XI- CHEMISTRY MINIMUM MATERIAL
 (Based on Public key answer) UNIT-1

Define atomic mass unit(amu)
$1 / 12{ }^{\text {th }}$ mass of Carbon-12-
Atom in Ground state
$1.6605 \times 10^{-27} \mathrm{~kg}$
Relative atomic mass
Average mass of atom
Unified atomic mass

Define mole

6.023×10^{23}
Elementary particle as-C-12 (proton,Neutron,Electron)

Gram equivalent mass

Mass of element
Combine or displace
1 gH or $8 \mathrm{~g} \mathrm{O}, 35.5 \mathrm{~g} \mathrm{Cl}$
Define Oxidation number
Imaginary charge
O.number of oxygen is -2

Oxidation	Reduction
1.add oxygen	add Hydrogen
2.Remove the	2.Remove the
Hydrogen	oxygen
3.loss of e^{-}	3. Gain of e^{-}
4.O.number	4.O.number
increases	Decreases
Molecular	Molar mass
mass Mass of the	Mass of One mole of
Mass of the molecule	mole of substance
Unified	Sum of the
$\mathrm{CO}_{2}=44 \mathrm{u}$	mass $\mathrm{CO}_{2}=44 \mathrm{~g}$

Limiting \&Excess reagent
One reactant completely consumed It limit the further reaction
Another reagent excess is excess reagent
Caffine and fructose/Glucose
M.formula E.Formula
$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6} \quad-\quad \mathrm{CH}_{2} \mathrm{O}$
$\mathrm{C}_{8} \mathrm{H}_{10} \mathrm{~N}_{4} \mathrm{O}_{2} \quad-\mathrm{C}_{4} \mathrm{H}_{5} \mathrm{~N}_{2} \mathrm{O}$
Oxidation state calculation
CO_{2} and SO_{2}
$X+2(-2)=0, X+(-4)=0$, ans $=+4$
Auto Redox reaction
Same compound undergo Oxidation and reduction .Ex- $\mathrm{H}_{2} \mathrm{O}_{2}$
Redox reaction
Oxidation +Reduction =Redox reaction

UNIT-2

Rutherford observation
α-particle-passed through the coil Some deflected-small angle Some reflected- 180°
Bohr atom model observation
Electron-energy-Quantised e- revolve Circular bath-orbit electron mvr=nh/2л e^{-}higher energy -lower energy excess energy emitted as light Limitation of Bohr atom model One electron species not multi electron species
Not explain Zeeman \& stark effect Not explain mur=nh/2л
Zeeman-Splitting of spectral line In magnetic and Electric (stark)

P.Q.number
Energy
Denote by n
$n=1,2,3,4$
\quad K,L M,N
No of electron
$2 n^{2}$
(Pub-2023)

De-broglie equation
$\mathrm{E}=\mathrm{hY}, \mathrm{E}=\mathrm{mC}^{2}, \lambda=\mathrm{h} \backslash \mathrm{mc}, \lambda=\mathrm{h} \backslash \mathrm{mv}$ What is $n+1$ rule
Orbital $n+1$ value low -low energy
Orbital $n+1$ value Hig -High energy
Two orbital same $n+1$ value Which orbital low n value it low energy.

What is Aufbau Principle

e - are filled in orbital - increasing order of energy
low energy orbital first filled then higher energy orbital filled.
What is Pauli exclusion Principle
No 2 electron in an atom have
same set four Q.number
What is Hund's rule
Degenerate orbitals pairing does not takes place.
Until all available orbital contain one e.
Copper ,Chromium Electronic configuration
Actual electronic configuration Cr -24-[Ar] 4S ${ }^{1} 3 \mathrm{~d}^{5}$
$\mathrm{Cu}-29-[\mathrm{Ar}] \mathrm{SS}^{1} 3 \mathrm{~d}^{10}$
Expected electronic configuration Cr -24-[Ar] $4 \mathrm{~S}^{2} 3 \mathrm{~d}^{4}$

Cu-29-[Ar] 4S ${ }^{2} 3 d^{9}$

Define Exchange Energy

2 or more e- same spin in degenerate orbital Exchange their position energy is released.
Davision and Germer Experiment Beam of electron -On Ni crystalget Diffraction pattern- this is -similar to X-ray pattern x-ray wave nature so electron also wave nature.
(Nv)
Heisenberg's Uncertainity
Principle (unit-2)
$\Delta \mathrm{X} . \Delta \mathrm{P}>\mathrm{h} / 4$ л
Impossible determine both
position and momentum-
microscopic particle.
(Nv)

UNIT-3

Define Triads

Atomic weight - middle element Arithmetic mean of two element Modern periodic law
Physical and chemical propertiesPeriodic function -atomic number Define periodicity
Repeat the Physical and chemical properties-Regular interval
Effective nuclear charge
net nuclear charge by the valance electron
$Z_{\text {eff }}=Z-S$
Why N\& Be high ionisation energy
N, Be-half filled e- configuration Why Noble gas high ionisation energy- Stable Electronic configuration $\mathrm{ns}^{2} \mathrm{np}^{6}$

Define iso electronic species

Different element-Same electron

Define Ionization Energy

Isolated gaseous atom +energy
-Cation $+\mathrm{e}^{-}$

Define Electron affinity

Isolated gaseous atom +electron-
anion +energy

Define Valency

Number of valence electron e in outer shell
8 -valance electron= Valency
What is Diagonal relationship
Diagonal placed elements -similar
properties Be-AI , B-Si
Define Electro negativity
Atom attract the shared pair of electron towards itself
E.Confuguration of Lant @ Acti Lanthanoid ;- 4f $\mathrm{f}^{1-14}, 5 \mathrm{~d}^{0-1} \quad 6 s^{2}$ Actinoid: $\quad 5 f^{0-14}, 6 d^{0-2} \quad 7 s^{2}$
Why Halogen oxidising agent ?
Halogen have high E.affinity why?
Electronic configuration $n s^{2} n p^{5}$
Accept one electron - $n s^{2} n p^{6}$

UNIT-4

Define isotope
Atomic number same
Mass number different

$$
{ }_{1} \mathrm{H}^{1} \quad 1 \mathrm{H}^{2} \quad{ }_{1} \mathrm{H}^{3}
$$

Define Ortho and Para Hydrogen
Spin of 2 hydrogen nuclei-same
Spin of 2 hydrogen nuclei-differen

How Convert to Para to ortho
Heating above $800^{\circ} \mathrm{C}$
Electrical discharge
Using $\mathrm{O}_{2}, \mathrm{NO}, \mathrm{NO}_{2}$
Using Catalyst Pt\Fe
Water Gas or Syn gas
$\mathrm{C}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}+\mathrm{H}_{2}\left(1000^{\circ} \mathrm{C}\right)$
Water Gas Shift reaction $\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \rightarrow \mathrm{CO}_{2}+\mathrm{H}_{2}$
Deutrium exchange reaction
$\mathrm{CH}_{4}+2 \mathrm{D}_{2} \rightarrow \mathrm{CD}_{4}+2 \mathrm{H}_{2}$
$\mathrm{NH}_{3}+3 \mathrm{D}_{2} \rightarrow 2 \mathrm{ND}_{3}+3 \mathrm{H}_{2}$
Uses of Heavy water
Moderator, tracer, coolant.
Type of Covalent Hydrides
Electron rich- $\mathrm{C}_{2} \mathrm{H}_{6}, \mathrm{CH}_{4}$ Electron deficient $\mathrm{B}_{2} \mathrm{H}_{6}$ Electron precise- $\mathrm{NH}_{3}, \mathrm{CH}_{4}$
Hydrogen bonding
Hydrogen + electro negative atom Joined by covalent bond
Type of Hydrogen bond Inter molecular hydrogen bonding (H -bond in between molecule) Intra molecular hydrogen bonding (H -bond with in the molecule) nv

$\mathrm{H}_{2} \mathrm{O}$	$\mathrm{H}_{2} \mathbf{O}_{2}$
Bent shape	Open book like
Polar	shape
	Non polar
$104^{\circ} .5^{\prime}$	94.8°

Uses of Hydrogen-

Rocket fuel, Solvent,Fuel cell,
Reducing agent

Position of Hydrogen P.table
E.Configuration $1 \mathrm{~S}^{1}$,Unipositive, Reducing agent, lonisation energy $\mathrm{H}>$ Alkalimetal Electron affinity $\mathrm{H}<\mathrm{X}$
+1 Oxidation state, Form
halide,Sulphide
Preparation of Tritium
${ }^{6} \mathrm{Li}+{ }^{1} \mathrm{n}->^{4} \mathrm{He}+{ }^{3} \mathrm{Ti}$
Haber process(NH_{3} Prepration)
$\mathrm{N}_{2}+3 \mathrm{H}_{2} \rightarrow 2 \mathrm{NH}_{3}$ (200atm / Fe)
Soft and Hard water
Water contain soluble salt
$\mathrm{Mg}, \mathrm{Ca}, \mathrm{Mn}\left(\mathrm{SO}_{4}, \mathrm{Cl}, \mathrm{CO}_{3}\right)$
Water free from soluble salt.
Clark's method
$\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)+2 \mathrm{Ca}(\mathrm{OH})_{2}-\rightarrow$
$2 \mathrm{CaCO}_{3}+\mathrm{Mg}(\mathrm{OH})_{2}+2 \mathrm{H}_{2} \mathrm{O}$

Explain about Hydride

$\mathrm{H}+$ metal and non metal
lonic Hydride
Hydrogen +alkali metal or alkaline earth metal
Transfer of e from metal to H Prepare at $400^{\circ} \mathrm{C}$. White crystal High-M.Point example LiH
Covalent Hyrdide
Hydrogen +Non metal
Sharing of electron between H and non metal .example $\mathrm{NH}_{3} \mathrm{H}_{2} \mathrm{O}$
Metallic hydride
Hydrogenation of metal
Light inexpensive

Thermally unstable
Example Ti, Zr UNIT-5
Distinctive behavior Be, Li
Small size, High polarizing power,
High Hydration energy
Absence of d orbital
Why alkali metal colour?
Unpaired electron
Absorb energy
Low energy -high energy
High energy- low energy
Excess energy emitted as light
Gives washing soda(Solvey process
How will you Prepare Soda ash
$\mathrm{Na}_{2} \mathrm{CO}_{3.1} 10 \mathrm{H}_{2} \mathrm{O}-\rightarrow \mathrm{Na}_{2} \mathrm{CO}_{3 .}+10 \mathrm{H}_{2} \mathrm{O}$ Above 393 k
Preparation of plaster of Paris
$2 \mathrm{Ca} \mathrm{SO} 4.2 \mathrm{H}_{2} \mathrm{O} \rightarrow 2 \mathrm{Ca} \mathrm{SO}_{4} . \mathrm{H}_{2} \mathrm{O}+3 \mathrm{H}_{2} \mathrm{O}$ Temperature 393 K
Uses of P.Paris
Dental problem, Bulding construction ,ornamental,
Statues, bone fracture.
How prepare Dead burnt Plaster Above 393 k plaster Paris loss all the water molecule
Anhydrous CaSO_{4}
Washing soda preparation
$\mathrm{NH}_{3}+\mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2} \rightarrow$ Amm.carbonate
Amm.carbonate +water $+\mathrm{CO}_{2} \rightarrow$
Amm. Bi-carbonate $+\mathrm{NaCl} \rightarrow$
Sodium carbonate +Amm. Chloride

Extensive	Intensive
Properties	Properties
System	System
properties	properties
depend on	depend on
size or mass.	size or mass.
Ex ,volume	Ex B.p
State function	Path function
Properties of	Properties of
system	system depends on depends on

First law of thermodynamics

Total energy of isolated systemconstant
One form of energy to another form of energy.
Define Lattice energy
Energy -Completely remove the constitutents ions from the crystal lattice to infinite distance,
Nacl->Na+ +Cl - (nv)
Application of bomb calorimeter
Study metabolic study
Determine calorific value of food
Calculate amount of heat in
combustion reaction
Condition of spontaneous
$\Delta \mathrm{H}=-\mathrm{Ve}, \Delta \mathrm{G}=-\mathrm{Ve}, \Delta \mathrm{S}=+\mathrm{Ve}$
Define Hess's law
$\Delta \mathrm{H}_{\mathrm{f}}=\Delta \mathrm{H}_{1}+\Delta \mathrm{H}_{2}+\Delta \mathrm{H}_{3}$
ΔH for reaction at constant P or V same single or multiple step (nv)

Calorific Value of Food And
Heat produced- one gram substance Completely Burnt
SI unit is $\mathrm{J} \mathrm{Kg}^{-}$
Define Enthalpy of Combustion
Change in Enthalpy one mole of substance -burnt-using air
Methane -87.78 KJ mol
Define Molar Heat Capacity
The amount of Heat absorbed by one mole substance to raise temperature 1 Kelvin
What is Enthalpy Of Neutralisation
Enthalpy Change neutralisation
One gram equivalent acid +
One gram equivalent base-dil solution.
Derive Relation between H and U $\mathrm{H}=\mathrm{U}+\mathrm{PV}$
$\mathrm{H}_{1}=\mathrm{U}_{1}+\mathrm{PV} \mathrm{V}_{1} . \mathrm{H}_{2}=\mathrm{U}_{2}+\mathrm{PV}_{2}$
$\Delta H=\Delta U+P \Delta V$
First law $\Delta U=q+W$
$\Delta \mathrm{H}=\mathrm{q}=\mathrm{w}+\mathrm{P} \Delta \mathrm{V}$
$q=-P \Delta V$
$\Delta H=-P \Delta V+P \Delta V$
$\Delta \mathrm{H}=\mathrm{q}$
Sign Convention of work and Heat
Worke done by the system -W Work done on the system +W Heat is liberated by system Heat is absorbed by the system +q Isothemal -dT=O Isobaric - $\quad \mathrm{dP}=\mathrm{O}$ Adiabatic $-\mathrm{dq}=0$ isochoric- $\mathrm{dv}=0$

VOLUME-II

UNIT-8
Why chemical.Equ... called
dyamamic equilibrium?
Forward and back ward same rate
No macroscopic change
Law of mass action
Relation between K_{p} and K_{c}
$K_{c}=[C]^{\prime}[D]^{m} /[A]^{x}[B]^{y}$
$K_{p}=P_{C}{ }^{\prime} P_{D}{ }^{m} / P_{A}{ }^{x} P_{B}{ }^{y}$
$K_{p}=K_{c}(R T)^{\Delta n g}$
Lechateliers Principle(Pub-2023)
If the a system at equilibrium is disturbed
Then, the system shift itself in direction
That nullifies the effect of that Distrubance
Effect of pressure-Few moles
Effect of inert gas-No effect [Nv]
Effect of catalyst-No effect
Vant-Hoff Equation
$\Delta \mathbf{G}=-\mathrm{RT} \operatorname{lnK}$
$D \operatorname{lnK} / d t=\Delta H^{0} / R T^{2}$
$\log K_{2} / \mathrm{K}_{1}=\Delta \mathrm{H}^{0} / 2.303 R\left[\mathrm{~T}_{2}-\mathrm{T}_{1} / \mathrm{T}_{1} \mathrm{~T}_{2}\right]$ Homogeneous Heterogeneous Reactants and Reactants and products are differ phase products are same Phase $\mathrm{H}_{2 \mathrm{~g}}+\mathrm{I}_{2 \mathrm{~g}}->2 \mathrm{HI}_{\mathrm{g}} \quad \mathrm{H}_{2} \mathrm{O}_{\text {liq }}->\mathrm{H}_{2} \mathrm{O}_{\text {gas }}$ Effect of pressure-Few moles Effect of inert gas-No effect [Nv] Effect of catalyst-No effect

Reaction Quoient
 $K_{c}=[C]^{\prime}[D]^{m} /[A]^{x}[B]^{y}$

Derive the K_{p} and K_{c} for $\mathbf{H I}$
$\mathrm{H}_{2}+\mathrm{I}_{2}->2 \mathrm{HI}$
$K_{c}=4 x^{2} /(a-x)(b-x)$
$K_{p}=4 x^{2} /(a-x)(b-x)$
Dervie the $\mathbf{K}_{\boldsymbol{p}}$ and $\mathbf{K}_{\mathbf{c}}$ for $\mathbf{N H}_{\mathbf{3}}$
$\mathrm{N}_{2}+3 \mathrm{H}_{2}->2 \mathrm{NH}_{3}$
$\mathrm{K}_{\mathrm{c}}=4 \mathrm{x}^{2} \mathrm{~V}^{2} /(\mathrm{a}-\mathrm{x})(\mathrm{b}-3 \mathrm{x})^{3}$
$K_{p}=4 x^{2}(a+b-2 x)^{2} / P^{2}(a-x)(b-3 x)^{3}$
Derive the K_{p} and K_{c} for $\mathbf{P C l}_{5}$
$\mathrm{PCl}_{5}->\mathrm{PCl}_{3}+\mathrm{Cl}_{2}$
$\mathrm{K}_{\mathrm{c}}=\mathrm{x}^{2} /(\mathrm{a}-\mathrm{x}) \mathrm{V}$
$K_{p}=x^{2} P /(a-x)(a+x)$

Define $\Delta \mathrm{ng}$

$\Delta \mathrm{ng}=$ No.of moles of product-No.of moles Recatants
Write K_{p} and K_{c} for this equation
$\mathrm{CaCO}_{3(\mathrm{~s})}-\mathrm{CaO}_{(\mathrm{s})}+\mathrm{CO}_{2(\mathrm{~g})}$
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{CO}_{2}\right] \quad \mathrm{K}_{\mathrm{p}}=\mathrm{P} \mathrm{cos}$
Write the equation for
$\mathrm{K}_{\mathrm{c}}=\left[\mathrm{NH}_{3}\right]^{4}\left[\mathrm{O}_{2}\right]^{5} /\left[\mathrm{NO}^{4}\left[\mathrm{H}_{2} \mathrm{O}\right]^{6}\right.$
$4 \mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \rightarrow 4 \mathrm{NH}_{3}+5 \mathrm{O}_{2}$
Application of Equ.constant
Find Direction of reaction
Find Extent of reaction
Calculate Eq.Con of Reactant \&
products
Vant-Hoff Equation
$\Delta G=-R T \operatorname{lnK}$
$\mathrm{D} \operatorname{lnK} / \mathrm{dt}=\Delta \mathrm{H}^{0} / \mathrm{RT}^{2}$
$\log K_{2} / K_{1}=\Delta H^{0} / 2.303 R\left[T_{2}-T_{1} / T_{1} T_{2}\right]$
Law of mass action (nv)

UNIT-9 Molality= No of moles of solute	Depression of Freezing point M_{2} $=K_{f} \times W_{2} \times 1000 / \Delta T_{f} \times W_{1}$		Concentration -Semi permeable membreane	Define Bond Energy Energy required to break one mole of bond. unit KJmol^{-1}
No .of moles of solute	Osmotic Pressure $=\mathrm{M}_{2}=\mathrm{W}_{2} \times \mathrm{RT} / \mathrm{V}$		Osmotic pressure	mo
Mass of the solvent(kg)	Define Hemolysis		Pressure used to stop the Osmosis	Define Bond order
Molalrity= No .of moles of solute	Solvent-Cell outside to cell normalize the osmotic pressure.		Stop the moment of solvent [NV] Define colligate properties	The number of bond between two bonded atom
Volume of the solution(L)	What is Henry's law		Properties depend on the numb	der $=\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}} /$
Normality= No .of grm.Equi of solute	Partial pressure of gas α solute mole fraction of solute		of solute particle Ex- osmotic press Osmotic pressure	Bond Which is Strong Why 2 atomic orbital overlab linearly
Volume of the solution(L)	$\mathrm{P}_{\text {solute }} \mathrm{X}_{\text {solute }}$		Pressure used to stop the Osmosis	mic orbital overlab Side wise
Define ppm Number of parts of	Limitation of Henry's law		Stop the moment of solvent [Nv] UNIT-10	Bond is strong because overlab is maximum
componentsx	Less soluble Gases (Only)			Explain Fajan's Rule
Total number of parts of a components	Gas do not react with solvent Gas do not Associate or Dissociate		The atom transfer or shar	High charge of anion \& cation-
Mass of the solute $\times 10^{6}$	Define Raoult's law		In outer most she	Small size catio
Massof the Solution	Incase of solution of volatile		Covalent bond	Large size anio
Advantage of Std.Solution	Liquid		Mutual Sharing of one or more Pair	Cucl $>\mathrm{NaCl}$ - Covalen
Minimise the error due to	Partial pressure component $A, B \sim$		of electron between two atom	Define lonic Bond
weighing	Mole fraction of A, B		L	Complete transfer of electron
Prepare the different con. of solution , More stable.	Ideal ΔV mixing $=0$ ΔH mixing $=0$ Escaping tendency Solute=Solvent		$\mathrm{H}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{SO}_{4}, \mathrm{NH}_{3}, \mathrm{SO}_{3}$ Define Bond lengt	form anion and cation.force btw these ions is called ionic bond
Define Isotonic solution		Non ideal Δ Vmixing $=0$ Δ Hmixing $=0$ Escaping tendency Solute>Solvent	Distance between the two atom	Molecuar orbital (MO)-Theory
Two solution have same osmotic pressure				atomic orbital combine give Molcular orbial
Significance of Osmotic pressure			Covalent bond directional natu	Shape of M.orbital depend
Magnitude is large			Oriented specific direction	Atomic orbital
Molecular mass of bio molecule is calculated (nv)			Direction nature create the angle Electronegativity difference $\mathbf{A , B}$	Two type of Molecular orbit Bonding M.orbital
Relative lowering V. Pressure $=$	Solvent-Lower to Higher		50\% Cov	Bonding M.orbital
$W_{B} \times M_{A} / W_{A} \times M_{B}=\Delta P / P_{A}^{0}$			>more 50\% Ionic characte	Antibonding M.orbit
Elivation of Boiling point $\mathrm{M}_{2}=$ $\mathrm{K}_{\mathrm{b}} \times \mathrm{W}_{2} \times 1000 / \Delta \mathrm{T}_{\mathrm{b}} \times \mathrm{W}_{1}$	-Semi permeable	memberane	<1.7->less 50\% Ionic Character	It following Aufbau's principle,pauli exclusion,Hunds
Depression of Freezing point	Solvent-Higher to		(Never lose your Confidence)	rule.

UNIT-12-13		Naming Reactions	UNIT-15 What is Green chemistry Environmental favourable chemical Synthesis Reduce the uses and generation of hazardous substance Define Global warming and Green house effect Earth is heated by CO_{2} and CFC by absorb the IR radiation Heating earth by green house gases is called Global warming What is Acid rain The PH 5.6 $\begin{aligned} & 2 \mathrm{SO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}->2 \mathrm{H}_{2} \mathrm{SO}_{4} \\ & 2 \mathrm{NO}_{2}+\mathrm{O}_{2}+2 \mathrm{H}_{2} \mathrm{O}->2 \mathrm{HNO}_{3} \end{aligned}$ Which is protective umbrella why Ozone it prevent the UV radiation What happens if green house gases missing from atmosphere ? Temperature of earth would be 18^{0} What is Bio-Degradable and non bio degradable pollutants Substance easily decomposed by natural-Cow dung Substance easily decomposed by natural-Plastics What are Particulate and type Small solid or liquid droplet suspended in air 1.Viable-Bacteria 2.non-viable-dust,smoke		
SN ${ }^{1}$	SN ${ }^{2}$			What is Eutrophication Water bodies receive Excess nutrients - excess plant growth- Algae bloom. It reduces the dissolved oxygen in water - loss of Biodiversity-Eutophication. difference between BOD and COD	
Unimolecular	Bimolecular				
First order	$2^{\text {nd }}$ order				
Optically	Optically				
Inactive	Active				
Rate $=\mathrm{k}$	Rate $=\mathrm{k}$				
[Alkyl halide]	[Alkyl halide]				
	[nucleophile]			BOD COD Biochemical Chemical	
ElectroPhile	Nucleophile			oxygen demand	oxygen demand
Electron	Electron rich				
Defficient	-ve charge or			Expressed in PPm	Expressed in $\mathrm{Mg} / \mathrm{Lit}$
neutral	towards			Decompose	Decompose
Moves	electrophile			the waste by	the waste by
towards	Lewis base			microorganism	$\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$
Nucleophile	$\mathrm{Ex}-\mathrm{H}_{2} \mathrm{O}$			5 days $20^{\circ} \mathrm{C}$	2 Hours
Lewis acid				SN^{1} and $\mathrm{SN}^{\mathbf{2}} \mathrm{M}$	nanism
Ex-Carbon					
Inductive effect(Pub-2023)					
Chang in polarization of Covalent					
bond due to atom or group Ex;-methyl chloride					
Homolytic Cleavage	Hetreolytic cleavage				
Break symmetrically	Break unsymmetically				
Electro	Electro			Here the key wor	d only given by
negativity	negativity			using this make	he sentence -
same	different			nvchamychemis	@gmail.com
Formation of free radical	Formation of carbo cation			nvchamychemist (Always Proud to	be INDIAN)

Kindly send me your study materials to padasalai.net@gmail.com

