the questions．$\quad \mathbf{2 \times 8}=\mathbf{1 6}$
43．（a）Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle $\mathrm{PQR}\left(\right.$ Scale factor $\left.\frac{3}{5}<1\right)$ （OR）
（b）Draw the two tangents from a point which is 10 cm away from the centre of a circle of radius 5 cm ．Also，measure the lengths of the tangents．
44．（a）Graph the following linear function $y=\frac{1}{2} x$ ． Identify the constant of variation and verify it with the graph．Also（i）find \boldsymbol{y} when $x=9$ （ii）find x when $y=7.5$ ．
（OR）
（b）Draw the graph of $y=x^{2}-4$ and hence solve $x^{2}-x-12=0$

米米米

ANSWERS

Part－I
1．（b） 2
2．（a） 1
3．（c）$\frac{1}{18}$
4．（b）$\left(y+\frac{1}{y}\right)^{2}$
5．（a）straight line
6．（a） 1.4 cm
7．（b）two
8．（b）parallel to Y axis
9．（b）$-\sqrt{3}$

Sura's ${ }^{n \mid+1}$ X Std - Mathematics ${ }^{m i m}$ Instant Supplementary Exam * June - 2023 * Question Paper with Answers
10. (d) $\cot \theta$
11. (c) 3π
12. (d) $136 \pi \mathrm{~cm}^{2}$
13. (a) 0
14. (b) $\frac{p}{p+q+r}$

Part - II

15. Given $\mathbb{R}=\{(x, y) / y=x+3\}$ and $x \in\{0,1,2,3,4,5\}$

When $x=0, \quad y=0+3=3 \quad[\because y=x+3]$
When $x=1, \quad y=1+3=4$
When $x=2, \quad y=2+3=5$
When $x=3, \quad y=3+3=6$
When $x=4, \quad y=4+3=7$
When $x=5, \quad y=5+3=8$
$\therefore \mathbb{R}=\{(0,3),(1,4),(2,5),(3,6),(4,7),(5,8)\}$
\therefore Domain of $\mathbb{R}=\{0,1,2,3,4,5\}$
[All the first element in \mathbb{R}]
Range of $\mathbb{R}=\{3,4,5,6,7,8$
[All the second element in \mathbb{R}]
16. Given $f(x)=x-6, g(x)=x^{2}$

$$
f \circ g(x)=f(g(x))=f\left(x^{2}\right)
$$

$$
\begin{equation*}
=x^{2}-6 \tag{1}
\end{equation*}
$$

$\left[\operatorname{In} f(x)=x-6\right.$, Replace x by $\left.x^{2}\right]$
$g o f(x)=g(f(x))=g(x-6) \quad[\because f(x)=x-6]$

$$
=(x-6)^{2}
$$

$\left[\operatorname{In} g(x)=x^{2}\right.$, Replace x by $\left.x-6\right]$

$$
=x^{2}-12 x+36
$$

$$
\begin{equation*}
\left[\because(a-b)^{2}=a^{2}-2 a b+b^{2}\right] \tag{2}
\end{equation*}
$$

From (1) and (2), $\operatorname{fog}(x) \neq \operatorname{gof}(x)$
17. The least number that is divisible by the first ten natural numbers is 2520 .

Hint:

$1,2,3,4,5,6,7,8,9,10$
The least multiple of $2 \& 4$ is 8
The least multiple of 3 is 9
The least multiple of 7 is 7
The least multiple of 5 is 5
LCM of $8 \times 9 \times 7 \times 5=40 \times 63=2520$.
18. To find the $8^{\text {th }}$ term we have to use the $n^{\text {th }}$ term formula $t_{n}=a r^{n-1}$
First term $a=9$, Common ratio $r=\frac{t_{2}}{t_{1}}=\frac{3}{9}=\frac{1}{3}$
$t_{8}=9 \times\left(\frac{1}{3}\right)^{8-1}=9 \times\left(\frac{1}{3}\right)^{7}=\frac{1}{243}$
Therefore the $8^{\text {th }}$ term of the G.P. is $\frac{1}{243}$.
-19. $15 x^{2}+11 x+2=0$ comparing with
$a x^{2}+b x+c=0$. Here $a=15, b=11, c=2$.

$$
\begin{aligned}
\Delta & =b^{2}-4 a c \\
& =11^{2}-4 \times 15 \times 2 \\
& =121-120=1>0
\end{aligned}
$$

\therefore The roots are real and unequal.
20. If $A=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right], A^{\mathrm{T}}=\left[\begin{array}{ccc}5 & -\sqrt{17} & 8 \\ 2 & 0.7 & 3 \\ 2 & \frac{5}{2} & 1\end{array}\right]$
$\left(A^{T}\right)^{T}=\left[\begin{array}{ccc}5 & 2 & 2 \\ -\sqrt{17} & 0.7 & \frac{5}{2} \\ 8 & 3 & 1\end{array}\right]=A . \therefore$ verified
21. Given $A B=4 \mathrm{~cm}$,

$$
\begin{aligned}
& \mathrm{AC}=6 \mathrm{~cm} \\
& \mathrm{BD}=1.6 \mathrm{~cm} \\
& \mathrm{CD}=2.4 \mathrm{~cm}
\end{aligned}
$$

By ABT, check

$$
\begin{aligned}
& \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{1.6 \times 10}{2.4 \times 10}=\frac{16^{2}}{24_{3}}=\frac{2}{3} \\
& \frac{\mathrm{AB}}{\mathrm{AC}}=\frac{4^{2}}{\emptyset_{3}}=\frac{2}{3} \Rightarrow \frac{\mathrm{BD}}{\mathrm{DC}}=\frac{\mathrm{AB}}{\mathrm{AC}}
\end{aligned}
$$

$\therefore \mathrm{AD}$ is the bisector of $\triangle \mathrm{ABC}$.
22. If two points are given, slope $m=\frac{y_{2}-y_{1}}{x_{2}-x_{1}}$
$\left.\begin{array}{cc}(5, \sqrt{5}\end{array}\right), \begin{array}{ll}(0, & 0) \\ x_{1} & y_{1}\end{array}, \quad \therefore m=\frac{0-\sqrt{5}}{0-5}=\frac{\sqrt{5}}{5}=\frac{1}{\sqrt{5}}$
23. $\tan ^{2} \theta-\sin ^{2} \theta=\tan ^{2} \theta-\frac{\sin ^{2} \theta}{\cos ^{2} \theta} \cdot \cos ^{2} \theta$

$$
=\tan ^{2} \theta\left(1-\cos ^{2} \theta\right)=\tan ^{2} \theta \sin ^{2} \theta
$$

24. Given that, C.S.A. of the cylinder $=88 \mathrm{sq} . \mathrm{cm}$

$$
\begin{aligned}
2 \pi r h & =88 \\
2 \times \frac{22}{7} \times r \times 14 & =88(h=14 \mathrm{~cm}) \\
2 r & =\frac{88 \times 7}{22 \times 14}=2
\end{aligned}
$$

Therefore, diameter $=2 \mathrm{~cm}$.
25. Let r and h be the radius and height of the cone respectively.
Given that, volume of the cone $=11088 \mathrm{~cm}^{3}$

$$
\frac{1}{3} \pi r^{2} h=11088
$$

$$
\begin{aligned}
\frac{1}{3} \times \frac{22}{7} \times r^{2} \times 24 & =11088 \\
r^{2} & =441
\end{aligned}
$$

Therefore, radius of the cone $r=21 \mathrm{~cm}$
26. Standard deviation of first n natural number is

$$
\sigma=\sqrt{\frac{n^{2}-1}{12}}
$$

\therefore Standard deviation of first 21 natural numbers
$\sigma=\sqrt{\frac{21^{2}-1}{12}}=\sqrt{\frac{441-1}{12}}=\sqrt{\frac{440}{12}}=\sqrt{36.67}$
$\sigma=6.06$
\therefore Standard deviation of first 21 natural numbers $\sigma=6.06$.
27. Sample space
$S=\{1 \mathrm{H}, 1 \mathrm{~T}, 2 \mathrm{H}, 2 \mathrm{~T}, 3 \mathrm{H}, 3 \mathrm{~T}, 4 \mathrm{H}, 4 \mathrm{~T}$, 5H,5T,6H,6T \};
$n(\mathrm{~S})=12$
Let A be the event of getting an odd number and a head.

$\mathrm{A}=\{1 \mathrm{H}, 3 \mathrm{H}, 5 \mathrm{H}\} ; n(\mathrm{~A})=3 ; \mathrm{P}(\mathrm{A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{3}{12}=\frac{1}{4}$
28. Equation of the straight line, parallel to $3 x-7 y-12=0$ is $3 x-7 y+k=0$
Since it passes through the point $(6,4)$

$$
\begin{aligned}
3(6)-7(4)+k & =0 \\
k & =28-18=10
\end{aligned}
$$

Therefore, equation of the required straight line is $3 x-7 y+10=0$.

Part - III

29.

$$
\begin{align*}
& \mathrm{A} \times(\mathrm{B} \cup \mathrm{C})=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C}) \\
& \mathrm{A}=\{x \in \mathbb{W} \mid x<2\}=\{0,1\} \\
& {[\text { Whole numbers less than } 2] } \\
& \mathrm{B}=\{x \in \mathbb{N} \mid 1<x \leq 4\}=\{2,3,4\} \\
& {[\text { Natural numbers from } 2 \text { to } 4] } \\
& \mathrm{C}=\{3,5\} \\
& \mathrm{LHS}= \mathrm{A} \times(\mathrm{B} \cup \mathrm{C}) \\
& \mathrm{B} \cup \mathrm{C}=\{2,3,4\} \cup\{3,5\}=\{2,3,4,5\} \\
&\mathrm{B} \cup \mathrm{C})=\{(0,2),(0,3),(0,4),(0,5), \\
&(1,2),(1,3),(1,4),(1,5)\} \tag{1}\\
& \mathrm{A} \times(1) \\
& \mathrm{RHS}=(\mathrm{A} \times \mathrm{B}) \cup(\mathrm{A} \times \mathrm{C}) \\
&(\mathrm{A} \times \mathrm{B})=\{(0,2),(0,3),(0,4),(1,2), \\
&(\mathrm{A} \times \mathrm{C})=\{(0,3),(1,4)\} \\
&(\mathrm{A} \times \mathrm{B}),(1,3),(1,5)\} \\
&\mathrm{B}) \cup(\mathrm{A} \times \mathrm{C})=\{(0,2),(0,3),(0,4),(0,5), \tag{2}\\
&(1,2),(1,3),(1,4),(1,5)\}
\end{align*}
$$

$(1)=(2)$, LHS $=$ RHS
Hence it is proved.
30. Given series $3+33+333+\ldots+n$ terms.

Let $\mathrm{S}_{n}=3+33+333+\ldots+n$ terms.
$=3(1+11+111+\ldots+n$ terms $)$ [Taking 3 as common]
$=\frac{3}{9}(9+99+999+\ldots$ to n terms $)$
[Multiplying and dividing by 9 throughout]
$=\frac{1}{3}[(10-1)+(100-1)+(1000-1)+\ldots . n$ terms $]$
$[\because 9=10-1,99=100-1,999=1000-1$ and so on $]$
$=\frac{1}{3}\left[\left(10+10^{2}+10^{3}+\ldots n\right.\right.$ terms $\left.)-n\right] \quad \begin{aligned} & \text { Hint: } \\ & \text { Here } a=10, r=10 \\ & \therefore S_{n}=a \frac{\left(r^{n}-1\right)}{n}\end{aligned}$
[Separating all the first term and second
term from the brackets]
$=\frac{1}{3}\left(\frac{10\left(10^{n}-1\right)}{10-1}-n\right)=\frac{1}{3} \times\left[\frac{10\left(10^{n}-1\right)}{9}-n\right]$
$3+33+333+\ldots \ldots$ to n terms $=\frac{10\left(10^{n}-1\right)}{27}-\frac{n}{3}$
31. Area can be decorated $=10^{2}+11^{2}+12^{2}+\ldots+24^{2}$
$=\left(1^{2}+2^{2}+\ldots+24^{2}\right)-\left(1^{2}+2^{2}+\ldots+9^{2}\right)$
$=\left(\frac{n(n+1)(2 n+1)}{6}\right)_{n=24}-\left(\frac{n(n+1)(2 n+1)}{6}\right)_{n=9}$
$=\frac{24^{4} \times 25 \times 49}{\not \emptyset}-\frac{\phi^{3} \times 1 \sigma^{5} \times 19}{6_{\neq}}$
$=4900-285=4615$
\therefore She can decorate $4615 \mathrm{~cm}^{2}$ area with these colour papers.
32.

$$
\begin{array}{r}
3 x-2 y+z=2 \\
2 x+3 y-z=5 \\
x+y+z=6 \tag{3}
\end{array}
$$

Adding (1) and (2),

$$
\begin{array}{r}
3 x-2 y+z=2 \\
2 x+3 y-z=5 \tag{+}\\
\hline
\end{array}
$$

Adding (2) and (3),

$$
\begin{array}{rll}
2 x+3 y-z & =5 & \\
x+y+z & =6 & (+) \\
\hline 3 x+4 y & =11 & \\
4 \times(4)-(5) & & \\
20 x+4 y & =28 \\
3 x+4 y & =11 \\
\hline 17 x & =17 & \tag{5}\\
\hline-)
\end{array}
$$

Substituting $x=1$ in (4), $5+y=7 \Rightarrow y=2$
Substituting $x=1, y=2$ in (3), $1+2+\mathrm{z}=6$ we get, $z=3$
Therefore, $x=1, y=2, z=3$

Sura's ${ }^{\underline{11} \mid}$ X Std - Mathematics ${ }^{m i n}$ Instant Supplementary Exam * June - 2023 * Question Paper with Answers
33. $121 x^{4}-198 x^{3}-183 x^{2}+216 x+144$

$\therefore \sqrt{121 x^{4}-198 x^{3}-183 x^{2}+216 x+144}$
$=\mid 11 x^{2}-9 x-12$
34.

$$
\begin{aligned}
\text { L.H.S } & =\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2} \\
\mathrm{~A}^{2} & =\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right] \\
& =\left[\begin{array}{cc}
(9-1) & (3+2) \\
(-3-2) & (-1+4)
\end{array}\right] \\
& =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right] \\
5 \mathrm{~A} & =5\left[\begin{array}{cc}
3 & 1 \\
-1 & 2
\end{array}\right]=\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right] \\
7 \mathrm{I}_{2} & =\left[\begin{array}{cc}
7 & 0 \\
0 & 7
\end{array}\right] \\
\mathrm{A}^{2}-5 \mathrm{~A}+7 \mathrm{I}_{2} & =\left[\begin{array}{cc}
8 & 5 \\
-5 & 3
\end{array}\right]-\left[\begin{array}{cc}
15 & 5 \\
-5 & 10
\end{array}\right]+\left[\begin{array}{ll}
7 & 0 \\
0 & 7
\end{array}\right] \\
& =\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]=0
\end{aligned}
$$

Hence verified.
35. Pythagoras Theorem :

Given : $\triangle \mathrm{ABC}, \angle \mathrm{A}=90^{\circ}$
To prove : $\mathrm{AB}^{2}+\mathrm{AC}^{2}=\mathrm{BC}^{2}$
Construction : Draw $A D \perp B C$

S.	Statement	Reason
1.	Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ABD}$ $\angle \mathrm{B}$ is common $\angle \mathrm{BAC}=\angle \mathrm{BAC} 90^{\circ}$ Therefore, $\Delta \mathrm{ABC} \sim \triangle \mathrm{ABD}$ Therefore, $\Delta \mathrm{ABC} \sim \triangle \mathrm{ABD}$ $\begin{align*} & \frac{\mathrm{AB}}{\mathrm{BD}}=\frac{\mathrm{BC}}{\mathrm{AB}} \\ & \mathrm{AB}^{2}=\mathrm{BC} \times \mathrm{BD} \tag{1} \end{align*}$	Given $=\angle \mathrm{BAC}=90^{\circ}$ and by construction $\angle \mathrm{BDA}=90^{\circ}$ By AA similarity

2.	Compare $\triangle \mathrm{ABC}$ and $\triangle \mathrm{ADC}$ $\angle \mathrm{C}$ is common $\angle \mathrm{BAC}=\angle \mathrm{ADC} \mathrm{90}^{\circ}$	Given $=\angle \mathrm{BAC}=90^{\circ}$ and by construction Therefore,
$\triangle \mathrm{CDA}=90^{\circ}$		
$\triangle \mathrm{ABC} \sim \triangle \mathrm{ABD}$		
Therefore, $\triangle \mathrm{ABC} \sim$	By AA similarity	
$\triangle \mathrm{ADC}$		
$\frac{\mathrm{BC}}{\mathrm{AC}}=\frac{\mathrm{AC}}{\mathrm{DC}}$		
$\mathrm{AC}^{2}=\mathrm{BC} \times \mathrm{DC} \ldots(2)$		

Adding (1) and (2) we get

$$
\begin{aligned}
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =\mathrm{BC} \times \mathrm{BD}+\mathrm{BC} \times \mathrm{DC} \\
& =\mathrm{BC}(\mathrm{BD}+\mathrm{DC})=\mathrm{BC} \times \mathrm{BC} \\
\mathrm{AB}^{2}+\mathrm{AC}^{2} & =\mathrm{BC}^{2}
\end{aligned}
$$

Hence the theorem is proved.
36.

$$
\left.\begin{array}{rl}
x_{1} & y_{1}, \\
\mathrm{~A}(-9, & -2)^{\prime}
\end{array} \begin{array}{rl}
x_{2} & y_{2} \\
\mathrm{~B}(-8, & -4)^{\prime}
\end{array}, \begin{array}{rrrr}
x_{3} & y_{3} & x_{4} & y_{4} \\
\mathrm{C}(1, & -3
\end{array}\right){ }^{\prime} \mathrm{D}(2, \quad 2)
$$

Area of the quadrilateral

$$
\begin{aligned}
& =\frac{1}{2}\left|\begin{array}{l}
x_{1} \\
=
\end{array}\right|_{-2}^{x_{1}} x_{2} \\
& =\frac{1}{2}[(36+24+2-4)-(16-4-6-18)] \\
& =\frac{1}{2}[58-(-12)]=\frac{1}{2}(70)=35 \text { sq. units }
\end{aligned}
$$

37. Mid Point AB is DC
$\Rightarrow \mathrm{D}$ is $\left(\frac{-4+6}{2}, \frac{2+(-4)}{2}\right)=\left(\frac{2}{2}, \frac{-2}{2}\right)=(1,-1)$

$$
\begin{aligned}
\text { Slope of } \mathrm{AB} & =\frac{-4-2}{6-(-4)}=\frac{-6}{10}=\frac{-3}{5} \\
\therefore \text { Slope of } \mathrm{CD} & =\frac{-1}{-3 / 5}=\frac{5}{3} \quad[\because \mathrm{CD} \perp \mathrm{AB}]
\end{aligned}
$$

\therefore Equation of CD is

$$
\begin{aligned}
& y-(-1)=\frac{5}{3}(x-1) \\
& 3(y+1)=5 x-5 \Rightarrow 3 y+3=5 x-5
\end{aligned}
$$

$5 x-3 y-8=0$ is the required equation of the line.
38. L.H.S $=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}}=\sqrt{\frac{1+\sin \theta}{1-\sin \theta}} \times \frac{\sqrt{1+\sin \theta}}{1+\sin \theta}$
[Rationalising the denominator]

$$
\begin{aligned}
=\sqrt{\frac{(1+\sin \theta)^{2}}{1-\sin ^{2} \theta}} & =\frac{1+\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}+\frac{\sin \theta}{\cos \theta} \\
& =\sec \theta+\tan \theta \\
\sqrt{\frac{1-\sin \theta}{1+\sin \theta}} & =\sqrt{\frac{1-\sin \theta}{1+\sin \theta}} \times \frac{\sqrt{1-\sin \theta}}{1-\sin \theta}
\end{aligned}
$$

[Rationalising the denominator]

$$
=\sqrt{\frac{(1-\sin \theta)^{2}}{1-\sin ^{2} \theta}}=\frac{1-\sin \theta}{\sqrt{1-\sin ^{2} \theta}}
$$

$$
=\frac{1-\sin \theta}{\cos \theta}=\frac{1}{\cos \theta}-\frac{\sin \theta}{\cos \theta}
$$

$$
\begin{equation*}
=\sec \theta-\tan \theta \tag{2}
\end{equation*}
$$

LHS $=(1)+(2) \Rightarrow \sqrt{\frac{1+\sin \theta}{1-\sin \theta}}+\sqrt{\frac{1-\sin \theta}{1+\sin \theta}}$
$=\sec \theta+\tan \theta+\sec \theta-\tan \theta=2 \sec \theta=$ R.H.S.
Hence proved
39. Let the number of small spheres obtained be n.

Let r be the radius of each small sphere and R be the radius of metallic sphere.
Here, $\mathrm{R}=16 \mathrm{~cm}, r=2 \mathrm{~cm}$
Now, $n \times($ Volume of a small sphere $)=$ Volume of big metallic sphere

$$
\begin{aligned}
n\left(\frac{4}{3} \pi r^{3}\right) & =\frac{4}{3} \pi r \mathrm{R}^{3} \\
n\left(\frac{4}{3} \pi \times 2^{3}\right) & =\frac{4}{3} \pi \times 16^{3} \\
8 n & =4096 \Rightarrow n=512
\end{aligned}
$$

Therefore, there will be 512 small spheres.
40.

x	$d=x-\bar{x}$	d^{2}
24	-6	36
26	-4	16
33	3	9
37	7	49
29	-1	1
31	1	1
180	$\Sigma d=0$	112

$$
\begin{aligned}
& \bar{x}=\frac{\Sigma x}{n}=\frac{180}{6}=30 \\
& \sigma=\sqrt{\frac{\Sigma d^{2}}{n}}=\sqrt{\frac{112}{6}}=\sqrt{18.66}=4.32
\end{aligned}
$$

Co-efficient of variation C.V $=\frac{\sigma}{x} \times 100$

$$
C . V=\frac{4.32}{30} \times 100 \%=14.4 \%
$$

41. Two dice rolled once.

$$
S=\left\{\begin{array}{lll}
(1,1), & (1,2), & (1,3), \\
(2,1), & (2,2), & (2,3), \\
(2,4), 5), & (1,6) \\
(3,1), & (3,2), & (3,3), \\
(3,1), & (4,2), & (3,5), \\
(4,3), & (4,4),(4,5), & (4,6) \\
(5,1), & (5,2), & (5,3), \\
(5,4), & (5,5), & (5,6) \\
(6,1), & (6,2), & (6,3), \\
(6,4), & (6,5), & (6,6)
\end{array}\right\}
$$

Happening of an even number in the first die is A.

$$
\begin{gathered}
\mathrm{A}=\left\{\begin{array}{l}
(2,1),(2,2),(2,3),(2,4),(2,5), \\
(4,1),(4,6),(4,3), \\
(4,4), \\
(6,1),(6,5), \\
(4,6),(6,3), \\
(6,4),(6,5), \\
(6,6)
\end{array}\right\} \\
n(\mathrm{~A})=18 \\
\mathrm{P}(\mathrm{~A})=\frac{n(\mathrm{~A})}{n(\mathrm{~S})}=\frac{18}{36}
\end{gathered}
$$

Happening of a total of face sum is 8 is B.

$$
\begin{aligned}
\mathrm{B} & =\{(2,6),(3,5),(4,4),(5,3),(6,2)\} \\
n(\mathrm{~B}) & =5 \\
\mathrm{P}(\mathrm{~B}) & =\frac{n(\mathrm{~B})}{n(\mathrm{~S})}=\frac{5}{36} \\
(\mathrm{~A} \cap \mathrm{~B}) & =\{(2,6),(4,4),(6,2)\} \\
n(\mathrm{~A} \cap \mathrm{~B}) & =3 \Rightarrow \mathrm{P}(\mathrm{~A} \cap \mathrm{~B})=\frac{n(\mathrm{~A} \cap \mathrm{~B})}{n(\mathrm{~S})}=\frac{3}{36}
\end{aligned}
$$

Sura's X Std - Mathematics Instant Supplementary Exam * June - 2023 * Question Paper with Answers

$$
\begin{aligned}
\therefore \mathrm{P}(\mathrm{~A} \cup \mathrm{~B}) & =\mathrm{P}(\mathrm{~A})+\mathrm{P}(\mathrm{~B})-\mathrm{P}(\mathrm{~A} \cap \mathrm{~B}) \\
& =\frac{18}{36}+\frac{5}{36}-\frac{3}{36}=\frac{18+5-3}{36} \\
& =\frac{26^{5}}{36_{9}}=\frac{5}{9}
\end{aligned}
$$

42. Let AB be the lighthouse. Let C and D be the positions of the two ships.

Then, $\mathrm{AB}=200 \mathrm{~m} . \angle \mathrm{ACB}=30^{\circ}, \angle \mathrm{ADB}=45^{\circ}$
In the right angled $\triangle \mathrm{BAC}, \tan 30^{\circ}=\frac{\mathrm{AB}}{\mathrm{AC}}$

$$
\begin{equation*}
\frac{1}{\sqrt{3}}=\frac{200}{\mathrm{AC}} \Rightarrow \mathrm{AC}=200 \sqrt{3} \tag{1}
\end{equation*}
$$

In the right angled $\triangle \mathrm{BAD}, \tan 45^{\circ}=\frac{\mathrm{AB}}{\mathrm{AD}}$

$$
\begin{equation*}
1=\frac{200}{\mathrm{AD}} \Rightarrow \mathrm{AD}=200 \tag{2}
\end{equation*}
$$

Now, $\mathrm{CD}=\mathrm{AC}+\mathrm{AD}=200 \sqrt{3}+200[$ by (1) and (2) $]$

$$
\mathrm{CD}=200(\sqrt{3}+1)=200 \times 2.732=546.4
$$

Distance between two ships is 546.4 m .

Part - IV

43. (a) Given a triangle $P Q R$ we are required to construct another triangle whose sides are $\frac{3}{5}$ of the corresponding sides of the triangle PQR .

Steps of construction

1. Construct a $\triangle \mathrm{PQR}$ with any measurement.
2. Draw a ray QX making an acute angle with QR on the side opposite to vertex P.
3. Locate 5 (the greater of 3 and 5 in $\frac{3}{5}$) points. $Q_{1}, Q_{2}, Q_{3}, Q_{4}$ and Q_{5} on $Q X$ so that $Q_{1}=Q_{1} Q_{2}$ $=Q_{2} Q_{3}=Q_{3} Q_{4}=Q_{3} Q_{4}=Q_{4} Q_{5}$
4. Join $Q_{5} R$ and draw a line through Q_{3} (the third point, 3 being smaller of 3 and 5 in $\frac{3}{5}$) parallel to $\mathrm{Q}_{5} \mathrm{R}$ to intersect QR at R^{\prime}.
5. Draw line through R^{\prime} parallel to the line $R P$ to intersect QP at P^{\prime}.
Then, $\Delta \mathrm{P}^{\prime} \mathrm{QR}^{\prime}$ is the required triangle each of whose sides is three - fifths of the corresponding sides of $\triangle \mathrm{PQR}$.
(OR)
(b) Radius $=5 \mathrm{~cm}$

The distance between the point from the centre is 10 cm .

Rough diagram

Construction:

Step 1 : With O as centre, draw a circle of radius 5 cm .
Step 2: Draw a line $\mathrm{OP}=10 \mathrm{~cm}$.
Step 3 : Draw a perpendicular bisector of OP which cuts OP at M.
Step 4 : With M as centre and MO as radius, draw a circle which cuts previous circle at A and B .
Step 5 : Join AP and BP. AP and BP are the required tangents. Thus length of the tangents are PA and $\mathrm{PB}=8.7 \mathrm{~cm}$.
Verification: In the right triangle $\angle \mathrm{POA}$;

$$
\begin{aligned}
\mathrm{PA} & =\sqrt{\mathrm{OP}^{2}-\mathrm{OA}^{2}} \\
\mathrm{PA} & =\sqrt{10^{2}-5^{2}} \\
& =\sqrt{100-25}=\sqrt{75} \\
& \cong 8.7 \mathrm{~cm} \text { (approximately) }
\end{aligned}
$$

44. (a)

x	2	4	6	8
$y=\frac{1}{2} x$	1	2	3	4

From the table above table we observe that as x increases y also increase. Therefore it is in direct variation.
We get $y \alpha x$ (i.e.) $y=k x \Rightarrow \underline{y}=k$, where k is a constant of proportionality. ${ }^{x}$

From the table we find $\frac{1}{2}=\frac{2}{4}=\frac{3}{6}=\frac{4}{8}=\frac{1}{2}=k$.
\therefore We get $k=\frac{1}{2}$.
Plot the points $(2,1),(4,2),(6,3)$ and $(8,4)$ and join them.

\therefore The relation $y=\frac{1}{2} x$ forms a straight line is exhibited in the graph.

From the graph we find (i) when $x=9$, $y=4.5$ (ii) when $y=7.5, x=15$

P (b)

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
$\boldsymbol{x}^{\mathbf{2}}$	16	9	4	1	0	1	4	9	16
$-\mathbf{4}$	-4	-4	-4	-4	-4	-4	-4	-4	-4
$\boldsymbol{x}^{\mathbf{2}} \mathbf{- 4}$	12	5	0	-3	-4	-3	0	5	12

To solve

$$
\begin{aligned}
x^{2}-x-12 & =0 \\
x^{2}+0 x-4 & =y \\
x^{2}-x-12 & =0 \\
(-)(+)(+) & (-) \\
\hline x+8 & =y \\
y & =x+8
\end{aligned}
$$

\boldsymbol{x}	-4	-3	-2	-1	0	1	2	3	4
$\mathbf{8}$	8	8	8	8	8	8	8	8	8
$\boldsymbol{x}-\mathbf{8}$	4	5	6	7	8	9	10	11	12

Point of intersection $(-3,5),(4,12)$ solution of $x^{2}-x-12=0$ is $-3,4$

