

ALPHA MATHS ACADAMY

JEE, CBSE AND BOARD EXAMINATION COACHING CENTER **TENKASI**

MOBILE: 9489006077, 8778733955

UNIT TEST – CHAPTER 1

STANDARD 12

TIME: 3.00 HOURS

MATHEMATICS

MARKS: 90

PART 1

CHOOSE THE CORRECT ANSWER

 $20 \times 1 = 20$

- 1. If $|adj(adjA)| = |A|^9$, then the order of the square matrix A is
 - (a) 3

(c) 2

(d) 5

- 2. If $A\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adjA and C = 3A, then $\frac{|adjB|}{|C|} =$
 - $(a)^{\frac{1}{a}}$

(d) 1

3. If
$$A = \begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$$
, then $A = \begin{bmatrix} 1 & -2 \\ 0 & 6 \end{bmatrix}$

- $(a)\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} \qquad (b)\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$
- (d) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$

4. If
$$A \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$$
, then $9I_2 - A =$

- (a) A^{-1}
- (b) $\frac{A^{-1}}{2}$
- $(d) 2A^{-1}$

5. If
$$P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$$
 is the adjoint of 3×3 matrix A and $|A| = 4$, then x is

- (a) 15

(d) 11

6. If
$$A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is

(a) 0

- (b) 2
- (c) 3
- (d) 1
- 7. If A, B and C are invertible matrices of some order, then which one of the following is not true?
 - (a) $adj A = |A| A^{-1}$

(b) adj(AB) = (adj A)(adj B)

(c) $det A^{-1} = (det A)^{-1}$

- $(d) (ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- 8. If $A^T A^{-1}$ is symmetric, then $A^2 =$

- (a) A^{-1}
- (b) $(A^{T})^{2}$
- (c) A^T
- 9. If A is a non-singular matrix, such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^T)^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$
- $(a)\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix} \qquad (b)\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix} \qquad (c)\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix} \qquad (d)\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$
- 10. If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{bmatrix}$ and $A^T = A^{-1}$, then the value of x is

 - (a) $\frac{-4}{5}$ (b) $\frac{-3}{5}$

- 11 If $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ and $A(adjA) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k = 0
 - (a) 0
- (b) $\sin \theta$
- (c) $\cos \theta$

- 12. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is
 - (a) 17
- (b) 14
- (c) 19
- (d) 21
- 13. If $adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj(AB) is

 - $(a) \begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad (b) \begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (c) \begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (d) \begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$
- 14. If $x^a y^b = e^m$, $x^c y^d = e^n$, $\Delta_1 = \begin{bmatrix} m & b \\ n & d \end{bmatrix}$, $\Delta_2 = \begin{bmatrix} a & m \\ c & n \end{bmatrix}$, $\Delta_3 = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$, then the values of x and

y are respectively,

(a) $e^{(\Delta_2/\Delta_1)}$, $e^{(\Delta_3/\Delta_1)}$

- (c) $\log(\Delta_2/\Delta_1)$, $\log(\Delta_3/\Delta_1)$
- 15. Which of the following is/are correct?
 - Adjoint of a symmetric matrix is also a symmetric matrix.
 - (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
 - (iii) If A is a square matrix of order n and λ is a scalar, then $adj(\lambda A) = \lambda^n adj(A)$
 - (iv) A(adjA) = (adj A)A = |A|I
 - (a) only (i)
- (b) (ii) and (iii) (c) (iii) and (iv)
- (d)(i),(ii) and (iv)
- 16. If $\rho(A) = \rho([A|B])$, then the system AX = B of linear equations is
 - (a) Consistent and has a unique solution
- (b) Consistent
- Consistent and has infinitely many solution
- (d)Inconsistent

17. If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y - (\cos \theta)z = 0$, $(\cos \theta)x - y + z = 0$,

 $(\sin \theta)x + y - z = 0$ has a non-trivial solution then θ is

(a)
$$\frac{2\pi}{3}$$

(b)
$$\frac{3\pi}{4}$$

$$(c) \frac{5\pi}{6}$$

(d)
$$\frac{\pi}{4}$$

18. The augmented matrix of a system of linear equation is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$. The system

has infinitely many solutions if

$$(a) \lambda = 7, \mu \neq -5$$

(b)
$$\lambda = -7, \mu = 5$$

(c)
$$\lambda \neq 7, \mu \neq -5$$

$$(d) \lambda = 7, \mu = -5$$

(a)
$$\lambda = 7, \mu \neq -5$$
 (b) $\lambda = -7, \mu = 5$ (c) $\lambda \neq 7, \mu \neq -5$ (d) $\lambda = 7, \mu = -5$
19. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then the

value of x is

20. If
$$A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
, then $adj(adj A)$ is

$$(a) \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

$$(b) \begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$$

(a)
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 (b) $\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$ (c) $\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$ (d) $\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$

$$(d) \begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

PART 2

ANSWER ANY 7 OF THE FOLLOWING QUESTIONS (30TH QUESTION IS COMPULSARY)

 $7 \times 2 = 14$

- 21. If A is a non-singular matrix of odd order, prove that |Adj A| is positive.
- 22. Prove that $\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$ is orthogonal.

23. If
$$adj(A) = \begin{bmatrix} 0 & -2 & 0 \\ 6 & 2 & -6 \\ -3 & 0 & 6 \end{bmatrix}$$
, find A^{-1} .

24. Find the rank of the matrices which are in row-echelon form: $\begin{bmatrix} 6 & 0 & -9 \\ 0 & 2 & 0 \\ 0 & 0 & 0 \end{bmatrix}$.

- 25. Find the inverse of the non-singular matrix $A = \begin{pmatrix} 0 & 5 \\ -1 & 6 \end{pmatrix}$ by Gauss-Jordan method.
- 26. Solve the system of linear equations 2x + 5y = -2, x + 2y = -3 by matrix inversion method.
- 27. Solve the systems of linear equations $\frac{3}{x} + 2y = 12$; $\frac{2}{x} + 3y = 13$ by Cramer's rule.

- 28. Find the rank of the matrix $\begin{bmatrix} 0 & 1 & 2 & 1 \\ 0 & 2 & 4 & 3 \\ 8 & 1 & 0 & 2 \end{bmatrix}$ by minor method.
- 29. If $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$ and $A^2 + xI = yA$, then the values of x and y are respectively.
- 30. If A is symmetric, prove that then Adj A is also symmetric.

PART 3

ANSWER ANY 7 OF THE FOLLOWING QUESTIONS $(40^{TH}QUESTION IS COMPULSARY)$ $7 \times 3 = 21$

31. Verify
$$(AB)^{-1} = B^{-1}A^{-1}$$
 with $A = \begin{bmatrix} 0 & -3 \\ 1 & 4 \end{bmatrix}$, $B = \begin{bmatrix} -2 & -3 \\ 0 & -1 \end{bmatrix}$.

- 32. Find the inverse (if it exists) $\begin{bmatrix} 5 & 1 & 1 \\ 1 & 5 & 1 \\ 1 & 1 & 5 \end{bmatrix}$.
- 33. If $A = \begin{bmatrix} 3 & 2 \\ 7 & 5 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & -3 \\ 5 & 2 \end{bmatrix}$, Verify $(AB)^{-1} = B^{-1}A^{-1}$.
- 34. Decrypt the received encoded message [2-3] $[20\ 4]$ with the encryption matrix $\begin{bmatrix} -1 & -1 \\ 2 & 1 \end{bmatrix}$ and the decryption matrix as its inverse, where the system of codes are described by the numbers 1-26 to the letters A-Z respectively and the number 0 to the blank space.
- 35. Show that the matrix $\begin{bmatrix} 3 & 1 & 4 \\ 2 & 0 & -1 \\ 5 & 2 & 1 \end{bmatrix}$ is non-singular and reduce it to the identity matrix by elementary row transformation.
- 36. Find the inverse of $A = \begin{pmatrix} 2 & 1 & 1 \\ 3 & 2 & 1 \\ 2 & 1 & 2 \end{pmatrix}$ by Gauss-Jordan method.
- 37. Four man and 4 woman can finish a piece of work jointly in 3 days while 2 man and 5 woman can finish the same work jointly in 4 days. Find the time taken by one man alone and that of one woman alone to finish the same work by using matrix inversion method.
- 38. Solve x + 2y + 3z = 0, 3x + 4y + 4z = 0, 7x + 10y + 12z = 0.
- 39. A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer's rule to solve the problem)
- 40. If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and $p \neq a$, $q \neq b$, $r \neq c$ prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$.

ANSWER ALL THE FOLLOWING QUESTIONS

 $7 \times 5 = 35$

41. (a) If
$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$
, Verify that $A(Adj A) = (Adj A)A = |A|I_3$ (or)

(b) Solve the systems of linear equations by Cramer's rule

$$\frac{3}{x} - \frac{4}{y} - \frac{2}{z} - 1 = 0$$
, $\frac{1}{x} + \frac{2}{y} + \frac{1}{z} - 2 = 0$, $\frac{2}{x} - \frac{5}{y} - \frac{4}{z} + 1 = 0$

- 42. (a) If $A = \begin{bmatrix} 4 & 3 \\ 2 & 5 \end{bmatrix}$, Find x, y such that $A^2 + xA + yI_2 = O_2$. Hence find A^{-1} . (or)
 - (b) The upward speed v(t) of a rocket at time t is approximated by $v(t) = at^2 + bt + c$, $0 \le t \le 100$ where a, b and c are constants. It has been found that the speed at times t = 3, t = 6 and t = 9 seconds are respectively 64, 133 and 208 miles per second respectively. Find the speed at time t = 15 seconds. (Use Gaussian elimination method)
- 43. (a) Solve the system of equations using matrix inversion method

$$2x_1 + 3x_2 + 3x_3 = 5$$
, $x_1 - 2x_2 + x_3 = -4$, $3x_1 - x_2 - 2x_3 = 3$. (or)

- (b) A boy is walking along the path $y = ax^2 + bx + c$ through the points (-6, 8), (-2, -12) and (3, 8). He wants to meet his friend at P(7, 60). Will be meet his friend? (Use Gaussian elimination method).
- 44. (a) If $A = \begin{bmatrix} -4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1 \end{bmatrix}$ and $B = \begin{bmatrix} 1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3 \end{bmatrix}$, Find the products AB and BA and hence solve the system of equations x y + z = 4, x 2y 2z = 9, 2x + y + 3z = 1. (or)
 - (b) Find the condition on a, b and c so that the following system of linear equations has one parameter family of solution x + y + z = a, x + 2y + 3z = b, 3x + 5y + 7z = c
- 45. (a) Solve the system of linear equations by matrix inversion method

$$2x + 3y - z = 9$$
, $x + y + z = 9$, $3x - y - z = -1$. (or)

- (b) Find the value of k for which the equations kx 2y + z = 1, x 2ky + z = -2, x 2y + kz = 1has (i) no solution (ii) a unique solution (iii) an infinitely many solution
- 46. (a) The prices of three commodities A, B and C are rupees x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of C. Person Q purchase 2 unit of C and

sells 3 units of A and one unit of B. Person R purchases one unit of A and sells 3 units of B and 1 unit of C. In the process P, Q and R earn rupees 15,000, rupees 1,000 and rupees 4,000 respectively. Find the prices per unit of A, B and C. (Use matrix inversion method).

(b) By using Gaussian elimination method balances the chemical reaction equation

$$C_5H_8 + O_2 \longrightarrow CO_2 + H_2O$$
.

47. (a) Solve the Cramer's rule, the system of equations $x_1 - x_2 = 3$, $2x_1 + 3x_2 + 4x_3 = 17$, $x_2 + 2x_3 = 7$.

(or)

(b) Determine the values of λ for which the following system of equations x + y + 3z = 0,

 $4x + 3y + \lambda z = 0$, 2x + y + 2z = 0 has (i) a unique solution (ii) a non-trivial solution.

******* ALL THE BEST *******

PREPARED BY

M.KARTHIGAI GANAPATHY M.Sc., M.Ed.,

PG ASST. MATHEMATICS

TENKASI-627802

CONTACT NUMBER: 9489006077

E.MAIL: karthiksabi13@gmail.com

