12th Maths

# FULL ONEMARKS WITH ANSWERS KEY



### Choose the Correct or the most suitable answer from the given four alternatives:

- 1. If  $|\operatorname{adj}(\operatorname{adj} A)| = |A|^9$ , then the order of the square matrix A is

- (4)5
- 2. If A is a  $3 \times 3$  non-singular matrix such that  $AA^T = A^T A$  and  $B = A^{-1}A^T$ , then  $BB^T =$

- (3)  $I_3$
- (4)  $B^T$

- 3. If  $A = \begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$ ,  $B = \operatorname{adj} A$  and C = 3A, then  $\frac{|\operatorname{adj} B|}{|C|} =$ 
  - $(1)^{\frac{1}{2}}$

- $(3) \frac{1}{4}$
- (4) 1

- 4. If  $A\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$ , then  $A = \begin{bmatrix} 1 & 0 \\ 0 & 6 \end{bmatrix}$

- $(1)\begin{bmatrix}1 & -2\\1 & 4\end{bmatrix} \qquad (2)\begin{bmatrix}1 & 2\\-1 & 4\end{bmatrix} \qquad (3)\begin{bmatrix}4 & 2\\-1 & 1\end{bmatrix} \qquad (4)\begin{bmatrix}4 & -1\\2 & 1\end{bmatrix}$



- 5. If  $A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$ , then  $9I_2 A = \begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$ 
  - (1)  $A^{-1}$

- (2)  $\frac{A^{-1}}{2}$
- (3)  $3A^{-1}$
- $(4) 2A^{-1}$

- 6. If  $A = \begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$  and  $B = \begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$  then  $|\operatorname{adj}(AB)| =$ 
  - (1) -40

- (2) -80
- (3) -60
- (4) -20
- 7. If  $P = \begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & 2 \end{bmatrix}$  is the adjoint of  $3 \times 3$  matrix A and |A| = 4, then x is
  - (1) 15

- (3) 14
- (4) 11
- 8. If  $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$  and  $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$  then the value of  $a_{23}$  is
  - (1) 0

- (3) -3
- (4) -1
- 9. If A,B and C are invertible matrices of some order, then which one of the following is not true?
  - (1)  $\operatorname{adj} A = |A| A^{-1}$
- (2) adi(AB) = (adj A)(adj B)
- (3)  $\det A^{-1} = (\det A)^{-1}$
- (4)  $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$
- 10. If  $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$  and  $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ , then  $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ 
  - $(1)\begin{vmatrix} 2 & -5 \\ -3 & 8 \end{vmatrix}$

- $(2)\begin{vmatrix} 8 & 5 \\ 3 & 2 \end{vmatrix} \qquad (3)\begin{vmatrix} 3 & 1 \\ 2 & 1 \end{vmatrix}$
- $(4)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$

- 11. If  $A^T A^{-1}$  is symmetric, then  $A^2 =$ 
  - (1)  $A^{-1}$

- $(2) (A^T)^2$
- (3)  $A^{T}$
- $(4) (A^{-1})^2$
- 12. If A is a non-singular matrix such that  $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ , then  $(A^T)^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ 
  - $(1)\begin{vmatrix} -5 & 3 \\ 2 & 1 \end{vmatrix}$

- $(2)\begin{bmatrix}5 & 3\\ -2 & -1\end{bmatrix} \qquad (3)\begin{bmatrix}-1 & -3\\ 2 & 5\end{bmatrix} \qquad (4)\begin{bmatrix}5 & -2\\ 3 & -1\end{bmatrix}$

- 13. If  $A = \begin{vmatrix} \frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5} \end{vmatrix}$  and  $A^T = A^{-1}$ , then the value of x is
  - $(1) \frac{-4}{5}$

- $(2) \frac{-3}{5}$
- $(3) \frac{3}{5}$

- 14. If  $A = \begin{vmatrix} 1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1 \end{vmatrix}$  and  $AB = I_2$ , then  $B = I_2$ 
  - $(1) \left(\cos^2\frac{\theta}{2}\right)A$
- $(2) \left(\cos^2\frac{\theta}{2}\right) A^T \qquad (3) \left(\cos^2\theta\right) I \qquad (4) \left(\sin^2\frac{\theta}{2}\right) A^T$
- 15. If  $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$  and  $A(\text{adj } A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$ , then k = 0

- (4) 1
- 16. If  $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$  be such that  $\lambda A^{-1} = A$ , then  $\lambda$  is
  - (1) 17

- (3) 19
- (4) 21
- 17. If  $\operatorname{adj} A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$  and  $\operatorname{adj} B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$  then  $\operatorname{adj}(AB)$  is
  - (1)  $\begin{vmatrix} -7 & -1 \\ 7 & -9 \end{vmatrix}$

- $(2)\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (3)\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (4)\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$
- 18. The rank of the matrix  $\begin{vmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{vmatrix}$  is
  - (1) 1

- (3) 4
- (4) 3
- 19. If  $x^a y^b = e^m, x^c y^d = e^n, \Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}, \Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}, \Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ , then the values of x and yare respectively,
  - (1)  $e^{(\Delta_2/\Delta_1)}$ ,  $e^{(\Delta_3/\Delta_1)}$

(2)  $\log(\Delta_1/\Delta_3), \log(\Delta_2/\Delta_3)$ 

(3)  $\log(\Delta_2/\Delta_1), \log(\Delta_3/\Delta_1)$ 

(4))  $e^{(\Delta_1/\Delta_3)}, e^{(\Delta_2/\Delta_3)}$ 

- 20. Which of the following is/are correct?
  - (i) Adjoint of a symmetric matrix is also a symmetric matrix.
  - (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
  - (iii) If A is a square matrix of order n and  $\lambda$  is a scalar, then  $\operatorname{adj}(\lambda A) = \lambda^n \operatorname{adj}(A)$ .
  - (iv)  $A(\operatorname{adj} A) = (\operatorname{adj} A) A = |A| I$
  - (1) Only (i)
- (2) (ii) and (iii)
- (3) (iii) and (iv)
- (4) (i), (ii) and (iv)
- 21. If  $\rho(A) = \rho([A|B])$ , then the system AX = B of linear equations is
  - (1) consistent and has a unique solution
- (2) consistent
- (3) consistent and has infinitely many solution
- (4) inconsistent
- 22. If  $0 \le \theta \le \pi$  and the system of equations  $x + (\sin \theta)y (\cos \theta)z = 0, (\cos \theta)x y + z = 0$ ,  $(\sin \theta)x + y - z = 0$  has a non-trivial solution then  $\theta$  is
  - (1)  $\frac{2\pi}{3}$

- (2)  $\frac{3\pi}{4}$
- (3)  $\frac{5\pi}{6}$
- 23. The augmented matrix of a system of linear equations is  $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda 7 & \mu + 5 \end{bmatrix}$ . The system

has infinitely many solutions if

- (1)  $\lambda = 7, \mu \neq -5$

- (2)  $\lambda = -7, \mu = 5$  (3)  $\lambda \neq 7, \mu \neq -5$  (4)  $\lambda = 7, \mu = -5$
- 24. Let  $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$  and  $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$ . If B is the inverse of A, then the value of x is
  - (1) 2

- (2) 4
- (3) 3
- (4) 1

- 25. If  $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$ , then adj(adj A) is

# EXERCISE 2.9

Choose the correct or the most suitable answer from the given four alternatives:

- 1.  $i^n + i^{n+1} + i^{n+2} + i^{n+3}$  is
  - (1) 0

- (3) -1
- (4) i

- 2. The value of  $\sum_{n=1}^{15} (i^n + i^{n-1})$  is
  - (1) 1+i
- (2) i

- (3) 1
- (4) 0



- 3. The area of the triangle formed by the complex numbers z, iz, and z + iz in the Argand's diagram is
  - $(1) \frac{1}{2} |z|^2 \qquad (2) |z|^2$
- $(3) \frac{3}{2} |z|^2 \qquad (4) \ 2|z|^2$

| 4. The conjugate of a complex number | is $\frac{1}{1}$ | . Then, th | e complex | number is |
|--------------------------------------|------------------|------------|-----------|-----------|
|                                      | i-2              | - 5        | •         |           |

- $(1) \frac{1}{i+2} \qquad (2) \frac{-1}{i+2}$
- $(3) \frac{-1}{i-2}$
- $(4) \frac{1}{2}$

5. If 
$$z = \frac{\left(\sqrt{3} + i\right)^3 (3i + 4)^2}{\left(8 + 6i\right)^2}$$
, then  $|z|$  is equal to

- (1) 0
- (2) 1

- (3) 2
- (4) 3
- 6. If z is a non zero complex number, such that  $2iz^2 = \overline{z}$  then |z| is
  - $(1) \frac{1}{2}$
- (2) 1

- (3) 2
- (4) 3

7. If 
$$|z-2+i| \le 2$$
, then the greatest value of  $|z|$  is

- (1)  $\sqrt{3}-2$  (2)  $\sqrt{3}+2$
- (3)  $\sqrt{5} 2$
- (4)  $\sqrt{5}+2$

8. If 
$$\left|z - \frac{3}{z}\right| = 2$$
, then the least value of  $|z|$  is

- (1) 1
- (2) 2
- (3) 3
- (4) 5

9. If 
$$|z|=1$$
, then the value of  $\frac{1+z}{1+\overline{z}}$  is

- (1) z
- $(2) \overline{z}$
- (4) 1

10. The solution of the equation 
$$|z|-z=1+2i$$
 is

- (1)  $\frac{3}{2} 2i$  (2)  $-\frac{3}{2} + 2i$  (3)  $2 \frac{3}{2}i$
- $(4) 2 + \frac{3}{2}i$

11. If 
$$|z_1|=1$$
,  $|z_2|=2$ ,  $|z_3|=3$  and  $|9z_1z_2+4z_1z_3+z_2z_3|=12$ , then the value of  $|z_1+z_2+z_3|$  is

- (1) 1
- (2) 2

12. If z is a complex number such that 
$$z \in \mathbb{C} \setminus \mathbb{R}$$
 and  $z + \frac{1}{z} \in \mathbb{R}$ , then  $|z|$  is

- (1) 0
- (2) 1

- (3) 2

13. 
$$z_1, z_3$$
, and  $z_3$  are complex numbers such that  $z_1 + z_2 + z_3 = 0$  and  $|z_1| = |z_2| = |z_3| = 1$  then  $z_1^2 + z_2^2 + z_3^2$  is

- (1) 3
- (2) 2

- (3) 1
- (4) 0

14. If 
$$\frac{z-1}{z+1}$$
 is purely imaginary, then  $|z|$  is

- $(1)\frac{1}{2}$
- (2) 1

- (3) 2
- (4) 3

15. If 
$$z = x + iy$$
 is a complex number such that  $|z + 2| = |z - 2|$ , then the locus of z is

- (1) real axis
- (2) imaginary axis
- (3) ellipse

16. The principal argument of  $\frac{3}{-1+i}$  is

$$(1) \frac{-5\pi}{6}$$

(2) 
$$\frac{-2\pi}{3}$$

(3) 
$$\frac{-3\pi}{4}$$

(4) 
$$\frac{-\pi}{2}$$

17. The principal argument of  $(\sin 40^{\circ} + i \cos 40^{\circ})^{5}$  is

$$(1) -110^{\circ}$$

$$(2) -70^{\circ}$$

$$(3) 70^{\circ}$$

18. If  $(1+i)(1+2i)(1+3i)\cdots(1+ni) = x+iy$ , then  $2\cdot 5\cdot 10\cdots(1+n^2)$  is

(3) 
$$x^2 + v^2$$

$$(4) 1+n^2$$

19. If  $\omega \neq 1$  is a cubic root of unity and  $(1+\omega)^7 = A + B\omega$ , then (A,B) equals

$$(2)(-1,1)$$

$$(4)$$
  $(1,1)$ 

20. The principal argument of the complex number  $\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$  is

(1) 
$$\frac{2\pi}{3}$$

(2) 
$$\frac{\pi}{6}$$

(3) 
$$\frac{5\pi}{6}$$

$$(4) \frac{7}{4}$$

(1)  $\frac{2\pi}{3}$  (2)  $\frac{\pi}{6}$  (3)  $\frac{5\pi}{6}$  (4)  $\frac{\pi}{2}$  21. If  $\alpha$  and  $\beta$  are the roots of  $x^2 + x + 1 = 0$ , then  $\alpha^{2020} + \beta^{2020}$  is

$$(1) -2$$

$$(2) -1$$

22. The product of all four values of  $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{\frac{3}{4}}$  is

$$(1) -2$$

$$(2) -1$$

23. If  $\omega \neq 1$  is a cubic root of unity and  $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$ , then k is equal to

$$(2) -1$$

$$(3) \sqrt{3}i$$

$$(3) \sqrt{3}i \qquad (4) -\sqrt{3}i$$

24. The value of  $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$  is

(1)  $cis\frac{2\pi}{3}$  (2)  $cis\frac{4\pi}{3}$  (3)  $-cis\frac{2\pi}{3}$  (4)  $-cis\frac{4\pi}{3}$ 

(1) 
$$cis \frac{2\pi}{3}$$

(2) 
$$cis \frac{4\pi}{3}$$

(3) 
$$-cis \frac{2\pi}{3}$$

(4) 
$$-cis \frac{4\pi}{3}$$

25. If  $\omega = cis \frac{2\pi}{3}$ , then the number of distinct roots of  $\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1 \\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0$ 

$$(3) \ 3$$



### Choose the correct or the most suitable answer from the given four alternatives:

- 1. A zero of  $x^3 + 64$  is
  - (1) 0
- (2) 4
- (3) 4*i*
- (4) 4
- 2. If f and g are polynomials of degrees m and n respectively, and if  $h(x) = (f \circ g)(x)$ , then the degree of h is
  - (1)mn
- (2) m + n
- (3)  $m^{n}$
- $(4) n^m$



- 3. A polynomial equation in x of degree n always has
  - (1) n distinct roots
- (2) n real roots
- (3) n complex roots
- (4) at most one root.
- 4. If  $\alpha, \beta$ , and  $\gamma$  are the zeros of  $x^3 + px^2 + qx + r$ , then  $\sum \frac{1}{\alpha}$  is
  - $(1)-\frac{q}{r}$
- $(2)-\frac{p}{r}$
- $(3)\frac{q}{r}$
- $(4)-\frac{q}{p}$
- 5. According to the rational root theorem, which number is not possible rational zero of
  - $4x^7 + 2x^4 10x^3 5$ ? (1)-1
    - $(2)\frac{5}{4}$

- $(3)\frac{4}{5}$
- (4) 5
- 6. The polynomial  $x^3 kx^2 + 9x$  has three real zeros if and only if, k satisfies
  - $(1)|k| \leq 6$
- (2) k = 0
- (3)|k| > 6
- $(4) |k| \ge 6$
- 7. The number of real numbers in  $[0, 2\pi]$  satisfying  $\sin^4 x 2\sin^2 x + 1$  is
  - (1)2

(2)4

(3)1

- (4) ∞
- 8. If  $x^3 + 12x^2 + 10ax + 1999$  definitely has a positive zero, if and only if
  - $(1)a \ge 0$
- (2) a > 0
- (3) a < 0
- (4)  $a \le 0$

- 9. The polynomial  $x^3 + 2x + 3$  has
  - (1) one negative and two imaginary zeros
- (2) one positive and two imaginary zeros

(3) three real zeros

- (4) no zeros
- 10. The number of positive zeros of the polynomial  $\sum_{j=0}^{n} {}^{n}C_{r}(-1)^{r}x^{r}$  is
  - (1)0

(2)n

(3) < n

(4)



Choose the correct or the most suitable answer from the given four alternatives.

- 1. The value of  $\sin^{-1}(\cos x)$ ,  $0 \le x \le \pi$  is
  - (1)  $\pi x$
- (2)  $x \frac{\pi}{2}$
- $(3) \ \frac{\pi}{2} x$
- (4)  $x-\pi$

- 2. If  $\sin^{-1} x + \sin^{-1} y = \frac{2\pi}{3}$ ; then  $\cos^{-1} x + \cos^{-1} y$  is equal to
  - (1)  $\frac{2\pi}{2}$

(3)  $\frac{\pi}{6}$ 

(4)  $\pi$ 

- 3.  $\sin^{-1}\frac{3}{5} \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} \csc^{-1}\frac{13}{12}$  is equal to
  - (1)  $2\pi$

(3) 0

(4)  $\tan^{-1}\frac{12}{65}$ 

- 4. If  $\sin^{-1} x = 2 \sin^{-1} \alpha$  has a solution, then
  - $(1) \left| \alpha \right| \leq \frac{1}{\sqrt{2}}$
- (2)  $\left|\alpha\right| \ge \frac{1}{\sqrt{2}}$
- (3)  $\left|\alpha\right| < \frac{1}{\sqrt{2}}$
- $(4) |\alpha| > \frac{1}{\sqrt{2}}$

- 5.  $\sin^{-1}(\cos x) = \frac{\pi}{2} x$  is valid for
  - $(1) -\pi < x < 0$
- $(2) \ 0 \le x \le \pi$
- (3)  $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$  (4)  $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$
- 6. If  $\sin^{-1} x + \sin^{-1} y + \sin^{-1} z = \frac{3\pi}{2}$ , the value of  $x^{2017} + y^{2018} + z^{2019} \frac{9}{x^{101} + y^{101} + z^{101}}$  is
  - (1) 0

(4) 3

- 7. If  $\cot^{-1} x = \frac{2\pi}{5}$  for some  $x \in R$ , the value of  $\tan^{-1} x$  is
  - $(1) \frac{\pi}{10}$
- (2)  $\frac{\pi}{5}$

- (4)  $-\frac{\pi}{5}$
- 8. The domain of the function defined by  $f(x) = \sin^{-1} \sqrt{x-1}$  is
  - (1) [1, 2]
- (2) [-1, 1]
- (3) [0,1]
- (4) [-1, 0]

- 9 If  $x = \frac{1}{5}$ , the value of  $\cos(\cos^{-1} x + 2\sin^{-1} x)$  is
  - $(1) \sqrt{\frac{24}{25}}$
- (2)  $\sqrt{\frac{24}{25}}$
- (3)  $\frac{1}{5}$
- $(4) -\frac{1}{5}$

- 10.  $\tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right)$  is equal to
  - $(1) \frac{1}{2} \cos^{-1} \left( \frac{3}{5} \right) \qquad (2) \frac{1}{2} \sin^{-1} \left( \frac{3}{5} \right)$
- (3)  $\frac{1}{2} \tan^{-1} \left( \frac{3}{5} \right)$  (4)  $\tan^{-1} \left( \frac{1}{2} \right)$

- 11. If the function  $f(x) = \sin^{-1}(x^2 3)$ , then x belongs to
  - (1)[-1,1]

(2)  $\left| \sqrt{2}, 2 \right|$ 

(3)  $\begin{bmatrix} -2, -\sqrt{2} \end{bmatrix} \cup \begin{bmatrix} \sqrt{2}, 2 \end{bmatrix}$ 

- $(4) \left[ -2, -\sqrt{2} \right]$
- 12. If cot<sup>-1</sup> 2 and cot<sup>-1</sup> 3 are two angles of a triangle, then the third angle is
  - (1)  $\frac{\pi}{4}$

(2)  $\frac{3\pi}{4}$ 

- (3)  $\frac{\pi}{6}$
- (4)  $\frac{\pi}{3}$

- 13.  $\sin^{-1}\left(\tan\frac{\pi}{4}\right) \sin^{-1}\left(\sqrt{\frac{3}{x}}\right) = \frac{\pi}{6}$ . Then x is a root of the equation
- (1)  $x^2 x 6 = 0$  (2)  $x^2 x 12 = 0$  (3)  $x^2 + x 12 = 0$  (4)  $x^2 + x 6 = 0$

- 14.  $\sin^{-1}(2\cos^2 x 1) + \cos^{-1}(1 2\sin^2 x) =$ 
  - (1)  $\frac{\pi}{2}$

(2)  $\frac{\pi}{2}$ 

(3)  $\frac{\pi}{4}$ 

- (4)  $\frac{\pi}{6}$
- 15. If  $\cot^{-1}(\sqrt{\sin\alpha}) + \tan^{-1}(\sqrt{\sin\alpha}) = u$ , then  $\cos 2u$  is equal to
  - (1)  $\tan^2 \alpha$
- (2) 0

(3) -1

(4)  $\tan 2\alpha$ 

- 16. If  $|x| \le 1$ , then  $2 \tan^{-1} x \sin^{-1} \frac{2x}{1+x^2}$  is equal to
  - (1)  $\tan^{-1} x$
- (2)  $\sin^{-1} x$
- (3) 0

(4)  $\pi$ 

- 17. The equation  $\tan^{-1} x \cot^{-1} x = \tan^{-1} \left( \frac{1}{\sqrt{3}} \right)$  has
  - (1) no solution

(2) unique solution

(3) two solutions

- (4) infinite number of solutions
- 18. If  $\sin^{-1} x + \cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$ , then x is equal to
  - $(1)\frac{1}{2}$

(2)  $\frac{1}{\sqrt{5}}$ 

- (3)  $\frac{2}{\sqrt{5}}$
- (4)  $\frac{\sqrt{3}}{2}$

- 19. If  $\sin^{-1}\frac{x}{5} + \csc^{-1}\frac{5}{4} = \frac{\pi}{2}$ , then the value of x is
  - (1)4

(2) 5

(3) 2

(4) 3

- 20.  $\sin(\tan^{-1} x)$ , |x| < 1 is equal to
  - (1)  $\frac{x}{\sqrt{1-x^2}}$  (2)  $\frac{1}{\sqrt{1-x^2}}$
- (3)  $\frac{1}{\sqrt{1+x^2}}$
- (4)  $\frac{x}{\sqrt{1+x^2}}$

the distance between the foci is

 $(1) 0, -\frac{40}{9}$ 

 $(1) \frac{4}{3}$ 

and x + 2y = 4 is

(1) 10



1. The equation of the circle passing through (1,5) and (4,1) and touching y-axis is

2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half

3. The circle  $x^2 + y^2 = 4x + 8y + 5$  intersects the line 3x - 4y = m at two distinct points if

(3)  $\frac{40}{9}$ 

(3)  $\frac{2}{\sqrt{3}}$ 



 $(4) \frac{-40}{9}$ 

 $(4) \frac{3}{2}$ 

(4) 4

### Choose the correct or the most suitable answer from the given four alternatives:

 $x^{2} + y^{2} - 5x - 6y + 9 + \lambda (4x + 3y - 19) = 0$  where  $\lambda$  is equal to

(2)  $\frac{4}{\sqrt{3}}$ 

|   | (1) 15 < m < 65                                     | (2) 35 < m < 85                   | (3) -85 < m < -35                 | (4) -35 < m < 15        |
|---|-----------------------------------------------------|-----------------------------------|-----------------------------------|-------------------------|
|   | 4. The length of the diameter                       | er of the circle which to         | uches the x -axis at the po       | oint (1,0) and passes   |
|   | through the point $(2,3)$ .                         |                                   |                                   |                         |
|   | (1) $\frac{6}{5}$                                   | (2) $\frac{5}{3}$                 | (3) $\frac{10}{3}$                | $(4) \frac{3}{5}$       |
|   | 5. The radius of the circle 3                       | $x^2 + by^2 + 4bx - 6by + b$      | $^{2} = 0$ is                     |                         |
|   | (1) 1                                               | (2) 3                             | (3) $\sqrt{10}$                   | $(4) \sqrt{11}$         |
| ( | 6. The centre of the circle $y^2 - 14y + 45 = 0$ is | inscribed in a square             | formed by the lines $x^2$         | $x^2 - 8x - 12 = 0$ and |
|   | (1) (4,7)                                           | (2) (7,4)                         | (3) (9,4)                         | (4) (4,9)               |
| , | 7. The equation of the norm                         | al to the circle $x^2 + y^2$      | -2x-2y+1=0 which is               | parallel to the line    |
|   | 2x + 4y = 3 is                                      |                                   |                                   |                         |
|   | (1) x+2y=3                                          | (2) $x+2y+3=0$                    | (3) 2x + 4y + 3 = 0               | (4) x-2y+3=0            |
| : | B. If $P(x, y)$ be any point on                     | $16x^2 + 25y^2 = 400 \text{ wit}$ | h foci $F_1(3,0)$ and $F_2(-3,0)$ | 0) then $PF_1 + PF_2$   |
|   | is                                                  |                                   |                                   |                         |
|   | (1) 8                                               | (2) 6                             | (3) 10                            | (4) 12                  |
| 9 | 9. The radius of the circle p                       | passing through the poin          | nt(6,2)two of whose diar          | meter are x + y = 6     |

(3) 6

(2)  $2\sqrt{5}$ 

- 10. The area of quadrilateral formed with foci of the hyperbolas  $\frac{x^2}{a^2} \frac{y^2}{b^2} = 1$  and  $\frac{x^2}{a^2} \frac{y^2}{b^2} = -1$ is
  - (1)  $4(a^2+b^2)$
- (2)  $2(a^2+b^2)$
- (3)  $a^2 + b^2$
- $(4) \frac{1}{2}(a^2+b^2)$
- 11. If the normals of the parabola  $y^2 = 4x$  drawn at the end points of its latus rectum are tangents to the circle  $(x-3)^2 + (y+2)^2 = r^2$ , then the value of  $r^2$  is
  - (1) 2

(2) 3

(3) 1

- (4) 4
- 12. If x + y = k is a normal to the parabola  $y^2 = 12x$ , then the value of k is
  - (1) 3

(2) -1

(3) 1

- (4)9
- 13. The ellipse  $E_1: \frac{x^2}{Q} + \frac{y^2}{A} = 1$  is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse  $E_2$  passing through the point (0,4) circumscribes the rectangle R. The eccentricity of the ellipse is
  - (1)  $\frac{\sqrt{2}}{2}$

- (2)  $\frac{\sqrt{3}}{2}$
- $(3) \frac{1}{2}$
- $(4) \frac{3}{4}$
- 14. Tangents are drawn to the hyperbola  $\frac{x^2}{9} \frac{y^2}{4} = 1$  parallel to the straight line 2x y = 1. One of the points of contact of tangents on the hyperbola is
  - $(1)\left(\frac{9}{2\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$
- (2)  $\left(\frac{-9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$  (3)  $\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
- (4)  $(3\sqrt{3}, -2\sqrt{2})$
- 15. The equation of the circle passing through the foci of the ellipse  $\frac{x^2}{16} + \frac{y^2}{0} = 1$  having centre at (0,3) is
  - (1)  $x^2 + v^2 6v 7 = 0$

(2)  $x^2 + v^2 - 6v + 7 = 0$ 

(3)  $x^2 + y^2 - 6y - 5 = 0$ 

- (4)  $x^2 + v^2 6v + 5 = 0$
- 16. Let C be the circle with centre at (1,1) and radius = 1. If T is the circle centered at (0,y)passing through the origin and touching the circle C externally, then the radius of T is equal
  - $(1) \frac{\sqrt{3}}{\sqrt{2}}$

- (2)  $\frac{\sqrt{3}}{2}$
- $(3) \frac{1}{2}$

- $(4) \frac{1}{4}$
- 17. Consider an ellipse whose centre is of the origin and its major axis is along x-axis. If its eccentricty is  $\frac{3}{5}$  and the distance between its foci is 6, then the area of the quadrilateral inscribed in the ellipse with diagonals as major and minor axis of the ellipse is
  - (1) 8

- (2)32
- (3)80

(4)40

- 18. Area of the greatest rectangle inscribed in the ellipse  $\frac{x^2}{a^2} + \frac{y^2}{k^2} = 1$  is
  - (1) 2ab

- (2) ab
- (3)  $\sqrt{ab}$
- $(4) \frac{a}{b}$
- 19. An ellipse has OB as semi minor axes, F and F' its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is
  - $(1) \frac{1}{\sqrt{2}}$

 $(2)\frac{1}{2}$ 

 $(3) \frac{1}{4}$ 

 $(4) \frac{1}{\sqrt{3}}$ 

- 20. The eccentricity of the ellipse  $(x-3)^2 + (y-4)^2 = \frac{y^2}{9}$  is
  - $(1) \frac{\sqrt{3}}{2}$

- $(2)\frac{1}{2}$
- $(3) \frac{1}{3\sqrt{2}}$
- $(4) \frac{1}{\sqrt{3}}$
- 21. If the two tangents drawn from a point P to the parabola  $y^2 = 4x$  are at right angles then the locus of P is
  - (1) 2x+1=0
- (2) x = -1
- (3) 2x-1=0
- (4) x = 1
- 22. The circle passing through (1,-2) and touching the axis of x at (3,0) passing through the point
  - (1) (-5,2)
- (2)(2,-5)
- (3)(5,-2)
- (4) (-2,5)
- 23. The locus of a point whose distance from (-2,0) is  $\frac{2}{3}$  times its distance from the line  $x = \frac{-9}{2}$  is
  - (1) a parabola
- (2) a hyperbola
- (3) an ellipse
- (4) a circle
- 24. The values of m for which the line  $y = mx + 2\sqrt{5}$  touches the hyperbola  $16x^2 9y^2 = 144$  are the roots of  $x^2 - (a+b)x - 4 = 0$ , then the value of (a+b) is
  - (1) 2

(2) 4

- (4) -2
- 25. If the coordinates at one end of a diameter of the circle  $x^2 + y^2 8x 4y + c = 0$  are (11,2), the coordinates of the other end are
  - (1) (-5,2)
- (2) (2,-5)
- (3)(5,-2)
- (4) (-2,5)

# EXERCISE 6.10

### Choose the correct or the most suitable answer from the given four alternatives :

- 1. If  $\vec{a}$  and  $\vec{b}$  are parallel vectors, then  $[\vec{a}, \vec{c}, \vec{b}]$  is equal to
- (2) -1

- 2. If a vector  $\vec{\alpha}$  lies in the plane of  $\vec{\beta}$  and  $\vec{\gamma}$ , then



- (2)  $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = -1$
- (3)  $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$
- (4)  $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$

- 3. If  $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$ , then the value of  $[\vec{a}, \vec{b}, \vec{c}]$  is

  - (1)  $|\vec{a}| |\vec{b}| |\vec{c}|$  (2)  $\frac{1}{3} |\vec{a}| |\vec{b}| |\vec{c}|$
- (3) 1

(4) -1

(1) 0°

| 4.  | If $\vec{a}, \vec{b}, \vec{c}$ are three un                                               | it vectors such that $\vec{a}$ is p                                                                                                                                            | erpendicular to $\vec{b}$ , and                                                                                                                       | is parallel to $\vec{c}$ then                                                     |
|-----|-------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
|     | $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to                                     |                                                                                                                                                                                |                                                                                                                                                       |                                                                                   |
|     | (1) $\vec{a}$                                                                             | (2) $\vec{b}$                                                                                                                                                                  | (3) $\vec{c}$                                                                                                                                         | $(4) \vec{0}$                                                                     |
| 5.  | If $[\vec{a}, \vec{b}, \vec{c}] = 1$ , then the                                           | the value of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}} + \frac{\vec{b} \cdot (\vec{a} \times \vec{c})}{(\vec{a} \times \vec{c})}$ | $\frac{(\vec{c} \times \vec{a})}{(\vec{c}) \cdot \vec{c}} + \frac{\vec{c} \cdot (\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is |                                                                                   |
|     | (1) 1                                                                                     | (2) -1                                                                                                                                                                         | (3) 2                                                                                                                                                 | (4) 3                                                                             |
| 6.  | The volume of the $\hat{i} + \hat{j}$ , $\hat{i} + 2\hat{j}$ , $\hat{i} + \hat{j} + \pi$  | ne parallelepiped with $t\hat{k}$ is                                                                                                                                           | its edges represente                                                                                                                                  | ed by the vectors                                                                 |
|     | $(1)\frac{\pi}{2}$                                                                        | $(2) \frac{\pi}{3}$                                                                                                                                                            | (3) π                                                                                                                                                 | $(4) \frac{\pi}{4}$                                                               |
| 7.  | If $\vec{a}$ and $\vec{b}$ are unit ve                                                    | ectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]$                                                                                                                  | $[\vec{b}] = \frac{1}{4}$ , then the angle l                                                                                                          | between $\vec{a}$ and $\vec{b}$ is                                                |
|     | $(1) \frac{\pi}{6}$                                                                       | $(2) \frac{\pi}{4}$                                                                                                                                                            | $(3) \frac{\pi}{3}$                                                                                                                                   | $(4) \frac{\pi}{2}$                                                               |
| 8.  | If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$ , $\vec{b} = \hat{i}$                          | $+\hat{j}$ , $\vec{c} = \hat{i}$ and $(\vec{a} \times \vec{b}) \times \vec{c} = \vec{c}$                                                                                       | $=\lambda \vec{a} + \mu \vec{b}$ , then the value                                                                                                     | ne of $\lambda + \mu$ is                                                          |
|     | (1) 0                                                                                     | (2) 1                                                                                                                                                                          | (3) 6                                                                                                                                                 | (4) 3                                                                             |
| 9.  | If $\vec{a}, \vec{b}, \vec{c}$ are non-copla                                              | nar, non-zero vectors such th                                                                                                                                                  | $\text{nat} [\vec{a}, \vec{b}, \vec{c}] = 3, \text{then } \{[$                                                                                        | $\vec{a} \times \vec{b}, \ \vec{b} \times \vec{c}, \ \vec{c} \times \vec{a}]\}^2$ |
|     | is equal to                                                                               |                                                                                                                                                                                |                                                                                                                                                       |                                                                                   |
|     | (1) 81                                                                                    | (2) 9                                                                                                                                                                          | (3) 27                                                                                                                                                | (4)18                                                                             |
| 10. | If $\vec{a}, \vec{b}, \vec{c}$ are three n                                                | on-coplanar unit vectors s                                                                                                                                                     | such that $\vec{a} \times (\vec{b} \times \vec{c}) = \frac{\vec{b}}{\vec{c}}$                                                                         | $\frac{c+\vec{c}}{\sqrt{2}}$ , then the angle                                     |
|     | between $\vec{a}$ and $\vec{b}$ is                                                        |                                                                                                                                                                                |                                                                                                                                                       |                                                                                   |
|     | $(1) \frac{\pi}{2}$                                                                       | $(2) \frac{3\pi}{4}$                                                                                                                                                           | $(3) \frac{\pi}{4}$                                                                                                                                   | (4) $\pi$                                                                         |
| 11. |                                                                                           | arallelepiped with $\vec{a} \times \vec{b}$ , $\vec{b}$                                                                                                                        |                                                                                                                                                       |                                                                                   |
|     | units, then the volu<br>$(\vec{c} \times \vec{a}) \times (\vec{a} \times \vec{b})$ as con | me of the parallelepiped terminous edges is,                                                                                                                                   | with $(a \times b) \times (b \times c)$ ,                                                                                                             | $(b \times c) \times (c \times a)$ and                                            |
|     | (1) 8 cubic units                                                                         | (2) 512 cubic units (3)                                                                                                                                                        | 64 cubic units (4) 2                                                                                                                                  | 4 cubic units                                                                     |
| 12. | Consider the vectors                                                                      | $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b})$                                                                                                      | $\times (\vec{c} \times \vec{d}) = \vec{0}$ . Let $P_1$ a                                                                                             | and $P_2$ be the planes                                                           |
|     |                                                                                           | es of vectors $\vec{a}, \vec{b}$ and $\vec{c}, \vec{d}$                                                                                                                        |                                                                                                                                                       |                                                                                   |
|     | $P_2$ is                                                                                  |                                                                                                                                                                                |                                                                                                                                                       |                                                                                   |
|     |                                                                                           |                                                                                                                                                                                |                                                                                                                                                       |                                                                                   |

(3) 60° (4) 90°

(2) 45°

- 13. If  $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b}) \times \vec{c}$ , where  $\vec{a}, \vec{b}, \vec{c}$  are any three vectors such that  $\vec{b} \cdot \vec{c} \neq 0$  and  $\vec{a} \cdot \vec{b} \neq 0$ , then  $\vec{a}$  and  $\vec{c}$  are
  - (1) perpendicular

(2) parallel

(3) inclined at an angle  $\frac{\pi}{3}$ 

- (4) inclined at an angle  $\frac{\pi}{6}$
- 14. If  $\vec{a} = 2\hat{i} + 3\hat{j} \hat{k}$ ,  $\vec{b} = \hat{i} + 2\hat{j} 5\hat{k}$ ,  $\vec{c} = 3\hat{i} + 5\hat{j} \hat{k}$ , then a vector perpendicular to  $\vec{a}$  and lies in the plane containing b and  $\vec{c}$  is
  - (1)  $-17\hat{i} + 21\hat{i} 97\hat{k}$

(2)  $17\hat{i} + 21\hat{i} - 123\hat{k}$ 

(3)  $-17\hat{i} - 21\hat{i} + 97\hat{k}$ 

- $(4) -17\hat{i} -21\hat{j} -97\hat{k}$
- 15. The angle between the lines  $\frac{x-2}{3} = \frac{y+1}{-2}$ , z = 2 and  $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$  is
  - (1)  $\frac{\pi}{6}$
- (2)  $\frac{\pi}{4}$

- (3)  $\frac{\pi}{3}$  (4)  $\frac{\pi}{2}$
- 16. If the line  $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$  lies in the plane  $x+3y-\alpha z+\beta=0$ , then  $(\alpha,\beta)$  is
  - (1) (-5,5)
- (2) (-6,7)
- (3) (5,-5)
- 17. The angle between the line  $\vec{r} = (\hat{i} + 2\hat{j} 3\hat{k}) + t(2\hat{i} + \hat{j} 2\hat{k})$  and the plane  $\vec{r} \cdot (\hat{i} + \hat{j}) + 4 = 0$  is  $(2) 30^{\circ}$
- 18. The coordinates of the point where the line  $\vec{r} = (6\hat{i} \hat{j} 3\hat{k}) + t(-\hat{i} + 4\hat{k})$  meets the plane  $\vec{r} \cdot (\hat{i} + \hat{j} - \hat{k}) = 3$  are
  - (1) (2,1,0)
- (2) (7,-1,-7)
- (3) (1,2,-6)
- (4) (5,-1,1)
- 19. Distance from the origin to the plane 3x-6y+2z+7=0 is
  - (1) 0

(2) 1

(3) 2

- (4) 3
- 20. The distance between the planes x+2y+3z+7=0 and 2x+4y+6z+7=0 is
  - $(1) \frac{\sqrt{7}}{2\sqrt{2}}$
- (2)  $\frac{7}{2}$

- (3)  $\frac{\sqrt{7}}{2}$
- $(4) \frac{7}{2\sqrt{2}}$

- 21. If the direction cosines of a line are  $\frac{1}{6}$ ,  $\frac{1}{6}$ , then
  - (1)  $c = \pm 3$
- (2)  $c = \pm \sqrt{3}$
- (3) c > 0
- (4) 0 < c < 1
- 22. The vector equation  $\vec{r} = (\hat{i} 2\hat{j} \hat{k}) + t(6\hat{j} \hat{k})$  represents a straight line passing through the points
  - (1) (0,6,-1) and (1,-2,-1)

(2) (0,6,-1) and (-1,-4,-2)

(3) (1,-2,-1) and (1,4,-2)

(4) (1,-2,-1) and (0,-6,1)

- 23. If the distance of the point (1,1,1) from the origin is half of its distance from the plane x+y+z+k=0, then the values of k are
  - $(1) \pm 3$
- $(2) \pm 6$

- (3) -3,9
- (4) 3, -9
- 24. If the planes  $\vec{r} \cdot (2\hat{i} \lambda \hat{j} + \hat{k}) = 3$  and  $\vec{r} \cdot (4\hat{i} + \hat{j} \mu \hat{k}) = 5$  are parallel, then the value of  $\lambda$  and  $\mu$  are
  - $(1) \frac{1}{2}, -2$
- $(2) -\frac{1}{2}, 2$
- $(3) -\frac{1}{2}, -2$
- 25. If the length of the perpendicular from the origin to the plane  $2x+3y+\lambda z=1$ ,  $\lambda>0$  is  $\frac{1}{5}$ , then the value of  $\lambda$  is
  - (1)  $2\sqrt{3}$
- (2)  $3\sqrt{2}$

(3)0

(4) 1



### Choose the correct or the most suitable answer from the given four alternatives:

1. The volume of a sphere is increasing in volume at the rate of  $3\pi$  cm<sup>3</sup> / sec.

The rate of change of its radius when radius is  $\frac{1}{2}$  cm

- (1) 3 cm/s
- (2) 2 cm/s
- (3) 1 cm/s
- (4)  $\frac{1}{2}$  cm/s



- (1)  $\frac{3}{25}$  radians/sec (2)  $\frac{4}{25}$  radians/sec (3)  $\frac{1}{5}$  radians/sec (4)  $\frac{1}{3}$  radians/sec

3. The position of a particle moving along a horizontal line of any time t is given by  $s(t) = 3t^2 - 2t - 8$ . The time at which the particle is at rest is

- (1) t = 0
- (2)  $t = \frac{1}{3}$
- (3) t = 1
- (4) t = 3

4. A stone is thrown up vertically. The height it reaches at time t seconds is given by  $x = 80t - 16t^2$ . The stone reaches the maximum height in time t seconds is given by

- (1)2
- (2) 2.5
- (4)3.5

5. The point on the curve  $6y = x^3 + 2$  at which y-coordinate changes 8 times as fast as x-coordinate is

- (1)(4,11)
- (2) (4,-11)
- (3) (-4,11)
- (4) (-4,-11)

6. The abscissa of the point on the curve  $f(x) = \sqrt{8-2x}$  at which the slope of the tangent is -0.25?

- (1) -8
- (2) -4
- (3) -2
- (4)0

| 7. The slope of the line normal to the curve j | $f(x) = 2\cos 4x$ | at $x = \frac{\pi}{12}$ i |
|------------------------------------------------|-------------------|---------------------------|
|------------------------------------------------|-------------------|---------------------------|

$$(1) -4\sqrt{3}$$

(3) 
$$\frac{\sqrt{3}}{12}$$

8. The tangent to the curve  $y^2 - xy + 9 = 0$  is vertical when

(1) 
$$y = 0$$

(2) 
$$y = \pm \sqrt{3}$$
 (3)  $y = \frac{1}{2}$ 

(3) 
$$y = \frac{1}{2}$$

(4) 
$$y = \pm 3$$

9. Angle between  $y^2 = x$  and  $x^2 = y$  at the origin is

(1) 
$$\tan^{-1} \frac{3}{4}$$

(1) 
$$\tan^{-1}\frac{3}{4}$$
 (2)  $\tan^{-1}\left(\frac{4}{3}\right)$  (3)  $\frac{\pi}{2}$ 

(3) 
$$\frac{\pi}{2}$$

$$(4) \frac{\pi}{4}$$

10. The value of the limit  $\lim_{x\to 0} \left(\cot x - \frac{1}{x}\right)$  is

11. The function  $\sin^4 x + \cos^4 x$  is increasing in the interval

$$(1)\left[\frac{5\pi}{8},\frac{3\pi}{4}\right] \qquad (2)\left[\frac{\pi}{2},\frac{5\pi}{8}\right] \qquad (3)\left[\frac{\pi}{4},\frac{\pi}{2}\right] \qquad (4)\left[0,\frac{\pi}{4}\right]$$

$$(2) \left[ \frac{\pi}{2}, \frac{5\pi}{8} \right]$$

$$(3) \left[ \frac{\pi}{4}, \frac{\pi}{2} \right]$$

$$(4) \left[ 0, \frac{\pi}{4} \right]$$

12. The number given by the Rolle's theorem for the function  $x^3 - 3x^2$ ,  $x \in [0,3]$  is

(2) 
$$\sqrt{2}$$

(3) 
$$\frac{3}{2}$$

13. The number given by the Mean value theorem for the function  $\frac{1}{x}$ ,  $x \in [1,9]$  is

14. The minimum value of the function |3-x|+9 is

15. The maximum slope of the tangent to the curve  $y = e^x \sin x, x \in [0, 2\pi]$  is at

$$(1) x = \frac{\pi}{4}$$

$$(2) x = \frac{\pi}{2}$$

$$(3) x = \pi$$

(4) 
$$x = \frac{3\pi}{2}$$

16. The maximum value of the function  $x^2e^{-2x}$ , x > 0 is

$$(1)\frac{1}{e}$$

(2) 
$$\frac{1}{2e}$$
 (3)  $\frac{1}{e^2}$ 

(3) 
$$\frac{1}{e^2}$$

$$(4) \frac{4}{e^4}$$

17. One of the closest points on the curve  $x^2 - y^2 = 4$  to the point (6,0) is

$$(2) \left(\sqrt{5},1\right)$$

$$(3)$$
  $(3,\sqrt{5})$ 

$$(4)\left(\sqrt{13},-\sqrt{3}\right)$$

18. The maximum value of the product of two positive numbers, when their sum of the squares is 200, is

(2) 
$$25\sqrt{7}$$

(4) 
$$24\sqrt{14}$$

- 19. The curve  $y = ax^4 + bx^2$  with ab > 0
  - (1) has no horizontal tangent
- (2) is concave up

(3) is concave down

- (4) has no points of inflection
- 20. The point of inflection of the curve  $y = (x-1)^3$  is
  - (1) (0,0)
- (2)(0,1)
- (3)(1,0)
- (4)(1,1)



### Choose the correct or the most suitable answer from the given four alternatives :

- 1. A circular template has a radius of 10 cm. The measurement of radius has an approximate error of 0.02 cm. Then the percentage error in calculating area of this template is
  - (1) 0.2%
- (2) 0.4%
- (3) 0.04%
- 2. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
  - $(1)\frac{1}{31}$
- $(2)\frac{1}{5}$

- (3)5
- (4) 31

- 3. If  $u(x, y) = e^{x^2 + y^2}$ , then  $\frac{\partial u}{\partial x}$  is equal to
  - (1)  $e^{x^2+y^2}$
- (2) 2xu
- (3)  $x^2u$
- (4)  $y^2 u$

- 4. If  $v(x, y) = \log(e^x + e^y)$ , then  $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$  is equal to

  - (1)  $e^x + e^y$  (2)  $\frac{1}{e^x + e^y}$
- (4)1



- (1)  $x^y \log x$
- $(2) y \log x$
- (3)  $vx^{y-1}$
- $(4) x \log y$

- 6. If  $f(x,y) = e^{xy}$ , then  $\frac{\partial^2 f}{\partial x \partial y}$  is equal to
  - $(1) xye^{xy}$
- (2)  $(1+xy)e^{xy}$
- (3)  $(1+v)e^{xy}$
- (4)  $(1+x)e^{xy}$
- 7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is
  - (1) 0.4 cu.cm
- (2) 0.45 cu.cm
- (3) 2 cu.cm
- (4) 4.8 cu.cm
- 8. The change in the surface area  $S = 6x^2$  of a cube when the edge length varies from  $x_0$  to  $x_0 + dx$  is
  - (1)  $12x_0 + dx$
- (2)  $12x_0 dx$
- (3)  $6x_0 dx$
- (4)  $6x_0 + dx$

- 9. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is
  - (1)  $0.3xdx m^3$
- (2)  $0.03x m^3$
- (3)  $0.03x^2m^3$
- (4)  $0.03x^3m^3$

- 10. If  $g(x, y) = 3x^2 5y + 2y^2$ ,  $x(t) = e^t$  and  $y(t) = \cos t$ , then  $\frac{dg}{dt}$  is equal to
  - (1)  $6e^{2t} + 5\sin t 4\cos t\sin t$
- (2)  $6e^{2t} 5\sin t + 4\cos t \sin t$
- (3)  $3e^{2t} + 5\sin t + 4\cos t\sin t$
- (4)  $3e^{2t} 5\sin t + 4\cos t\sin t$
- 11. If  $f(x) = \frac{x}{x+1}$ , then its differential is given by
  - $(1) \frac{-1}{(x+1)^2} dx \qquad (2) \frac{1}{(x+1)^2} dx \qquad (3) \frac{1}{x+1} dx \qquad (4) \frac{-1}{x+1} dx$

- 12. If  $u(x, y) = x^2 + 3xy + y 2019$ , then  $\frac{\partial u}{\partial x}$  is equal to
  - (1) -4
- (2) -3

- (3) -7
- (4) 13

- 13. Linear approximation for  $g(x) = \cos x$  at  $x = \frac{\pi}{2}$  is

  - (1)  $x + \frac{\pi}{2}$  (2)  $-x + \frac{\pi}{2}$
- $(4) -x \frac{\pi}{2}$
- 14. If  $w(x, y, z) = x^2(y z) + y^2(z x) + z^2(x y)$ , then  $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$  is
  - (1) xy + yz + zx (2) x(y+z)
- (3) y(z+x)
- (4) 0

- 15. If f(x, y, z) = xy + yz + zx, then  $f_x f_z$  is equal to
  - (1) z-x
- (3) x-z
- (4) y x



- Choose the correct or the most suitable answer from the given four alternatives:
  - 1. The value of  $\int_{-\sqrt{4-9r^2}}^{3} dx$  is





- 2. The value of  $\int_{-1}^{2} |x| dx$  is
  - (1)  $\frac{1}{2}$

(2)  $\frac{3}{2}$ 

- $(3)\frac{5}{2}$
- $(4) \frac{7}{2}$

- 3. For any value of  $n \in \mathbb{Z}$ ,  $\int_0^{\pi} e^{\cos^2 x} \cos^3 \left[ (2n+1)x \right] dx$  is
  - (1)  $\frac{\pi}{2}$

 $(2) \pi$ 

- (3)0
- (4)2

- 4. The value of  $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$  is
  - $(1)\frac{3}{2}$

(2)  $\frac{1}{2}$ 

- (3)0
- $(4) \frac{2}{3}$

- 5. The value of  $\int_{-4}^{4} \left[ \tan^{-1} \left( \frac{x^2}{x^4 + 1} \right) + \tan^{-1} \left( \frac{x^4 + 1}{x^2} \right) \right] dx$  is
  - (1)  $\pi$

 $(2) 2\pi$ 

- $(3) 3\pi$
- (4)  $4\pi$

- 6. The value of  $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left( \frac{2x^7 3x^5 + 7x^3 x + 1}{\cos^2 x} \right) dx$  is
  - (1)4

(2) 3

- (3)2
- (4)0

- 7. If  $f(x) = \int_0^x t \cos t \, dt$ , then  $\frac{df}{dx} =$ 
  - $(1)\cos x x\sin x$
- (2)  $\sin x + x \cos x$
- $(3) x \cos x$
- (4)  $x \sin x$

- 8. The area between  $y^2 = 4x$  and its latus rectum is
  - $(1)\frac{2}{3}$

(2)  $\frac{4}{3}$ 

- $(3) \frac{8}{3}$
- $(4) \frac{5}{3}$

- 9. The value of  $\int_{0}^{1} x(1-x)^{99} dx$  is
  - $(1) \; \frac{1}{11000}$
- $(2) \frac{1}{10100}$
- $(3) \frac{1}{10010}$
- $(4) \; \frac{1}{10001}$

- 10. The value of  $\int_0^{\pi} \frac{dx}{1+5^{\cos x}}$  is
  - $(1) \frac{\pi}{2}$

(2)  $\pi$ 

- (3)  $\frac{3\pi}{2}$
- (4)  $2\pi$

11. If 
$$\frac{\Gamma(n+2)}{\Gamma(n)} = 90$$
 then *n* is

(1) 10

(2)5

(3)8

(4)9

12. The value of  $\int_0^{\frac{\pi}{6}} \cos^3 3x \ dx$  is

 $(1)\frac{2}{3}$ 

(2)  $\frac{2}{9}$ 

(3)  $\frac{1}{9}$ 

 $(4) \frac{1}{3}$ 

13. The value of  $\int_0^{\pi} \sin^4 x \, dx$  is

(1)  $\frac{3\pi}{10}$ 

(2)  $\frac{3\pi}{9}$ 

(3)  $\frac{3\pi}{4}$  (4)  $\frac{3\pi}{2}$ 

14. The value of  $\int_0^\infty e^{-3x} x^2 dx$  is

 $(1) \frac{7}{27}$ 

 $(2) \frac{5}{27}$ 

 $(4) \frac{2}{27}$ 

15. If  $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$  then a is

(1)4

(2) 1

(4)2

16. The volume of solid of revolution of the region bounded by  $y^2 = x(a-x)$  about x-axis is

(2)  $\frac{\pi a^3}{4}$ 

(3)  $\frac{\pi a^3}{5}$ 

17. If  $f(x) = \int_{1}^{x} \frac{e^{\sin u}}{u} du, x > 1$  and

 $\int_{1}^{3} \frac{e^{\sin x^{2}}}{x} dx = \frac{1}{2} [f(a) - f(1)], \text{ then one of the possible value of } a \text{ is}$ 

(1)3

(2)6

(3)9

(5)

18. The value of  $\int_0^1 (\sin^{-1} x)^2 dx$  is

 $(1) \frac{\pi^2}{4} - 1$ 

(2)  $\frac{\pi^2}{4} + 2$ 

 $(3) \frac{\pi^2}{4} + 1$ 

 $(4) \frac{\pi^2}{4} - 2$ 

19. The value of  $\int_0^a \left(\sqrt{a^2-x^2}\right)^3 dx$  is

(1)  $\frac{\pi a^3}{16}$ 

(2)  $\frac{3\pi a^{7}}{16}$ 

(3)  $\frac{3\pi a^2}{9}$ 

(4)  $\frac{3\pi a^4}{8}$ 

20. If  $\int_0^x f(t) dt = x + \int_x^1 t f(t) dt$ , then the value of f(1) is

 $(1)\frac{1}{2}$ 

(2) 2

(3) 1

 $(4) \frac{3}{4}$ 



### Choose the correct or the most suitable answer from the given four alternatives :



- 1. The order and degree of the differential equation  $\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4} = 0$ are respectively
  - (1) 2, 3
- (2) 3, 3
- (3) 2, 6
- (4) 2, 4
- 2. The differential equation representing the family of curves  $y = A\cos(x+B)$ , where A and B are parameters, is
  - (1)  $\frac{d^2y}{dx^2} y = 0$  (2)  $\frac{d^2y}{dx^2} + y = 0$  (3)  $\frac{d^2y}{dx^2} = 0$  (4)  $\frac{d^2x}{dy^2} = 0$

- 3. The order and degree of the differential equation  $\sqrt{\sin x} (dx + dy) = \sqrt{\cos x} (dx dy)$  is
  - (1) 1, 2
- (2) 2, 2
- (3) 1, 1 (4) 2, 1
- 4. The order of the differential equation of all circles with centre at (h, k) and radius 'a' is
  - (1) 2
- (2) 3

- (3) 4
- 5. The differential equation of the family of curves  $y = Ae^x + Be^{-x}$ , where A and B are arbitrary constants is

  - (1)  $\frac{d^2y}{dx^2} + y = 0$  (2)  $\frac{d^2y}{dx^2} y = 0$  (3)  $\frac{dy}{dx} + y = 0$  (4)  $\frac{dy}{dx} y = 0$
- 6. The general solution of the differential equation  $\frac{dy}{dx} = \frac{y}{x}$  is
  - (1) xy = k
- (2)  $y = k \log x$
- (3) y = kx
- (4)  $\log y = kx$
- 7. The solution of the differential equation  $2x\frac{dy}{dx} y = 3$  represents
  - (1) straight lines
- (2) circles
- (3) parabola
- (4) ellipse

- 8. The solution of  $\frac{dy}{dx} + p(x)y = 0$  is
  - (1)  $y = ce^{\int pdx}$  (2)  $y = ce^{-\int pdx}$
- $(3) \quad x = ce^{-\int pdy} \qquad (4) \quad x = ce^{\int pdy}$
- 9. The integrating factor of the differential equation  $\frac{dy}{dx} + y = \frac{1+y}{\lambda}$  is
- (2)  $\frac{e^{\lambda}}{a}$
- (3)  $\lambda e^x$
- (4)  $e^x$
- 10. The integrating factor of the differential equation  $\frac{dy}{dx} + P(x)y = Q(x)$  is x, then P(x)
  - (1) x
- (2)  $\frac{x^2}{5}$
- (3)  $\frac{1}{3}$
- (4)  $\frac{1}{r^2}$

- 11. The degree of the differential equation  $y(x) = 1 + \frac{dy}{dx} + \frac{1}{1 \cdot 2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1 \cdot 2 \cdot 3} \left(\frac{dy}{dx}\right)^3 + \dots$  is
  - (1) 2
- (2) 3
- (3) 1
- (4) 4
- 12. If p and q are the order and degree of the differential equation  $y \frac{dy}{dx} + x^3 \left( \frac{d^2y}{dx^2} \right) + xy = \cos x$ , when
  - (1) p < q
- (2) p = q
- (3) p > q (4) p exists and q does not exist
- 13. The solution of the differential equation  $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$  is
- (1)  $y + \sin^{-1} x = c$  (2)  $x + \sin^{-1} y = 0$  (3)  $y^2 + 2\sin^{-1} x = C$  (4)  $x^2 + 2\sin^{-1} y = 0$
- 14. The solution of the differential equation  $\frac{dy}{dx} = 2xy$  is
  - $(1) \quad v = Ce^{x^2}$
- (2)  $y = 2x^2 + C$
- (3)  $y = Ce^{-x^2} + C$  (4)  $y = x^2 + C$
- 15. The general solution of the differential equation  $\log \left(\frac{dy}{dx}\right) = x + y$  is

  - (1)  $e^x + e^y = C$  (2)  $e^x + e^{-y} = C$
- (3)  $e^{-x} + e^{y} = C$  (4)  $e^{-x} + e^{-y} = C$
- 16. The solution of  $\frac{dy}{dx} = 2^{y-x}$  is

  (1)  $2^x + 2^y = C$  (2)  $2^x 2^y = C$  (3)  $\frac{1}{2^x} \frac{1}{2^y} = C$  (4) x + y = C

- 17. The solution of the differential equation  $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi\left(\frac{y}{x}\right)}{\phi'\left(\frac{y}{x}\right)}$  is
  - (1)  $x\phi\left(\frac{y}{x}\right) = k$  (2)  $\phi\left(\frac{y}{x}\right) = kx$  (3)  $y\phi\left(\frac{y}{x}\right) = k$  (4)  $\phi\left(\frac{y}{x}\right) = ky$

- 18. If sin x is the integrating factor of the linear differential equation  $\frac{dy}{dx} + Py = Q$ , then P is
  - (1)  $\log \sin x$
- $(2) \cos x$
- (3) tan x
- $(4) \cot x$
- 19. The number of arbitrary constants in the general solutions of order n and n+1 are respectively
  - (1) n-1, n
- (2) n, n+1
- (3) n+1, n+2
- (4) n+1, n
- 20. The number of arbitrary constants in the particular solution of a differential equation of third order is
  - (1) 3
- (2) 2

- (3) 1
- (4) 0
- 21. Integrating factor of the differential equation  $\frac{dy}{dx} = \frac{x+y+1}{x+1}$  is
  - (1)  $\frac{1}{x+1}$
- (3)  $\frac{1}{\sqrt{r+1}}$

22. The population P in any year t is such that the rate of increase in the population is proportional to the population. Then

 $(1) \quad P = Ce^{kt}$ 

 $(2) P = Ce^{-kt}$ 

(3) P = Ckt

 $(4) \quad P = C$ 

23. P is the amount of certain substance left in after time t. If the rate of evaporation of the substance is proportional to the amount remaining, then

 $(1) \quad P = Ce^{kt}$ 

 $(2) \quad P = Ce^{-kt}$ 

(3) P = Ckt

24. If the solution of the differential equation  $\frac{dy}{dx} = \frac{ax+3}{2v+f}$  represents a circle, then the value of

a is

(1) 2

(2) -2

(3) 1 (4) -1

25. The slope at any point of a curve y = f(x) is given by  $\frac{dy}{dx} = 3x^2$  and it passes through (-1,1). Then the equation of the curve is

(1)  $y = x^3 + 2$ 



### Choose the Correct or the most suitable answer from the given four alternatives:

1. Let X be random variable with probability density function





(1) both mean and variance exist



- (2) mean exists but variance does not exist
- (3) both mean and variance do not exist
- (4) variance exists but Mean does not exist.
- 2. A rod of length 2l is broken into two pieces at random. The probability density function of the shorter of the two pieces is

$$f(x) = \begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l \le x < 2l \end{cases}$$

The mean and variance of the shorter of the two pieces are respectively

 $(1) \frac{l}{2}, \frac{l^2}{2}$ 

(2)  $\frac{l}{2}$ ,  $\frac{l^2}{6}$ 

(3)  $l, \frac{l^2}{12}$  (4)  $\frac{l}{2}, \frac{l^2}{12}$ 

3. Consider a game where the player tosses a six-sided fair die. If the face that comes up is 6, the player wins  $\stackrel{?}{\stackrel{?}{\stackrel{?}{?}}}$  36, otherwise he loses  $\stackrel{?}{\stackrel{?}{\stackrel{?}{?}}}$ , where k is the face that comes up  $k = \{1, 2, 3, 4, 5\}$ .

The expected amount to win at this game in ₹ is

 $(1)\frac{19}{6}$ 

 $(2) - \frac{19}{6}$ 

 $(3)\frac{3}{2}$ 

 $(4) -\frac{3}{2}$ 

 $(1) \begin{pmatrix} 10 \\ 5 \end{pmatrix} \left(\frac{3}{5}\right)^6 \left(\frac{2}{5}\right)^4$ 

 $(3) \binom{10}{5} \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6$ 

| 4. | is rolled and the su                        |                                                                                   | six-sided die and 1, 2, 3, $\alpha$ random variable $X$ denotis                                                           |                                              |
|----|---------------------------------------------|-----------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|
|    | (1) 1                                       | (2) 2                                                                             | (3) 3                                                                                                                     | (4) 4                                        |
| 5. | A random variable $X$ h of $X$ is           | nas binomial distribution                                                         | with $n = 25$ and $p = 0.8$ th                                                                                            | nen standard deviation                       |
|    | (1)6                                        | (2) 4                                                                             | (3) 3                                                                                                                     | (4) 2                                        |
| 6. | Let $X$ represent the di                    | fference between the nur                                                          | mber of heads and the nu                                                                                                  | mber of tails obtained                       |
|    | when a coin is tossed                       | n times. Then the possib                                                          | ole values of X are                                                                                                       |                                              |
|    | (1) $i+2n$ , $i=0,1,2n$                     | (2) $2i-n$ , $i=0,1,2n$                                                           | (3) $n-i$ , $i = 0,1,2n$                                                                                                  | 4) $2i+2n$ , $i=0,1,2n$                      |
| 7. | If the function $f(x)$                      | $0 = \frac{1}{12}  \text{for } a < x < b ,  \text{re}$                            | epresents a probability                                                                                                   | density function of a                        |
|    | continuous random va                        | ariable X, then which of                                                          | the following cannot be                                                                                                   | the value of $a$ and $b$ ?                   |
|    | (1) 0 and 12                                | (2) 5 and 17                                                                      | (3) 7 and 19                                                                                                              | (4) 16 and 24                                |
| 8. | carry, respectively, 42 X denote the number | 2, 36, 34, and 48 students of students that were on the vers is also randomly sel | ne school arrive at a footbook. One of the students is rather bus carrying the rando ected. Let Y denote the rando ected. | andomly selected. Let omly selected student. |
|    | (1) 50,40                                   | (2) 40,50                                                                         | (3) 40.75, 40                                                                                                             | (4) 41,41                                    |
| 9. | with Probability 0.5.                       |                                                                                   | land on heads with probof the flips are independent $E(X)$ is                                                             | -                                            |
|    | (1) 0.11                                    | (2) 1.1                                                                           | (3)11                                                                                                                     | (4)1                                         |
| 1  |                                             |                                                                                   | e destructives for each o                                                                                                 |                                              |
|    | $(1) \frac{11}{243}$                        | $(2)\frac{3}{8}$                                                                  | (3) $\frac{1}{243}$                                                                                                       | $(4) \frac{5}{243}$                          |
| 1  | 1. If $P(X=0) = 1 - P(X=0)$                 | $(X = 1)$ . If $E(X) = 3 \operatorname{Var}(X)$                                   | P(X = 0) is                                                                                                               |                                              |
|    | $(1)\frac{2}{3}$                            | (2) $\frac{2}{5}$                                                                 | (3) $\frac{1}{5}$                                                                                                         | $(4) \frac{1}{3}$                            |
| 1  |                                             | ndom variable with experience 2.4, then $P(X=5)$ is                               | ected                                                                                                                     |                                              |

 $(2) \binom{10}{5} \left(\frac{3}{5}\right)^{10}$ 

 $(4) \binom{10}{5} \left(\frac{3}{5}\right)^5 \left(\frac{2}{5}\right)^5$ 

13. The random variable X has the probability density function

$$f(x) = \begin{cases} ax + b & 0 < x < 1 \\ 0 & \text{otherwise} \end{cases}$$

and  $E(X) = \frac{7}{12}$ , then a and b are respectively

- (1) 1 and  $\frac{1}{2}$
- (2)  $\frac{1}{2}$  and 1
- (3) 2 and 1
- (4) 1 and 2

14. Suppose that X takes on one of the values 0, 1, and 2. If for some constant k,

P(X=i)=k P(X=i-1) for i=1,2 and  $P(X=0)=\frac{1}{7}$ , then the value of k is

(1) 1

(3)3

(4)4

15. Which of the following is a discrete random variable?

I. The number of cars crossing a particular signal in a day.

II. The number of customers in a queue to buy train tickets at a moment.

III. The time taken to complete a telephone call.

- (1) I and II
- (2) II only
- (3) III only
- (4) II and III

16. If  $f(x) = \begin{cases} 2x & 0 \le x \le a \\ 0 & \text{otherwise} \end{cases}$  is a probability density function of a random variable, then the

value of a is

(1) 1

(2)2

(4) 4

17. The probability mass function of a random variable is defined as:

| x    | -2 | -1         | 0          | 1  | 2          |
|------|----|------------|------------|----|------------|
| f(x) | k  | 2 <i>k</i> | 3 <i>k</i> | 4k | 5 <i>k</i> |

Then E(X) is equal to:

- $(1) \frac{1}{15}$
- (2)  $\frac{1}{10}$

 $(4) \frac{2}{3}$ 

18. Let X have a Bernoulli distribution with mean 0.4, then the variance of (2X-3) is

- (1)0.24
- b) 0.48

- (3) 0.6
- (4) 0.96

19. If in 6 trials, X is a binomial variable which follows the relation 9P(X=4) = P(X=2), then the probability of success is

- (1)0.125
- (2)0.25

- (3) 0.375
- (4) 0.75

20. A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?

- (1)  $\frac{57}{20^3}$
- (2)  $\frac{57}{20^2}$

- $(3) \frac{19^3}{20^3}$
- $(4) \frac{57}{20}$





### Choose the correct or the most suitable answer from the given four alternatives.

| 1. A binary operation | on a set | S is | a function | from |
|-----------------------|----------|------|------------|------|
|-----------------------|----------|------|------------|------|

(1) 
$$S \rightarrow S$$

(2) 
$$(S \times S) \rightarrow S$$

(3) 
$$S \rightarrow (S \times S)$$

(2) 
$$(S \times S) \to S$$
 (3)  $S \to (S \times S)$  (4)  $(S \times S) \to (S \times S)$ 

### 2. Subtraction is not a binary operation in

$$(2) \mathbb{Z}$$

3. Which one of the following is a binary operation on 
$$\mathbb{N}$$
?

4. In the set 
$$\mathbb{R}$$
 of real numbers '\*' is defined as follows. Which one of the following is not a binary operation on  $\mathbb{R}$ ?

(1) 
$$a*b = \min(a \cdot b)$$

$$(2) a*b = \max(a,b)$$

(3) 
$$a*b = a$$

(4) 
$$a * b = a^b$$

5. The operation \* defined by 
$$a*b = \frac{ab}{7}$$
 is not a binary operation on

$$(2) \mathbb{Z}$$

6. In the set 
$$\mathbb{Q}$$
 define  $a \odot b = a + b + ab$ . For what value of y,  $3 \odot (y \odot 5) = 7$ ?

(1) 
$$y = \frac{2}{3}$$

(1) 
$$y = \frac{2}{3}$$
 (2)  $y = \frac{-2}{3}$  (3)  $y = \frac{-3}{2}$ 

(3) 
$$y = \frac{-3}{2}$$

(4) 
$$y = 4$$

7. If 
$$a*b = \sqrt{a^2 + b^2}$$
 on the real numbers then \* is

- (1) commutative but not associative
- (2) associative but not commutative
- (3) both commutative and associative (4) neither commutative nor associative

### 8. Which one of the following statements has the truth value *T*?

- (1)  $\sin x$  is an even function.
- (2) Every square matrix is non-singular
- (3) The product of complex number and its conjugate is purely imaginary
- (4)  $\sqrt{5}$  is an irrational number

### 9. Which one of the following statements has truth value F?

- (1) Chennai is in India or  $\sqrt{2}$  is an integer
- (2) Chennai is in India or  $\sqrt{2}$  is an irrational number
- (3) Chennai is in China or  $\sqrt{2}$  is an integer
- (4) Chennai is in China or  $\sqrt{2}$  is an irrational number

### 10. If a compound statement involves 3 simple statements, then the number of rows in the truth table is

11. Which one is the inverse of the statement 
$$(p \lor q) \to (p \land q)$$
?

$$(1) (p \land q) \rightarrow (p \lor q)$$

$$(2) \neg (p \lor q) \rightarrow (p \land q)$$

$$(3) (\neg p \lor \neg q) \to (\neg p \land \neg q)$$

$$(4) (\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$$

12. Which one is the contrapositive of the statement  $(p \lor q) \to r$ ?

(1) 
$$\neg r \rightarrow (\neg p \land \neg q)$$

$$(2) \neg r \rightarrow (p \lor q)$$

(3) 
$$r \rightarrow (p \land q)$$

(4) 
$$p \rightarrow (q \lor r)$$

13. The truth table for  $(p \land q) \lor \neg q$  is given below

| p              | q | $(p \land q) \lor (\neg q)$ |
|----------------|---|-----------------------------|
| T              | T | (a)                         |
| T              | F | (b)                         |
| $\overline{F}$ | T | (c)                         |
| F              | F | (d)                         |

Which one of the following is true?

T

T

(d)

$$F$$
  $T$ 

$$F$$
  $F$ 

14. In the last column of the truth table for  $\neg(p \lor \neg q)$  the number of final outcomes of the truth value 'F' are

15. Which one of the following is incorrect? For any two propositions p and q, we have

$$(1) \neg (p \lor q) \equiv \neg p \land \neg q$$

$$(2) \neg (p \land q) \equiv \neg p \lor \neg q$$

$$(3) \neg (p \lor q) \equiv \neg p \lor \neg q$$

$$(4) \neg (\neg p) \equiv p$$

16.

| p | q | $(p \land q) \rightarrow \neg p$ |
|---|---|----------------------------------|
| T | T | (a)                              |
| T | F | (b)                              |
| F | T | (c)                              |
| F | F | (d)                              |

Which one of the following is correct for the truth value of  $(p \land q) \rightarrow \neg p$ ?

- (a)
- (b)
- (c) (d)
- T(1)
- T
- T
- **(2)** F
- T
- T

T

F

- F(3)
- F
- T

T

- (4)T

17. The dual of  $\neg (p \lor q) \lor [p \lor (p \land \neg r)]$  is

- $(1) \neg (p \land q) \land [p \lor (p \land \neg r)]$
- (2)  $(p \land q) \land [p \land (p \lor \neg r)]$
- $(3) \neg (p \land q) \land [p \land (p \land r)]$
- $(4) \neg (p \land q) \land [p \land (p \lor \neg r)]$

18. The proposition  $p \land (\neg p \lor q)$  is

(1) a tautology

- (2) a contradiction
- (3) logically equivalent to  $p \wedge q$
- (4) logically equivalent to  $p \lor q$

19. Determine the truth value of each of the following statements:

- (a) 4+2=5 and 6+3=9
- (b) 3+2=5 and 6+1=7

(c) 4+5=9 and 1+2=4

(d) 3+2=5 and 4+7=11

(a) (b) (c) (d)

- $(1) \quad F \quad T \quad F \quad T$
- (2) T F T F
- (3) T T F F
- $(4) \quad F \quad F \quad T \quad T$

20. Which one of the following is not true?

- (1) Negation of a negation of a statement is the statement itself.
- (2) If the last column of the truth table contains only T then it is a tautology.
- (3) If the last column of its truth table contains only F then it is a contradiction
- (4) If p and q are any two statements then  $p \leftrightarrow q$  is a tautology.



### Exercise 1.8

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (2) | (3) | (2) | (3) | (4) | (2) | (4) | (4) | (2) | (1) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (2) | (4) | (1) | (2) | (4) | (3) | (2) | (1) | (4) | (4) |
| 21  | 22  | 23  | 24  | 25  |     |     |     |     |     |
| (2) | (4) | (4) | (4) | (1) |     |     |     |     |     |

### Exercise 2.9

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (1) | (1) | (2) | (3) | (1) | (4) | (1) | (1) | (1) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (2) | (2) | (4) | (2) | (2) | (3) | (1) | (3) | (4) | (4) |
| 21  | 22  | 23  | 24  | 25  |     |     |     |     |     |
| (2) | (3) | (4) | (1) | (1) |     |     |     |     |     |

## Exercise 3.7

|   | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| ſ | (4) | (1) | (3) | (1) | (3) | (4) | (1) | (3) | (1) | (2) |

### Exercise 4.6

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (3) | (2) | (3) | (1) | (2) | (1) | (3) | (1) | (4) | (4) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (3) | (2) | (2) | (1) | (3) | (3) | (2) | (2) | (4) | (4) |

### Exercise 5.6

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  | 11  | 12  | 13  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (3) | (4) | (3) | (3) | (1) | (1) | (3) | (2) | (2) | (1) | (4) | (3) |
| 14  | 15  | 16  | 17  | 18  | 19  | 20  | 21  | 22  | 23  | 24  | 25  |     |
| (3) | (1) | (4) | (4) | (1) | (1) | (2) | (2) | (3) | (3) | (3) | (2) |     |

### Exercise 6.10

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (4) | (3) | (1) | (2) | (1) | (3) | (1) | (1) | (1) | (2) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (3) | (1) | (2) | (4) | (4) | (2) | (3) | (4) | (2) | (1) |
| 21  | 22  | 23  | 24  | 25  |     |     |     |     |     |
| (2) | (3) | (4) | (3) | (1) |     |     |     |     |     |

### **EXERCISE 7.10**

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (2) | (2) | (2) | (1) | (2) | (3) | (4) | (3) | (1) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (3) | (4) | (3) | (4) | (2) | (3) | (3) | (1) | (4) | (3) |

### Exercise 8.8

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   |
|-----|-----|-----|-----|-----|-----|-----|-----|
| (2) | (2) | (2) | (4) | (3) | (2) | (4) | (2) |
| 9   | 10  | 11  | 12  | 13  | 14  | 15  | T T |
| (3) | (1) | (2) | (3) | (2) | (4) | (1) |     |

### Exercise 9.10

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (3) | (3) | (4) | (4) | (3) | (3) | (3) | (2) | (1) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (4) | (2) | (2) | (4) | (4) | (4) | (3) | (4) | (2) | (1) |

# Exercise 10.9

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (1) | (2) | (3) | (2) | (2) | (3) | (3) | (2) | (2) | (3) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (3) | (3) | (1) | (1) | (2) | (3) | (2) | (4) | (2) | (4) |
| 21  | 22  | 23  | 24  | 25  |     |     |     |     |     |
| (1) | (1) | (2) | (2) | (1) |     |     |     |     |     |

### **EXERCISE 11.6**

| 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| (2) | (4) | (2) | (4) | (4) | (2) | (4) | (3) | (2) | (1) |
| 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| (4) | (4) | (1) | (2) | (1) | (1) | (4) | (4) | (2) | (1) |

### Exercise 12.3

### Choose the appropriate answer from the given distractors.

| Q | 1   | 2   | 3   | 4   | 5   | 6   | 7   | 8   | 9   | 10  |
|---|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|
| A | (2) | (3) | (2) | (4) | (2) | (2) | (3) | (4) | (3) | (2) |
| Q | 11  | 12  | 13  | 14  | 15  | 16  | 17  | 18  | 19  | 20  |
| A | (4) | (1) | (3) | (3) | (3) | (2) | (4) | (3) | (1) | (4) |