Instructions : (1) Check the question paper for fairness of printing. If there is any lack of fairness, inform the Hall Supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

Note : Draw diagrams and write equations wherever necessary.

Part - I

Note: (i) Answer all the questions. $\quad(15 \times 1=15)$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. The number of water molecules in a drop of water weighing 0.018 g is :
a) 6.022×10^{26}
b) 6.022×10^{23}
c) 6.022×10^{20}
d) 9.9×10^{22}
2. Two electrons occupying the same orbital are distinguished by:
a) Azimuthal quantum number
b) Spin quantum number
c) Magnetic quantum number
d) Principal quantum number
3. Which of the following pairs of elements exhibit diagonal relationship?
a) Be and Mg
b) Li and Be
c) Be and B
d) Be and $\mathrm{A} l$
4. The cause of permanent hardness of water is due to:
a) $\mathrm{Ca}\left(\mathrm{HCO}_{3}\right)_{2}$
b) $\mathrm{Mg}\left(\mathrm{HCO}_{3}\right)_{2}$
c) CaCl_{2}
d) MgCO_{3}
5. Match the flame colours of the alkali and alkaline earth metal salts in the bunsen burner.
1) Sodium
(i) Blue
2) Caesium
(ii) Apple green
3) Calcium
(iii) Yellow
4) Barium
(iv) Brick red
a) (1)-(iii), (2)-(iv), (3)-(i), (4)-(ii)
b) (1)-(i), (2)-(ii), (3)-(iv), (4)-(iii)
c) (1)-(iii), (2)-(i), (3)-(iv), (4)-(ii)
d) (1)-(ii), (2)-(i), (3)-(iv), (4)-(iii)
6. The value of the gas constant R is :
a) $0.082 \mathrm{dm}^{3} \mathrm{~atm}$
b) $0.987 \mathrm{Cal} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
c) $8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
d) $8 \mathrm{erg} \mathrm{mol}^{-1} \mathrm{~K}^{-1}$
7. The temperature of the system decreases in an
\qquad .
a) Isothermal expansion
b) Isothermal compression
c) Adiabatic expansion
d) Adiabatic compression
8. $\frac{\mathrm{K}_{\mathrm{C}}}{\mathrm{K}_{\mathrm{p}}}$ for the reaction $\mathrm{N}_{2}(\mathrm{~g})+3 \mathrm{H}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{NH}_{3}(\mathrm{~g})$ is:
a) $\frac{1}{\mathrm{RT}}$
b) $\sqrt{\mathrm{RT}}$
c) RT
d) $(\mathrm{RT})^{2}$
9. Normality of 1.25 M Sulphuric acid is:
a) 1.25 N
b) 3.75 N
c) 2.5 N
d) 2.25 N
10. According to Valence bond theory a bond between two atoms is formed when :
a) fully filled atomic orbitals overlap
b) half filled atomic orbitals overlap
c) non-bonding atomic orbitals overlap
d) empty atomic orbitals overlap
11. In an organic compound, phosphorus is estimated as:
a) $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
b) $\mathrm{Mg}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
c) $\mathrm{H}_{3} \mathrm{PO}_{4}$
d) $\mathrm{P}_{2} \mathrm{O}_{5}$
12. Homolytic fission of covalent bond leads to the formation of :
a) Electrophile
b) Nucleophile
c) Carbo cation
d) Free radical
13. The compounds formed at anode in the electrolysis of an aqueous solution of potassium acetate are:
a) CH_{4} and H_{2}
b) CH_{4} and CO_{2}
c) $\mathrm{C}_{2} \mathrm{H}_{6}$ and CO_{2}
d) $\mathrm{C}_{2} \mathrm{H}_{4}$ and Cl_{2}
14. The name of $\mathrm{C}_{2} \mathrm{~F}_{4} \mathrm{Cl}_{2}$ is \qquad .
a) Freon- 112
b) Freon- 113
c) Freon- 114
d) Freon - 115
15. Bhopal Gas Tragedy is a case of \qquad .
a) Thermal Pollution
b) Air Pollution
c) Nuclear Pollution
d) Soil Pollution

Part - II

Note : Answer any six questions. Question No. 24 is Compulsory.
$(6 \times 2=12)$
16. What do you understand by the term mole?
17. Define Orbital.
18. How is Tritium prepared?
19. Explain intensive properties with two examples.
20. Distinguish between diffusion and effusion,
21. Write K_{p} and K_{c} for the reaction
$2 \mathrm{CO}_{(\mathrm{g})} \rightleftharpoons \mathrm{CO}_{2(\mathrm{~g})}+\mathrm{C}_{(\mathrm{s})}$
22. Give the IUPAC name of the following compounds.
(i)

(ii)

23. What happens when acetyl chloride is treated with excess of $\mathrm{CH}_{3} \mathrm{MgI}$?
24. Complete the following :

Part - III

Note : Answer any six questions. Question No. 33 is Compulsory.
$(6 \times 3=18)$
25. Explain the fact that the second ionisation potential is always higher than first ionisation potential?
26. What are the uses of heavy water?
27. Give any three similarities between Beryllium and Aluminium.
28. Mention the three methods used for liquefaction of gases.
29. Define Molality.
30. State Fajan's rule.
31. Which is considered to be earth's protective umbrella? Why?
32. How the aromatic character of a compound can be decided by Huckel's rule?
33. Define:
(i) Sigma bond
(ii) Pi bond

Part - IV

Note : Answer all the questions.
$(5 \times 5=25)$
34. (a) Write short note on :
(i) Magnetic Quantum Number
(ii) Azimuthal Quantum Number
(OR)
(b) Calculate the effective nuclear charge on 4 s electron and 3d electron in Scandium.
35. (a) (i) What is water-gas shift reaction?
(ii) Write the uses of sodium bicarbonate.
(OR)
(b) (i) State Joule-Thomson effect.
(ii) A sample of gas at $15^{\circ} \mathrm{C}$ at 1 atm . has a volume of $2.58 \mathrm{dm}^{3}$. When the temperature is raised to $38^{\circ} \mathrm{C}$ at 1 atm , does the volume of the gas increase? If so, calculate the final Volume.
36. (a) Derive the relation between $\Delta \mathrm{H}$ and $\Delta \mathrm{U}$ for an ideal gas. Explain each term involved in the equation.

> (OR)
(b) (i) What is reaction quotient (Q) ?
(ii) Write the four colligative properties.
37. (a) Discuss the formation of N_{2} molecule using MO Theory.

> (OR)
(b) Describe the classification of organic compounds based on their structure.
38. (a) Complete the reaction.
(i) $\mathrm{Cac}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}}$
(ii) How is DDT prepared?
(OR)
(b) (i) Differentiate BOD and COD.
(ii) What is green chemistry?

ANSWERS

Part - I

1. c) 6.022×10^{20}
2. b) Spin quantum number
3. d) Be and $\mathrm{A} l$
4. c) CaCl_{2}
5. c) (1)-(iii), (2)-(i), (3)-(iv), (4)-(ii)
6. c) $8.3 \mathrm{~J} \mathrm{~mol}^{-1} \mathrm{~K}^{-1}$
7. c) Adiabatic expansion
8. d) $(\mathrm{RT})^{2}$
9. c) 2.5 N
10. b) half filled atomic orbitals overlap
11. a) $\mathrm{Mg}_{2} \mathrm{P}_{2} \mathrm{O}_{7}$
12. d) Free radical
13. c) $\mathrm{C}_{2} \mathrm{H}_{6}$ and CO_{2}
14. c) Freon -114
15. b) Air pollution

Part - II

16. The mole is defined as the amount of a substance which contains 6.022×10^{23} particles such as atoms, molecules or ions. It is denoted by the symbol " n ".
17. Orbital is a three dimensional space where the probability of finding the electron is maximum.
18. (i) By bombarding lithium with slow neutrons.
(ii) ${ }_{3} \mathrm{Li}^{6}+{ }_{0} \mathrm{n}^{1} \longrightarrow{ }_{1} \mathrm{~T}^{3}+{ }_{2} \mathrm{He}^{4}$
19. (i) The property that is independent of the mass or the size of the system is called an intensive property.
(ii) Examples: Refractive index, Surface tension, density, temperature, Boiling point, Freezing point, molar volume, etc.,
20.

Diffusion	Effusion
Diffusion is the spreading of molecules of a substance throughout a space or a second substance.	Effusion is escape of gas molecules through a very small hole in a membrane into an evacuated area.
Diffusion refers to the ability of the gases to mix with each other	Effusion is the ability of a gas to travel through a small pin- hole.
Eg. Spreading of something such as brown tea liquid spreading through the water in a tea cup	Eg. Pouring out something like the soap
studs bubbling out	
from	
a bucket of water.	

21. $\mathrm{K}_{\mathrm{c}}=\frac{\left[\mathrm{CO}_{2}\right]}{[\mathrm{CO}]^{2}}$ and $\mathrm{K}_{\mathrm{p}}=\frac{\mathrm{P}_{\mathrm{CO}_{2}}}{\mathrm{P}^{2}{ }_{\mathrm{CO}}}$
22. (i) buta-1,3-diene
(ii) 4-chloropent-2-yne.
23. When acetyl chloride is treated with excess of $\mathrm{CH}_{3} \mathrm{MgI}$, tertiary alcohols are formed.

$$
\mathrm{CH}_{3} \mathrm{COCl}+\mathrm{CH}_{3} \mathrm{MgI}(\text { excess }) \longrightarrow
$$

24. A) $\mathrm{CH}_{2}=\mathrm{CH}_{2}$ (ethene)
B) $\mathrm{CH}_{3}-\mathrm{CH}_{2}-\mathrm{CH}_{2}-\mathrm{Br}$

1-bromipropane

Part - III

25. The minimum amount of energy required to remove a unipositive cation is called second ionization energy. It is represented by the following equation,

$$
\mathrm{M}_{(\mathrm{g})}^{+}+\mathrm{IE}_{2}-\mathrm{M}^{2+}{ }_{(\mathrm{g})}+1 \mathrm{e},
$$

The total number of electrons is less in the cation than the neutral atom while the nuclear charge remains the same. Therefore, the effective nuclear charge of the cation is higher than the corresponding neutral atom. Thus, the successive ionization energies, always increase in the following order I.E ${ }_{1}<$ I.E $_{2}$. Hence, the second ionization potential is always higher than the first ionization potential.
26. (i) Heavy water is used as moderator in nuclear reactors as it can lower the energies of fast moving neutrons.
(ii) $\mathrm{D}_{2} \mathrm{O}$ is commonly used as a tracer to study organic reaction mechanisms and mechanisms of metabolic reactions.
(iii) It is also used as a coolant in nuclear reactors as it absorbs the heart generated.

A	Deuterium	D_{2}
B	Heavy water	$\mathrm{D}_{2} \mathrm{O}$
C	Propane	$\mathrm{C}_{3} \mathrm{H}_{6}$
D	Deuteron propane	$\mathrm{C}_{3} \mathrm{D}_{6}$

27. (i) Beryllium chloride forms a dimeric structure like aluminium chloride with chloride bridges.
(ii) Beryllium hydroxide dissolves in excess of alkali and gives beryllate ion $\left[\mathrm{Be}(\mathrm{OH})_{4}\right]^{2-}$ as aluminium hydroxide which gives aluminate ion, $\left[\mathrm{Al}(\mathrm{OH})_{4}\right]^{-}$.
(iii) Beryllium and aluminum ions have strong tendency to form complexes, $\mathrm{BeF}_{4}^{2-}, \mathrm{AlF}_{6}^{3-}$.
28. (i) Linde's method : Joule-Thomson effect is used to get liquid air or any other gas.
(ii) Claude's process : In addition to JouleThomson effect, the gas is allowed to perform mechanical work so that more cooling is produced.
(iii) Adiabatic process : This method of cooling is produced by removing the magnetic property of magnetic material eg. Gadolinium sulphate. By this method, a temperature of $10^{-4} \mathrm{~K}$ i.e. as low as Zero Kelvin can be achieved.
29. Molality is defined as the number of moles of the solute per kilogram of the solvent.

Molality $=\frac{\text { No. of moles of solute }}{\text { Mass of the solvent (in kg) }}$
30. Fajan's rule :
(i) To show greater covalent character, both the cation and anion should have high charge on them. Higher the positive charge on the cation, greater will be the attraction on the electron cloud of the anion. Similarly higher the magnitude of negative charge on the anion, greater is its polarisability. Hence, the increase in charge on cation or in anion increases the covalent character Let us consider three tonic compounds aluminum chloride, magnesium chloride and sodium chloride. Since the charge of the cation increase in the order $\mathrm{Na}^{+}<\mathrm{Mg}^{2+}<\mathrm{Al}^{3+}$, the covalent character also follows the same order $\mathrm{NaCl}<\mathrm{MgCl}_{2}<\mathrm{AlCl}_{3}$.
(ii) The smaller cation and larger anion show greater coyalent character due to the greater extent of polarisation.
Lithium chloride is more covalent than sodium chloride. e size of Li^{+}is smaller than Na^{+}and hence the polarising power of Li^{+}is more. Lithium iodide is more covalent than lithium chloride as the size of I^{-}is larger than the Cl^{-}. Hence I^{-}will be more polarised than Cl^{-}by the cation, Li^{+}.
(iii) Cations having $\mathrm{ns}^{2} \mathrm{np}^{6} \mathrm{nd}^{10}$ configuration show greater polarising power than the cations with $\mathrm{ns}^{2} \mathrm{np}^{6}$ configuration. Hence, they show greater covalent character.
CuCl is more covalent than NaCl . Compared to $\mathrm{Na}^{+}(1.13 \AA) . \mathrm{Cu}^{+}(0.6 \AA)$ is small and have $3 \mathrm{~s}^{2}$ $3 \mathrm{p}^{6} 3 \mathrm{~d}^{10}$ conguration.
Electronic conguration of $\mathrm{Cu}^{+}[\mathrm{Ar}] 3 \mathrm{~d}^{10}$
Electronic Conguration of $\mathrm{Na}^{+}[\mathrm{He}] 2 \mathrm{~s}^{2}, \mathrm{p}^{6}$
31. Ozone layer in the upper atmosphere is considered to be earth's protective umbrella. The ozone layer acts as a filter for the shorter wavelength radiation and highly hazardous ultraviolet radiation from the sun, protecting life on earth
32. A compound may be aromatic, if it obeys Huckel rule
(i) The molecule must be co-planar
(ii) Complete delocalization of π electron in the ring
(iii) Presence of $(4 n+2) \pi$ electrons in the ring where n is an integer $(\mathrm{n}=0,1,2 \ldots$)

Eg :

Benzene
(i) The benzene is a planar molecule
(ii) It has six deloclaised π electrons
(iii) $4 n+2=6$
$4 n=6-2$
$4 \mathrm{n}=4$
$\mathrm{n}=1$
it obeys Huckel's ($4 n+2$) π electron rule with $\mathrm{n}=1$ hence, benzene is aromatic.
33. (i) Sigma bond : A bond formed due to the overlapping of orbitals along the internuclear axis is called sigma bond. It is stronger than pi bond.
(ii) Pi bond : A bond formed by the sidewise overlapping of p orbitals is called pi bond. It is weaker than sigma bond.

Part - IV

34. (a)
(i) Magnetic Quantum Number (m_{1}):
35. It is denoted by the letter ' m_{1} '. It takes integral values ranging from $-l$ to $+l$ through 0 . i.e. if $l=1$; $\mathrm{m}=-1,0$ and +1
36. Different values of m for a given 1 value, represent different orientation of orbitals in space.
37. The Zeeman Effect (the splitting of spectral lines in a magnetic field) provides the experimental justification for this quantum number.
38. The magnitude of the angular momentum is determined by the quantum number l while its direction is given by magnetic quantum number.
(ii) Azimuthal Quantum Number :
39. It is represented by the letter ' l ', and can take integral values from zero to $n-1$, where n is the principal quantum number
40. Each l value represents a subshell (orbital). $l=0$, $1,2,3$ and 4 represents the s, p, d, f and g orbitals respectively.
41. The maximum number of electrons that can be accommodated in a given subshell (orbital) is $2(2 l+1)$.
42. It is used to calculate the orbital angular momentum using the expression
Angular momentum $=\sqrt{l(l+1)} \frac{h}{2 \pi}$
(b)

$$
(\mathrm{OR})
$$

The electronic configuration of scandium is $1 \mathrm{~s}^{2}, 2 \mathrm{~s}^{2}$, $2 p^{6}, 3 s^{2}, 3 p^{6}, 4 s^{2}, 3 d^{1}$. we can rearrange as below.

$\mathrm{Z}_{\text {eff }}=\mathrm{Z}-\mathrm{S}$ i.e. $=21-18 \therefore \mathrm{Z}_{\text {eff }}=3$
Calculation of effective nuclear charge on 3 d electron

$\underbrace{(1 \mathrm{~s})^{2}} \quad \underbrace{(2 \mathrm{~s}, 2 \mathrm{p})^{8}}$	$(3 \mathrm{~s}, 3 \mathrm{p})^{8}(3 \mathrm{~d})^{1}$	$(4 s)^{2}$	
($\mathrm{n}-3$) ($\mathrm{n}-2)$	($\mathrm{n}-1$)	n	
O			
n	0	0.35	0
$(\mathrm{n}-1)$ \& others	18	1	18
S value			18

$$
\therefore \mathrm{Z}_{\mathrm{eff}}=\mathrm{Z}-\mathrm{S} \text { i.e. }=21-18 \therefore \mathrm{Z}_{\mathrm{eff}}=3
$$

35. (a)
(i) The carbon monoxide of water gas can be converted to carbon dioxide by mixing the gas mixture with more steam at $400^{\circ} \mathrm{C}$ and passing over a shift converter containing iron/copper catalyst. This reaction is called as water-gas shift reaction.

$$
\mathrm{CO}+\mathrm{H}_{2} \mathrm{O} \longrightarrow \mathrm{CO}_{2}+\mathrm{H}_{2} \uparrow
$$

(ii) Uses of Sodium bicarbonate :

1. Sodium hydrogen carbonate is used as an ingredient in baking.
2. It is a mild antiseptic for skin infections.
3. It is also used in fire extinguishers.

> (OR)
(b)
(i) Joule Thomson Effect : The liquefication methods are based on the Joule-Thomson effect. He observed appreciable cooling when the compressed gas is forced through an orifice plug into a low-pressure region. This phenomenon of lowering of temperature when a gas is made to expand adiabatically from a region of high pressure into a region of low pressure is known as Joule- Thomson effect. This effect is observed only below a certain temperature, which is a characteristic one for each gas. This value is given using van der waals constants a and b .
$\mathrm{T}_{\mathrm{i}}=\frac{2 a}{\mathrm{Rb}}$
(ii) $\mathrm{T}_{1}=15^{\circ} \mathrm{C}+273 ; \mathrm{T}_{2}=38+273$
$\mathrm{T}_{1}=288 \mathrm{~K} \quad \mathrm{~T}_{2}=311 \mathrm{~K}$
$\mathrm{V}_{1}=2.58 \mathrm{dm}^{3} \quad \mathrm{~V}_{2}=? \quad(\mathrm{P}=1 \mathrm{~atm}$ constant $)$
$\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}=\frac{\mathrm{V}_{2}}{\mathrm{~T}_{2}}$
$\mathrm{V}_{2}=\left(\frac{\mathrm{V}_{1}}{\mathrm{~T}_{1}}\right) \times \mathrm{T}_{2}=\frac{2.58 \mathrm{dm}^{3}}{288 \mathrm{~K}} \times 311 \mathrm{~K}$
$V_{2}=2.78 \mathrm{dm}^{3}$ i.e. volume increased from $2.58 \mathrm{dm}^{3}$ to $2.78 \mathrm{dm}^{3}$.
36.
(a) When the system at constant pressure undergoes changes from an initial state with $\mathrm{H}_{1}, \mathrm{U}_{1}$ and V_{1} to a final state with $\mathrm{H}_{2}, \mathrm{U}_{2}$ and V_{2} the change in enthalpy $\Delta \mathrm{H}$, can be calculated as follows:

$$
\mathrm{H}=\mathrm{U}+\mathrm{PV}
$$

In the initial state

$$
\begin{equation*}
\mathrm{H}_{1}=\mathrm{U}_{1}+\mathrm{PV}_{1} \tag{1}
\end{equation*}
$$

In the final state

$$
\begin{equation*}
\mathrm{H}_{2}=\mathrm{U}_{2}+\mathrm{PV}_{2} \tag{2}
\end{equation*}
$$

change in enthalpy is (2) - (1)

$$
\begin{gather*}
\left(\mathrm{H}_{2}-\mathrm{H}_{1}\right)=\left(\mathrm{U}_{2}-\mathrm{U}_{1}\right)+\mathrm{P}\left(\mathrm{~V}_{2}-\mathrm{V}_{1}\right) \\
\Delta \mathrm{H}=\Delta \mathrm{U}+\mathrm{P} \Delta \mathrm{~V} \tag{3}
\end{gather*}
$$

As per first law of thermodynamics,

$$
\Delta \mathrm{U}=\mathrm{q}+\mathrm{w}
$$

Equation (3) becomes

$$
\begin{align*}
\Delta \mathrm{H} & =\mathrm{q}+\mathrm{w}+\mathrm{P} \Delta \mathrm{~V} \\
\mathrm{w} & =-\mathrm{P} \Delta \mathrm{~V} \\
\Delta \mathrm{H} & =\mathrm{qp}-\mathrm{P} \Delta \mathrm{~V}+\mathrm{P} \Delta \mathrm{~V} \\
\Delta \mathrm{H} & =\mathrm{qp} \tag{4}
\end{align*}
$$

$\mathrm{q}_{\mathrm{p}}-$ is the heat absorbed at constant pressure and is considered as heat content.
Consider a closed system of gases which are chemically reacting to form gaseous products at constant temperature and pressure with V_{i} and V_{f} as the total volumes of the reactant and product gases respectively, and n_{i} and n_{f} as the number of moles of gaseous reactants and products, then,
For reactants (initial state) :

$$
\begin{equation*}
P V_{i}=n_{i} R T \tag{5}
\end{equation*}
$$

For products (final state) :

$$
\begin{align*}
& P V_{f} \tag{6}\\
& \text { (6) } \\
& -(5)
\end{align*}
$$

$P\left(V_{f}-V_{i}\right)=\left(n_{f}-n_{i}\right) R T$

$$
\begin{equation*}
\mathrm{P} \Delta \mathrm{~V}=\Delta \mathrm{n}_{(\mathrm{g})} \mathrm{RT} \tag{7}
\end{equation*}
$$

Substituting in (7) in (3)

$$
\begin{equation*}
\Delta \mathrm{H}=\Delta \mathrm{U}+\Delta \mathrm{n}_{(\mathrm{g})} \mathrm{RT} \tag{8}
\end{equation*}
$$

(OR)
(b)
(i) Under non-equilibrium conditions, reaction quotient ' Q ' is defined as the ratio of the product of active masses of reaction products raised to the respective stoichiometric coefficients in the balanced chemical equation to that of the reactants.

$$
\mathrm{Q}=\frac{[\mathrm{C}]^{\mathrm{l}}[\mathrm{D}]^{\mathrm{m}}}{[\mathrm{~A}]^{\mathrm{x}}[\mathrm{~B}]^{\mathrm{y}}}
$$

(ii) For an ideal dilute solution, the properties, namely, relative lowering of vapour pressure, elevation of boiling point, depression in freezing point and osmotic pressure do not depend on the chemical nature of the solute but depends only on the number of solute particles (ions/molecules) present in the solution. These four properties are known as colligative properties.
37.
(a) Molecular orbital diagram of nitrogen molecule $\left(\mathbf{N}_{2}\right)$:
(i) Electronic configuration of N atom $1 \mathrm{~s}^{2} 2 \mathrm{~s}^{2} 2 \mathrm{p}^{3}$
(ii) Electronic configuration of N_{2} molecule

$$
\sigma_{1 \mathrm{~s}}^{2}, \sigma_{1 \mathrm{~s}}^{* 2}, \sigma_{2 \mathrm{~s}}^{2}, \sigma_{2 \mathrm{~s}}^{* 2}, \pi_{2 \mathrm{p}_{\mathrm{y}}}^{2}, \pi_{2 \mathrm{p}_{\mathrm{z}}}^{2}, \sigma_{2 \mathrm{p}_{\mathrm{x}}}^{2}
$$

(iii) Bond order $=\frac{\mathrm{N}_{\mathrm{b}}-\mathrm{N}_{\mathrm{a}}}{2}=\frac{10-4}{2}=3$
(iv) Molecule has no unpaired electrons hence it is diamagnetic.

MO Diagram for N_{2} molecule

(OR)
(b)

Azulene

38. (a) (i)
$\mathrm{CaC}_{2} \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \underset{\text { Ethyne }}{\mathrm{CH} \equiv \mathrm{CH}}+\mathrm{Ca}(\mathrm{OH})_{2}$
Calcium Carbride Ethyne
(ii) DDT : DDT can be prepared by heating a mixture of chlorobenzene with chloral (Trichloro acetaldehyde) in the presence of con. $\mathrm{H}_{2} \mathrm{SO}_{4}$.

Chloro benzene

(b) (i)

Bio chemical Oxygen Demand (BOD)	Chemical Oxygen Demand (COD)
The total amount of oxygen (in milligrams) consumed by microorganisms in decomposing the waste in one litre of water at $20^{\circ} \mathrm{C}$ for a period of 5 days is called biochemical oxygen demand (BOD).	Chemical oxygen demand (COD) is a defined as the amount of oxygen required by the organic matter in a sample of water for its oxidation by a strong oxidising agent like $\mathrm{K}_{2} \mathrm{Cr}_{2} \mathrm{O}_{7}$ in acid medium for a period of 2 hours
Its value is expressed in ppm.	Its value is expressed in mg/litre
BOD is used as a measure of degree of water pollution.	COD is a measure of amount of organic compounds in a water sample.
BOD is only a measurement of consumed oxygen by micro organisms to decompose the organic matter.	COD refers to the requirement of dissolved oxygen for both oxidation of organic and inorganic constituents
Clean water would have BOD value less than 5 ppm	Clean water would have COD value greater than 250 mg/litre.

(ii) Green chemistry means science of environmentally favorable chemical synthesis.

