

## Mathematics

## $8^{\text {th }}$ Standard

## Based on the Updated New Textbook

## Salient Features

$\rightarrow$ Answers for all Textual Questions.

- Exhaustive Additional Questions \& Answers in all chapters.
- Unit Test Question paper for each unit, with answer key.

Common Annual Exam May 2022 Question Paper is given with answers.


SURA PUBLICATIONS

Chennai

For Orders Contact

2023-24 Edition
© Reserved with Publishers

ISBN : 978-93-5330-591-8<br>Code No. : FY-8-M-EM

## Author:

S. Niranjan, B.Tech., PGDM(IIM)

Chennai
Published by:
Mr. Subash Raj, b.e., m.s.

> Our Guides for Std. IX \& X + சுராவின் தமிழ் உணரநூால் + Sura's Smart English Guide + Sura's Mathematics Guide (EM \& TM) + Sura's Science Guide (EM \& TM) + Sura's Social Science Guide (EM \& TM)

## Our Guides for Std. XI \& XII

+ சருராவின் தமிழ் உळரநூால்
+ Sura's Smart English
+ Sura's Mathematics (EM/TM)
+ Sura's Physics (EM/TM)
+ Sura's Chemistry (EM/TM)
+ Sura's Bio-Botany \& Botany (EM/TM)
(Short Version \& Long Version)

GUIDES

+ Sura's Bio-Zoology \& Zoology (EM/TM) (Short Version \& Long Version)
+ Sura's Computer Science (EM/TM)
+ Sura's Computer Applications (EM/TM)
+ Sura's Commerce (EM/TM)
+ Sura's Economics (EM/TM)
+ Sura's Accountancy (EM/TM)
+ Sura's Business Maths (EM)

For Orders Contact 8056294222 8124201000 8124301000 9600175757 7871802000 9840926027

## CONTENTS

1. Numbers ..... 1-62
2. Measurements ..... 63-94
3. Algebra ..... 95-173
4. Life Mathematics ..... 174-221
5. Geometry ..... 222-265
6. Statistics ..... 266-287
7. Information Processing ..... 288-322
Common Annual Exam May 2022 Question Paper with answers ..... 323-330

## NUMBERS

## POINTS TO REMEMBER

$\square \quad$ A number that can be expressed in the form $\frac{a}{b}$ where $a$ and $b$ are integers and $b \neq 0$ is called a rational number.
$\square \quad$ All natural numbers, whole numbers, integers and fractions are rational numbers.
$\square$ Every rational number can be represented on a number line.
$\square \quad 0$ is neither a positive nor a negative rational number.
$\square$ A rational number $\frac{a}{b}$ is said to be in the standard form, if its denominator $b$ is a positive integer and $\operatorname{HCF}(a, b)=1$
$\square$ There are unlimited numbers of rational numbers between two rational numbers.
$\square$ Subtracting two rational numbers is the same as adding the additive inverse of the second number to the first rational number.
$\square$ Multiplying two rational numbers is the same as multiplying their numerators and denominators separately and then writing the product in the standard form.
$\square$ Dividing a rational number by another rational number is the same as multiplying the first rational number by the reciprocal of the second rational number.
$\square \quad$ The following table is about the properties of rational numbers $(\mathbb{Q})$.

| $\mathbb{Q}$ | Closure | Commutative | Associative | Multiplication is <br> distributive over +/- |
| :---: | :---: | :---: | :---: | :---: |
| + | $\checkmark$ | $\checkmark$ | $\checkmark$ | $\checkmark$ |
| - | $\checkmark$ | $\times$ | $\times$ | $\checkmark$ |
| $\times$ | $\checkmark$ | $\checkmark$ | $\checkmark$ | - |
| $\div$ | $\times$ | $\times$ | $\times$ | - |

## Sura's $=8$ th Std - Mathematics

$\square \quad 0$ and 1 are respectively the additive and the multiplicative identities of rational numbers.
$\square \quad$ The additive inverse for $\frac{a}{b}$ is $\frac{-a}{b}$ and vice - versa.

- The reciprocal or the multiplicative inverse of a rational number $\frac{a}{b}$ is $\frac{b}{a}$ since $\frac{a}{b} \times \frac{b}{a}=1$.
- A natural number $n$ is called a square number, if we can find another natural number $m$ such that $n=m^{2}$.

The square root of a number $n$, written as $\sqrt{n}$ (or) $n^{\frac{1}{2}}$, is the number that gives $n$ when multiplied by itself.
$\square \quad$ The number of times a prime factor occurs in the square is equal to twice the number of times it occurs in the prime factorization of the number.
$\square \quad$ For any two positive numbers $a$ and $b$. we have
(i) $\sqrt{a b}=\sqrt{a} \times \sqrt{b}$ and (ii) $\sqrt{\frac{a}{b}}=\frac{\sqrt{a}}{\sqrt{b}}(b \neq 0)$
$\square$ If you multiply a number by itself and then by itself again, the result is a cube number.
$\square$ The cube root of a number is the value that when cubed gives the original number.
$\square \quad$ An expression that represents repeated multiplication of the same factor is called a power.
$\square \quad$ The exponent corresponds to the number of times the base is used as a factor.

- Laws of Exponents: (i) $a^{m} \times a^{n}=a^{m+n}$ (ii) $\frac{a^{m}}{a^{n}}=a^{m-n}$ (iii) $\left(a^{m}\right)^{n}=a^{m n}$
$\square \quad$ Other results: (i) $a^{0}=1$ (ii) $a^{-m}=\frac{1}{a^{m}}$ (iii) $a^{m} \times b^{m}=(a b)^{m}$ (iv) $\frac{a^{m}}{b^{m}}=\left(\frac{a}{b}\right)^{m}$


## Recap

1. The simplest form of $\frac{\mathbf{1 2 5}}{200}$ is $\qquad$ .

Sol.

$$
\frac{125}{200}=\frac{125 \div 25}{200 \div 25}=\frac{5}{8}
$$

2. Which of the following is not an equivalent fraction of $\frac{8}{12}$ ?
(A) $\frac{2}{3}$
(B) $\frac{16}{24}$
(C) $\frac{32}{60}$
(D) $\frac{24}{36}$
[Ans: (C) $\frac{\mathbf{3 2}}{\mathbf{6 0}}$ ]
Sol.

$$
\begin{aligned}
\frac{8}{12} & =\frac{8 \div 4}{12 \div 4}=\frac{2}{3} \\
\frac{8}{12} & =\frac{8 \times 2}{12 \times 2}=\frac{16}{24} \\
\frac{8}{12} & =\frac{8 \times 3}{12 \times 3}=\frac{24}{36} \\
\frac{32}{60} & =\frac{32 \div 5}{60 \div 5}=\frac{6.4}{12}
\end{aligned}
$$

$$
\therefore \frac{32}{60} \text { is not an equivalent fraction of } \frac{8}{12} \text {. }
$$

3. Which is bigger $\frac{4}{5}$ or $\frac{8}{9}$ ?

Sol. LCM of 5 and $9=45$

$$
\begin{aligned}
& \frac{4}{5}=\frac{4 \times 9}{5 \times 9}=\frac{36}{45} \\
& \frac{8}{9}=\frac{8 \times 5}{9 \times 5}=\frac{40}{45} \\
& \therefore \quad \frac{40}{45}>\frac{36}{45} \\
& \therefore \quad \frac{8}{9}>\frac{4}{5} \\
& \Rightarrow \frac{8}{9} \text { is bigger than } \frac{4}{5} .
\end{aligned}
$$

## Sura's $=8$ th Std - Mathematics

4. Add the fractions : $\frac{3}{5}+\frac{5}{8}+\frac{7}{10}$.

Sol.

$$
\begin{aligned}
\text { LCM of } 5,8,10 & =5 \times 2 \times 4 \\
& =40 \\
\frac{3}{5}+\frac{5}{8}+\frac{7}{10} & =\frac{(3 \times 8)+(5 \times 5)+(7 \times 4)}{40} \\
& =\frac{24+25+28}{40} \\
& =\frac{77}{40}=1 \frac{37}{40}
\end{aligned}
$$

| Hint: |  |
| ---: | :--- |
| 5 | $5,8,10$ |
|  | $1,8,2$ |
| 4 | $1,4,1$ |
|  | $1,1,1$ |

5. Simplify : $\frac{1}{8}-\left(\frac{1}{6}-\frac{1}{4}\right)$.

Sol.

$$
\begin{aligned}
\frac{1}{8}-\left(\frac{1}{6}-\frac{1}{4}\right) & =\frac{1}{8}-\left[\frac{(1 \times 2)-(1 \times 3)}{12}\right] \quad[\therefore \text { LCM of } 6,4=12] \\
& =\frac{1}{8}-\left(\frac{2-3}{12}\right) \\
& =\frac{1}{8}-\left(-\frac{1}{12}\right) \\
& =\frac{1}{8}+\frac{1}{12}=\frac{(1 \times 3)+(1 \times 2)}{24} \\
& =\frac{3+2}{24}=\frac{5}{24}
\end{aligned}
$$

6. Multiply $2 \frac{3}{5}$ and $1 \frac{4}{7}$.

Sol.

$$
2 \frac{3}{5} \times 1 \frac{4}{7}=\frac{13}{5} \times \frac{11}{7}=\frac{143}{35}=4 \frac{3}{35}
$$

7. Divide $\frac{7}{36}$ by $\frac{35}{81}$.

Sol.

$$
\frac{7}{36} \div \frac{35}{81}=\frac{7}{36} \times \frac{81}{35}=\frac{9}{20}
$$

8. Fill in the boxes : $\frac{\square}{66}=\frac{70}{\square}=\frac{28}{44}=\frac{\square}{121}=\frac{7}{\square}$.

Sol.

$$
\begin{aligned}
\frac{28}{44} & =\frac{28 \div 4}{44 \div 4}=\frac{7}{11} \\
\frac{7}{11} & =\frac{7 \times 4=28}{11 \times 4=44}=\frac{7 \times 6=42}{11 \times 6=66}=\frac{7 \times 10=70}{11 \times 10=110}=\frac{7 \times 11=77}{11 \times 11=121} \\
\therefore \quad \frac{42}{66} & =\frac{70}{110}=\frac{28}{44}=\frac{77}{121}=\frac{7}{11} .
\end{aligned}
$$

## [1/. Sura's $=8$ th Std - Mathematics

9. In a city, $\frac{7}{20}$ of the population is women and $\frac{1}{4}$ are children. Find the fraction of the population of men.
Sol. Let the total population $=1$

$$
\begin{aligned}
\text { Population of men } & =\text { Total population }- \text { Women }- \text { Children } \\
& =1-\frac{7}{20}-\frac{1}{4}=\frac{20}{20}-\frac{7}{20}-\frac{5}{20} \\
& =\frac{20-7-5}{20}=\frac{8}{20}=\frac{2}{5} \\
\text { Population of men } & =\frac{2}{5}
\end{aligned}
$$

10. Represent $\left(\frac{1}{2}+\frac{1}{4}\right)$ by a diagram.

Sol.


TRY THESE

1. Is the number - $\mathbf{7}$ a rational number ? Why?

Sol. Yes -7 is a rational number. Because $-7=\frac{-14}{2}=\frac{p}{q}$
2. Write any 6 rational numbers between $\mathbf{0}$ and $\mathbf{1}$.

Sol. $\frac{1}{2}, \frac{1}{3}, \frac{1}{4}, \frac{1}{5}, \frac{1}{6}, \frac{1}{7}$
Tivy these
Write the decimal forms of the following rational numbers.

1. $\frac{4}{5}$
2. $\frac{6}{25}$
3. $\frac{486}{1000}$
4. $\frac{1}{9}$
5. $3 \frac{1}{4}$
6. $-2 \frac{3}{5}$

Sol.

1. $\frac{4}{5}=\frac{4 \times 20}{5 \times 20}=\frac{80}{100}=0.80$
2. $\frac{\mathbf{6}}{\mathbf{2 5}}=\frac{6 \times 4}{25 \times 4}=\frac{24}{100}=0.24$

## Sura's $=8$ th Std - Mathematics

$\begin{aligned} \text { 3. } \frac{\mathbf{4 8 6}}{\mathbf{1 0 0 0}}= & 0.486 \\ \text { 4. } \frac{\mathbf{1}}{\mathbf{9}}= & 0.11 \ldots \\ & 9 \begin{array}{r}\frac{0.11}{10} \\ \frac{9}{10} \\ \frac{9}{1}\end{array}\end{aligned}$
5. $3 \frac{\mathbf{1}}{\mathbf{4}} \quad=\quad \frac{13}{4}=3.25$

$$
\begin{array}{r}
3.25 \\
4 \begin{array}{r}
13 \\
12 \\
\hline 10 \\
\hline 8 \\
\hline 20 \\
20 \\
\hline 0
\end{array}
\end{array}
$$

6. $-2 \frac{\mathbf{3}}{\mathbf{5}} \quad=\quad \frac{-13}{5}=-2.6$

$$
\begin{array}{r}
2.6 \\
5 \longdiv { 1 3 } \\
\frac{10}{30} \\
\hline \frac{30}{0} \\
\hline
\end{array}
$$

TRY THESE
Page No. 6

1. $\frac{7}{3}=\frac{?}{9}=\frac{49}{?}=\frac{-21}{?}$

$$
\begin{aligned}
\frac{7}{3} & =\frac{7 \times 3}{3 \times 3}=\frac{21}{9} \\
\frac{7}{3} & =\frac{7 \times 7}{3 \times 7}=\frac{49}{21} \\
\frac{7}{3} & =\frac{7 \times(-3)}{3 \times(-3)}=\frac{-21}{-9} \\
\therefore \frac{7}{3} & =\frac{21}{9}=\frac{49}{21}=\frac{-21}{-9}
\end{aligned}
$$

2. $\frac{-2}{5}=\frac{?}{10}=\frac{6}{?}=\frac{-8}{?}$

$$
\frac{-2}{5}=\frac{-2 \times 2}{5 \times 2}=\frac{-4}{10}
$$

$$
\begin{aligned}
\frac{-2}{5} & =\frac{-2 \times-3}{5 \times-3}=\frac{6}{-15} \\
\frac{-2}{5} & =\frac{-2 \times 4}{5 \times 4}=\frac{-8}{20} \\
\therefore \frac{-2}{5} & =\frac{-4}{10}=\frac{6}{-15}=\frac{-8}{20}
\end{aligned}
$$

## TRY THESE

Page No. 7

1. Which of the following pairs represents equivalent rational numbers?
(i) $\frac{-6}{4}, \frac{18}{-12} \quad$ (ii) $\frac{-4}{-20}, \frac{1}{-5}$
(iii) $\frac{-12}{-17}, \frac{60}{85}$
(i) $\frac{-6}{4}=\frac{-6 \times-3}{4 \times-3}=\frac{18}{-12}$

$$
\therefore \frac{-6}{4} \text { equivalent to } \frac{18}{-12}
$$

(ii) $\frac{-4}{-20}=\frac{-4 \div(-4)}{-20 \div(-4)}=\frac{1}{5} \neq-\frac{1}{5}$
$\therefore \frac{-4}{-20}$ not equivalent to $\frac{1}{-5}$
(iii) $\frac{-12}{-17}=\frac{-12 \times-5}{-17 \times-5}=\frac{60}{85}$

$$
\therefore \frac{-12}{-17} \text { equivalent to } \frac{60}{85}
$$

2. Find the standard form of :
(i) $\frac{36}{-96}$
(ii) $\frac{-56}{-72}$
(iii) $\frac{27}{18}$
(i) $\frac{36}{-96}=\frac{36 \div 12}{-96 \div 12}=\frac{3}{-8}=-\frac{3}{8}$
(ii) $\frac{-56}{-72}=\frac{-56 \div(-8)}{-72 \div(-8)}=\frac{7}{9}$
(iii) $\frac{27}{18}=\frac{27 \div 9}{18 \div 9}=\frac{3}{2}$

## Additional Questions and Answers

Very Short Answers (2 Marks)

1. Add $\frac{3}{5}$ and $\frac{13}{5}$

Sol.

$$
\frac{3}{5}+\frac{13}{5}=\frac{3+13}{5}=\frac{16}{5}=3 \frac{1}{5}
$$

2. Add $\frac{7}{9}$ and $\frac{-12}{9}$.

Sol.

$$
\frac{7}{9}+\frac{(-12)}{9}=\frac{7+(-12)}{9}=\frac{-5}{9}
$$

3. Add $\frac{-3}{7}$ and $\frac{-17}{7}$.

Sol.

$$
\begin{aligned}
\frac{-3}{7}+\left(\frac{-17}{7}\right) & =\frac{(-3)+(-17)}{7} \\
& =\frac{-20}{7}=-2 \frac{6}{7}
\end{aligned}
$$

4. $\quad$ Add $\frac{4}{-13}$ and $\frac{7}{13}$.

Sol.

$$
\frac{4}{-13}+\frac{7}{13}=\frac{-4}{13}+\frac{7}{13}=\frac{(-4)+7}{13}=\frac{3}{13}
$$

5. Subtract $\frac{3}{4}$ from $\frac{7}{4}$.

Sol.

$$
\frac{7}{4}-\frac{3}{4}=\frac{7-3}{4}=\frac{4}{4}=1
$$

6. Subtract $\frac{6}{17}$ from $\frac{7}{17}$.

Sol.

$$
\frac{7}{17}-\frac{6}{17}=\frac{7-6}{17}=\frac{1}{17}
$$

7. Multiply $\frac{3}{4}$ by $\frac{5}{7}$.

Sol.

$$
\frac{3}{4} \times \frac{5}{7}=\frac{3 \times 5}{4 \times 7}=\frac{15}{28}
$$

8. Divide 1 by $\frac{1}{2}$.

Sol.

$$
1 \div \frac{1}{2}=\frac{1}{1} \times \frac{2}{1}=\frac{1 \times 2}{1 \times 1}=2
$$

9. Divide $\frac{2}{3}$ by $\frac{-7}{12}$.

Sol.

$$
\frac{2}{3} \div \frac{-7}{12}=\frac{2}{3} \times \frac{12}{-7}=\frac{2 \times 12}{3 \times-7}=\frac{24}{-21}=\frac{8}{-7}=-1 \frac{1}{7}
$$

## Sura's $=8$ th Std - Mathematics

10. $\frac{-22}{27} \div \frac{-110}{18}=$ ?

Sol.

$$
\frac{-22}{27} \div \frac{-110}{18}=\frac{-22}{27_{3}} \times \frac{18^{\not 2}}{-11 \sigma_{55}}=\frac{22}{165}
$$

11. Verify addition of rational numbers is closed using $\frac{1}{4}$ and $\frac{2}{3}$.

Sol. Let $a=\frac{1}{4}$ and $b=\frac{2}{3}$

$$
a+b=\frac{1}{4}+\frac{2}{3}=\frac{(1 \times 3)+(2 \times 4)}{3 \times 4}=\frac{3+8}{12}=\frac{11}{12} \text { is in } \mathrm{Q} .
$$

$\therefore$ Addition of rational numbers is closed.
12. Is subtraction is commutative for rational numbers. Give an example.

Sol. No, subtraction is not commutative for rational numbers.
Example: Let $a=\frac{1}{2}$ and $b=\frac{5}{6}$

$$
\begin{align*}
& a-b=\frac{1}{2}-\frac{5}{6}=\frac{(1 \times 3)-5}{6}=\frac{3-5}{6}=\frac{-2}{6}=\frac{-1}{3}  \tag{1}\\
& b-a=\frac{5}{6}-\frac{1}{2}=\frac{5}{6}-\frac{3}{6}=\frac{5-3}{6}=\frac{2}{6}=\frac{1}{3} \tag{2}
\end{align*}
$$

From (1) and (2) $\quad a-b \neq b-a$ for rational numbers
13. Show that multiplication of rational numbers is commutative for $a=\frac{3}{2}$ and $b=\frac{5}{7}$.

$$
\begin{align*}
& a \times b=\frac{3}{2} \times \frac{5}{7}=\frac{15}{14}  \tag{1}\\
& b \times a=\frac{5}{7} \times \frac{3}{2}=\frac{15}{14} \tag{2}
\end{align*}
$$

From (1) and (2) $\quad a \times b=b \times a$ for rational numbers.
$\therefore$ Multiplication of rational numbers is commutative.
14. Is division of rational numbers satisfy closure property? Why? What is the condition for the set to satisfy closure property?
Sol. Division of rational numbers is not closed always. Because division by 0 is not possible. So if we take the set of all non-zero rational numbers, then the set satisfy the closure property.
Eg. Let $a=\frac{1}{3}, b=-\frac{2}{3}$

$$
a \div b=\frac{1}{3} \div-\frac{2}{3}=\frac{1}{3} \times \frac{3}{-2}=-\frac{1}{2} \text { is in } \mathrm{Q}
$$

15. Write the distributive law for rational numbers of multiplication over addition.

Sol. If $a, b$ and $c$ be three rational numbers, then $a \times(b+c)=(a \times b)+(a \times c)$ is the distributive property of multiplication over addition.
16. State the associative property for addition of rational numbers.

Sol. If $a, b$ and $c$ be three rational numbers then $(a+b)+c=a+(b+c)$.

## Surd's

17. Verify $x \times y=y \times x$ for $x=\frac{-1}{3}, y=\frac{2}{7}$.

Sol.

$$
\begin{align*}
& x \times y=\frac{-1}{3} \times \frac{2}{7}=\frac{-2}{21}  \tag{1}\\
& y \times x=\frac{2}{7} \times \frac{-1}{3}=\frac{-2}{21} \tag{2}
\end{align*}
$$

From (1) and (2), we have

$$
x \times y=y \times x
$$

18. Verify commutative property of addition for $x=\frac{1}{3}, y=\frac{-7}{9}$.

Sol. Given $x=\frac{1}{3}, y=\frac{-7}{9}$

$$
\begin{align*}
x+y & =\frac{1}{3}+\frac{-7}{9}=\frac{(1 \times 3)+(-7 \times 1)}{9}=\frac{3+(-7)}{9}=\frac{-4}{9}  \tag{1}\\
y+x & =\frac{-7}{9}+\frac{1}{3}=\frac{-7+(1 \times 3)}{9} \\
& =\frac{-7+3}{9}=\frac{-4}{9} \tag{2}
\end{align*}
$$

From (1) and (2)
$x+y=y+x$, i.e commutative property is true.

## Short Answers (3 Marks)

1. Add $\frac{4}{-3}$ and $\frac{8}{15}$.

Sol.

$$
\frac{4}{-3}+\frac{8}{15}=\frac{-4}{3}+\frac{8}{15}
$$

LCM of 3 and 15 is 15

$$
\frac{(-4 \times 5)+(8 \times 1)}{15}=\frac{-20+8}{15}=\frac{-122^{4}}{15_{5}}=\frac{-4}{5}
$$

2. Simplify $\frac{9}{-27}+\frac{18}{39}$.

Sol.

$$
\begin{aligned}
\frac{9}{-27}+\frac{18}{39} & =\frac{-9}{27_{3}}+\frac{{ }^{6} 18}{39_{13}} \\
& =\frac{-1}{3}+\frac{6}{13}=\frac{(-1 \times 13)+(6 \times 3)}{3 \times 13}=\frac{-13+18}{39}=\frac{5}{39}
\end{aligned}
$$

3. What number should be added to $\frac{-7}{8}$ to get $\frac{5}{9}$ ?

Sol. Let the number to be added be $x$

$$
\begin{aligned}
\frac{-7}{8}+x & =\frac{5}{9} \\
x & =\frac{5}{9}+\frac{7}{8}=\frac{(5 \times 8)+(7 \times 9)}{9 \times 8}=\frac{40+63}{72}=\frac{103}{72}=1 \frac{31}{72}
\end{aligned}
$$

$\therefore \frac{103}{72}$ should be added to get $\frac{5}{9}$.

## 2 MEASUREMENTS

## POINTS TO REMEMBER

$\square \quad$ Value of the constant $\pi$ is a non terminating and non-recurring decimal number.
We use the approximate value of $\pi$ as $\frac{22}{7}$ or 3.14.
Exact value of $\pi=\frac{\text { Circumference of a circle }}{\text { Its diameter }}$
Circumference of a circle $=2 \pi r$ units (or) circumference $=\pi d$ units.
$\square \quad$ For quick calculations we can say that circumference of a circle is approximately slightly more than three times its diameter.
$\square$ (A) Parts of a circle:

+ A circle is the path traced by a moving point keeping its distance from a fixed point to be always a constant.
+ The fixed point of the circle is called its 'centre'.
+ The constant distance is called its 'radius'.
+ If any two points on a circle are joined by a line segment, the line segment is called 'chord'.
+ The chord which passes through the center of a circle is called as 'diameter'.
 OA - Radius

+ The diameter is the longest chord of a circle.
+ A diameter divides the circle into two equal parts.
+ A part of the circumference of a circle is called the circular arc.

+ The plane surface that is enclosed between two radii and the circular arc of a circle is called the 'sector'.
+ Each part of a circle which is divided by a chord is called segment.
+ The part which has a smaller arc is called as the minor 'segment'.

+ The part which has a larger arc is called as the major segment.


## Sura's $=8$ th Std - Mathematics

## - (B) Central Angle:

+ The angle formed by a sector of a circle at its centre is called the central angle.
+ The central angle of a circle $=360^{\circ}$.
+ If a circle is divided into ' $n$ ' equal sectors, the central angle of each of the sector is $\theta^{\circ}=\frac{360^{\circ}}{n}$.
$+\quad$ Area of circle $=\pi r^{2}$ sq. units.
+ Circumference of a circle $=2 \pi r$ units.
+ The length of a semicircular arc is half of the circumference of the circle.
+ Length of the semicircular arc $=\frac{2 \pi r}{2}=\pi r$ units.
+ The area of the semicircle $=\frac{1}{2} \pi r^{2}$ sq.units.
+ If we assume that the cenral angle of a sector of radius ' $r$ ' units as $\theta^{\circ}$, then the ratio of the central angle $\theta^{\circ}$ to $360^{\circ}$ is $\frac{\theta^{\circ}}{360^{\circ}}$.
+ Length of the arc $l=\frac{\theta^{\circ}}{360^{\circ}} \times 2 \pi r$ units.
+ Area of the sector $\mathrm{A}=\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2}$ sq. units.
+ If a circle of radius ' $r$ ' is divided into ' $n$ ' equal sectors then
(i) length of the arc of each sector $=\frac{1}{n} \times 2 \pi r$ units.
(ii) Area of each of the sectors $=\frac{1}{n} \times \pi r^{2}$ sq.units.
+ If length of the arc is given then area of the sector $=\frac{l r}{2}$ sq. units.
$\square$ (C) Perimeter of a Sector:
+ Perimeter of a sector $\mathrm{P}=l+2 r$ units.
+ Perimeter of a semicircle $\mathrm{P}=(\pi+2) r$ units.
+ Perimeter of a circular quadrant $=\left(\frac{\pi}{2}+2\right) r$ units.


## (7) Think

1. $\frac{\mathbf{2 2}}{7}$ and 3.14 are rational numbers. Is ' $\pi$ ' a rational number? Why?

Sol. $\frac{22}{7}$ and 3.14 are rational numbers. $\pi$ has non-terminating and non-repeating decimal expansion. So it is not a rational number. It is an irrational number.
2. When is the ' $\pi$ ' day celebrated? Why?

Sol. March $14^{\text {th }}$ is the $\pi$ day celebrated for every year. Because, approximately value of ' $\pi$ ' is 3.14 .

## (2) Think

Page No. 53
The given circular figure is divided into six equal parts. Can we call the equal parts as sectors? Why?
No, the equal parts are not sectors. Because a sector is a plane surface that is enclosed between two radii and the circular arc of the circle.


Here the boundaries are not radii.

## (0) Tay these

Page No. 53
Fill the central angle of the shaded sector (each circle is divided into equal sectors)

| Sector |  |  |  |
| :--- | :--- | :--- | :--- |
| Central angle <br> $\theta^{\circ}=\frac{360^{\circ}}{n}$ |  | $\theta^{\circ}=120^{\circ}$ |  |

## (3) Think

Page No. 54

1. Instead of multiplying by $\frac{1}{2}, \frac{1}{3}$ and $\frac{1}{4}$, we shall multiply by $\frac{180^{\circ}}{360^{\circ}}, \frac{120^{\circ}}{360^{\circ}}$ and $\frac{90^{\circ}}{360^{\circ}}$ respectively. Why?

Sol.

$$
\text { Because, } \begin{aligned}
\frac{180^{\circ}}{360^{\circ}} & =\frac{1}{2} \\
\frac{120^{\circ}}{360^{\circ}} & =\frac{1}{3} \\
\frac{90^{\circ}}{360^{\circ}} & =\frac{1}{4}
\end{aligned}
$$

## [局 Sura's $=$ 8th Std - Mathematics

## ? Think

If the radius of a circle is doubled, what will happen to the area of the new circle so formed?

Sol. If $r=2 r \Rightarrow$ Area of the circle $=\pi r^{2}=\pi(2 r)^{2}=\pi 4 r^{2}=4 \pi r^{2}=4 \times\left(\pi r^{2}\right)$
$\therefore$ New Area $=4 \times$ old area.

## Exercise 2.1

1. Fill in the blanks:
(i) The ratio between the circumference and diameter of any circle is $\qquad$ [Ans: $\pi$ ]
(ii) A line segment which joins any two points on a circle is a $\qquad$ [Ans: chord]
(iii) The longest chord of a circle is $\qquad$ . [Ans: diameter]
(iv) The radius of a circle of diameter 24 cm is $\qquad$ .
(v) A part of circumference of a circle is called as $\qquad$ [Ans: $\mathbf{1 2} \mathbf{~ c m}$ ] [Ans: an arc]
2. Match the following:

| (i) | Area of a circle | a. | $\frac{1}{4} \pi r^{2}$ |
| :---: | :--- | :---: | :--- |
| (ii) | Circumference of a circle | b. | $(\pi+2) r$ |
| (iii) | Area of the sector of a circle | c. | $\pi r^{2}$ |
| (iv) | Circumference of a semicircle | d. | $2 \pi r$ |
| (v) | Area of a quadrant of a circle | e. | $\frac{\theta^{\circ}}{360^{\circ}} \times \pi r^{2}$ |

[Ans: (i)-c, (ii)-d (iii)-e, (iv)-b, (v)-a]
3. Find the central angle of the shaded sectors (each circle is divided into equal sectors).

| Sectors |  |  |
| :---: | :---: | :---: |
| Central angle of each sector $\left(\theta^{\circ}\right)$ |  |  |



## Sura's $=$ 8th Std - Mathematics

## POINTS TO REMEMBER

(A) Perimeter and Area of combined shapes

+ The perimeter of a combined shape is the sum of all the lengths of the sides that form a closed boundary.
+ The area of combined shapes is the sum of all areas of the simple shapes in it.
+ A closed plane figure formed by three or more sides is called a 'polygon'.
+ Some of the polygons and their number of sides are:

| Triangle has | 3 sides |
| :--- | :--- |
| Quadrilateral has | 4 sides |
| Pentagon has | 5 sides |
| Hexagon has | 6 sides |
| Heptagon has | 7 sides |
| Octagon has | 8 sides |
| Nanagon has | 9 sides |
| Decagon has | 10 sides |

+ If all sides and all angles of a polygon are equal, then it is called as a regular polygon. E.g. Equilateral triangle, square etc
+ Other polygons are irregular polygons. Eg. Scalene triangle, rectangle etc.
$\square$ Recalling area and perimeter of some shapes:

| S.No | Shape | Name | Area <br> (sq.units) | Perimeter <br> (units) |
| :---: | :---: | :---: | :---: | :---: |
| 1 |  | Triangle | $\frac{1}{2} \times b \times h$ | Sum of all <br> three sides |
| 2 |  | Equilateral |  |  |

## Sura's $=8$ th Std - Mathematics

| 4 |  | Parallelogram | $b \times h$ | $2(a+b)$ |
| :---: | :---: | :---: | :---: | :---: |
| 5 |  | Rectangle | $l \times b$ | $2(l+b)$ |
| 6 |  | Trapezium | $\frac{1}{2} \times h \times(a+b)$ | Sum of all the four sides |
| 7 |  | Rhombus | $\frac{1}{2} \times d_{1} \times d_{2}$ | $4 a$ |
| 8 |  | Square | $a^{2}$ | 4 a |

## (2) Think

All the sides of a rhombus are equal. Is it a regular polygon?
Sol. For a regular polygon all sides and all the angles must be equal. But in a rhombus all the sides are equal. But all the angles are not equal
$\therefore$ It is not a regular polygon.

## TRY THIS

In the above example split the given mat into two trapeziums and verify your answer.
Area of the mat $=$ Area of I trapezium + Area of II trapezium

$$
=\left[\frac{1}{2} \times h_{1} \times\left(a_{1}+b_{1}\right)\right]+\left[\frac{1}{2} \times h_{2} \times\left(a_{2}+b_{2}\right)\right] \text { sq. units }
$$



$$
=\left[\frac{1}{2} \times 2 \times(7+5)\right]+\frac{1}{2} \times 2 \times(9+7) \text { sq. feet }
$$

$$
=12+16=28 \text { sq.feet }
$$

$\therefore$ Cost per sq.feet $=₹ 20$
Cost for 28 sq. feet $=₹ 20 \times 28=₹ 560$
$\therefore$ Total cost for the entire mat $=₹ 560$
Both the answers are the same.

## ALGGBRA

## POINTS TO REMEMBER

$\square$ Algebra is the study of mathematical symbols and rules for calculating these symbols.
$\square$ In arithmetic only numbers and their arithmetical operations (such as,,$+- \times, \div$ ). occur In algebra numbers are often represented by symbols called variables.
An algebraic expression may contain fractions, negative powers on their variables. Eg: $: y^{2}+\frac{5}{y}$
$\square \quad$ An expression which contains only one term is called a monomial.
Eg. $4 x, 3 x^{2} y,-2 y^{2}$
$\square$ An expression which contains only two terms is called a binomial.
Eg. $2 x+3,5 y^{2}+9 y, a^{2} b^{2}+2 b$
$\square \quad$ An expression which contains only three terms is called a trinomial.
Eg. $2 a^{2} b-8 a b+b^{2}, m^{2}-n^{2}+3$
$\square \quad$ A polynomial contains only whole numbers as the powers of their variables Eg. $3 x^{2}-5$
(A) MULTIPLICATION OF AGEBRAIC EXPRESSIONS
$\square$ To multiply or to find out the product of algebraic expressions follow the steps.
(i) Multiply the signs of the terms.

+ Product of two like signs are positive
+ Product of two unlike signs is negative
(ii) Multiply the corresponding co-efficients of the terms.
(iii) Multiply the variable factors using laws of exponents.

$$
+\quad x^{m} \times x^{n}=x^{m+n}
$$

$\square \quad$ Product of two terms is represented by the symbol $\times$, ( ), or '. '.
$\square \quad$ If ' $a$ ' is a constant, $x$ and $y$ are variables then $a(x+y)=a x+a y$ states the distributive law.

## Recap

Answer the following questions :

1. Write the numbers of terms in the following expressions.
(i) $x+y+z-x y z$ [Ans: 4 terms]
(ii) $m^{2} n^{2} c$
(iii) $a^{2} b^{2} c-a b^{2} c^{2}+a^{2} b c^{2}+3 a b c$ [Ans: 1 term]
(iv) $8 x^{2}-4 x y+7 x y^{2}$
2. Identify the numerical co-efficient of each term in the following expressions.
(i) $2 x^{2}-5 x y+6 y^{2}+7 x-10 y+9$
[Ans: Numerical co efficient in $2 \boldsymbol{x}^{2}$ is 2
Numerical co efficient in $\mathbf{- 5 x y}$ is $\mathbf{- 5}$
Numerical co efficient in $\mathbf{6} \boldsymbol{y}^{\mathbf{2}}$ is $\mathbf{6}$
Numerical co efficient in $7 x$ is 7
Numerical co efficient in $\mathbf{- 1 0 y}$ is $\mathbf{- 1 0}$
Numerical co-efficient in 9 is 9]
(ii) $\frac{x}{3}+\frac{2 y}{5}-x y+7$
[Ans: Numerical co efficient in $\frac{x}{3}$ is $\frac{1}{3}$
Numerical co efficient in $\frac{2 y}{5}$ is $\frac{2}{5}$
Numerical co efficient in $-x y$ is -1
Numerical co efficient in 7 is 7]
3. Pick out the like terms from the following.


## [局 Sura's -8 th Std - Mathematics

Sol.

4. Add : $\mathbf{2 x}, \mathbf{6}, \mathbf{9 x}-\mathbf{2 y}$

Sol.

$$
2 x+6 y+9 x-2 y=2 x+9 x+6 y-2 y=(2+9) x+(6-2) y=11 x+4 y
$$

5. Simplify : $\left(5 x^{3} y^{3}-3 x^{2} y^{2}+x y+7\right)+\left(2 x y+x^{3} y^{3}-5+2 x^{2} y^{2}\right)$

Sol. $\left(5 x^{3} y^{3}-3 x^{2} y^{2}+x y+7\right)+\left(2 x y+x^{3} y^{3}-5+2 x^{2} y^{2}\right)$

$$
\begin{aligned}
& =5 x^{3} y^{3}+x^{3} y^{3}-3 x^{2} y^{2}+2 x^{2} y^{2}+x y+2 x y+7-5 \\
& =(5+1) x^{3} y^{3}+(-3+2) x^{2} y^{2}+(1+2) x y+2 \\
& =6 x^{3} y^{3}-x^{2} y^{2}+3 x y+2
\end{aligned}
$$

6. The sides of a triangle are $2 x-5 y+9,3 y+6 x-7$ and $-4 x+y+10$. Find the perimeter of the triangle.
Sol.
Perimeter of the triangle $=$ Sum of three sides

$$
\begin{aligned}
& =(2 x-5 y+9)+(3 y+6 x-7)+(-4 x+y+10) \\
& =2 x-5 y+9+3 y+6 x-7-4 x+y+10 \\
& =2 x+6 x-4 x-5 y+3 y+y+9-7+10 \\
& =(2+6-4) x+(-5+3+1) y+(9-7+10) \\
& =4 x-y+12
\end{aligned}
$$

$$
\therefore \text { Perimeter of the triangle }=4 x-y+12 \text { units. }
$$

## 7. Subtract $\mathbf{- 2 m n}$ from $\mathbf{6 m n}$.

$$
\begin{aligned}
6 m n-(-2 m n) & =6 m n+(+2 m n) \\
& =(6+2) m n=8 m n
\end{aligned}
$$

8. Subtract $\mathbf{6} \boldsymbol{a}^{2}-\mathbf{5 a b}+\mathbf{3} \boldsymbol{b}^{\mathbf{2}}$ from $\mathbf{4} \boldsymbol{a}^{2}-\mathbf{3} a b+\boldsymbol{b}^{2}$.

Sol. $\left(4 a^{2}-3 a b+b^{2}\right)-\left(6 a^{2}-5 a b+3 b^{2}\right)$

$$
\begin{aligned}
& =\left(4 a^{2}-6 a^{2}\right)+(-3 a b-(-5 a b)]+\left(b^{2}-3 b^{2}\right) \\
& =(4-6) a^{2}+[-3 a b+(+5 a b)]+(1-3) b^{2} \\
& =[4+(-6)] a^{2}+(-3+5) a b+[1+(-3)] b^{2} \\
& =-2 a^{2}+2 a b-2 b^{2}
\end{aligned}
$$

## Sura's -8 th Std - Mathematics

## FACTORISATION :

## POINTS TO REMEMBER

$\square$ Expressing an algebraic expression as the product of two or more expressions is called the factorization.
A number which is divisible by 1 and itself is called a prime number.
A number which has only 2 factors is a prime number. Example: $2,3,5.7 .11, \ldots$
Composite number is a number which has more than 2 factors.
1 is neither prime nor composite.
2 is the only one even prime number.
1 is a factor for all numbers.
$\square \quad$ A number which can be written in the form of $x \times x \times x$ is called perfect cube number.

## TRY THESE

Find the factors
Sol.

| Factor 1 | Factor 2 | Product | Sum |
| :---: | :---: | :---: | :---: |
| $\mathbf{7}$ | $\mathbf{5}$ | 35 | 12 |
| $-\mathbf{8}$ | $\mathbf{+ 5}$ | -40 | -3 |
| $-\mathbf{2 0}$ | $\mathbf{3}$ | 60 | -17 |
| $\mathbf{1 7}$ | $\mathbf{- 3}$ | -51 | +14 |
| $\mathbf{- 8}$ | $\mathbf{4}$ | -32 | -4 |

## Think

1. $x^{2}-4(x-2)=\left(x^{2}-4\right)(x-2)$ Is this correct? If not correct it.

Sol. No, it is not correct
Required correct equation is $x^{2}-4(x-2)=x^{2}-4 x+8$
Try these
Factorize the following :

1) $3 y+6$
2) $10 x^{2}+15 y^{2}$
3) $7 m(m-5)+1(5-m)$
4) $64-x^{2}$
5) $x^{2}-3 x+2$
6) $y^{2}-4 y-32$
7) $p^{2}+2 p-15$
8) $m^{2}+14 m+48$
9) $x^{2}-x-90$
10) $9 x^{2}-6 x-8$
1. $3 y+6$

$$
3 y+6=3 \times y+2 \times 3
$$

Taking out the common factor 3 from each term we get $3(y+2)$

$$
\therefore 3 y+6=3(y+2)
$$

## Sura's $=$ 8th Std - Mathematics

2. $10 x^{2}+15 y^{2}$

$$
10 x^{2}+15 y^{2}=(2 \times 5 \times x \times x)+(3 \times 5 \times y \times y)
$$

Taking out the common factor 5 we have

$$
10 x^{2}+15 y^{2}=5\left(2 x^{2}+3 y^{2}\right)
$$

3. $7 m(m-5)+1(5-m)$

$$
\begin{aligned}
7 m(m-5)+1(5-m) & =7 m(m-5)+(-1)(-5+m) \\
& =7 m(m-5)-1(m-5)
\end{aligned}
$$

Taking out the common binomial factor $(m-5)=(m-5)(7 m-1)$
4. $64-x^{2}$

$$
64-x^{2}=8^{2}-x^{2}
$$

This is of the form $a^{2}-b^{2}$
Comparing with $a^{2}-b^{2}$ we have $a=8, b=x$

$$
\begin{aligned}
a^{2}-b^{2} & =(a+b)(a-b) \\
64-x^{2} & =(8+x)(8-x)
\end{aligned}
$$

5. $x^{2}-3 x+2$

$$
\begin{aligned}
& =x^{2}-2 x-x+2 \\
& =x(x-2)-(x-2) \\
& =(x-2)(x-1)
\end{aligned}
$$


6. $y^{2}-4 y-32$
$=y^{2}-8 y+4 y-32$
$=y(y-8)+4(y-8)$

$$
=(y-8)(y+4)
$$


7. $p^{2}+2 p-15$

$$
\begin{aligned}
& =p^{2}+5 p-3 p-15 \\
& =p(p+5)-3(p+5) \\
& =(p+5)(p-3)
\end{aligned}
$$


8. $m^{2}+14 m+48$

$$
=m^{2}+8 m+6 m+48
$$

$=m(m+8)+6(m+8)$
$=(m+6)(m+8)$

9. $x^{2}-x-90$

$$
\begin{aligned}
& =x^{2}-10 x+9 x-90 \\
& =x(x-10)+9(x-10) \\
& =(x+9)(x-10)
\end{aligned}
$$


10. $9 x^{2}-6 x-8$

$$
=9 x^{2}-12 x+6 x-8
$$

$$
=3 x(3 x-4)+2(3 x-4)
$$

$$
=(3 x+2)(3 x-4)
$$



## 4. LIFE MATHEMATICS

## POINTS TO REMEMBER

$\square$ When the S.P is more than the C.P, then there is a gain or profit. Profit/Gain $=$ S.P- C.P. When the S.P is less than the C.P, then there is a loss. Loss $=$ C.P - S.P. The profit or loss is always calculated on the cost price.
$\square \quad$ Selling price $=$ Marked price - Discount.
Profit or Gain $\%=\left(\frac{\text { Profit }}{C . P} \times 100\right) \%$
Loss $\%=\left(\frac{\text { Loss }}{C . P} \times 100\right) \%$
$\square$ Selling Price, S.P $=\frac{(100+\text { Profit } \%)}{100} \times$ C.P (or) Cost of Price, C.P $=\frac{100}{(100+\text { Profit } \%)} \times$ S.P
Selling Price, $\mathrm{S} . \mathrm{P}=\frac{(100-\text { Loss } \%)}{100} \times$ C.P (or) Cost of Price, $\mathrm{C} . \mathrm{P}=\frac{100}{\left(100-\text { Loss }^{2}\right)} \times$ S.P
$\square$ When the interest is compounded annually, $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{100}\right)^{n}$

- When the interest is compounded half yearly, $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{200}\right)^{2 n}$
$\square$ When the interest is compounded quarterly, $\mathrm{A}=\mathrm{P}\left(1+\frac{r}{400}\right)^{4 n}$
$\square \quad$ C.I $=\mathrm{A}-\mathrm{P}$ (Amount - Principal).
$\square$ The simple interest and the compound interest remains the same for the first year.
For 2 years, the difference in C.I and S.I is C.I - S.I $=\mathrm{P}\left(\frac{r}{100}\right)^{2}$
For 3 years, the difference in C.I and S.I is C.I - S.I $=\mathrm{P}\left(\frac{r}{100}\right)^{2}\left(3+\frac{r}{100}\right)$
$\square x$ and $y$ are said to vary directly if $y=k x$ always, where k is called the proportionality constant and $k>0$
$x$ and $y$ are said to vary inversely, if $x y=k$ always, where k is called the proportionality constant and $k>0$.
$\square$ we can use the fact that the product of the extremes is equal to the product of the means to find the unknown $(x)$ in the problem.
- By using the formula $\frac{P_{1} \times D_{1} \times H_{1}}{W_{1}}=\frac{P_{2} \times D_{2} \times H_{2}}{W_{2}}$, we can find the unknown ( $x$ ).
$\square$ We can also find the unknown (x) by Multiplicative Factor Method.

Find the indicated percentage value of the given numbers

| \% \ Number | 60 | 240 | 660 | 852 | 1200 |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 10\% | $\frac{10}{100} \times \mathbf{6 0}=\mathbf{6}$ | $\frac{10}{100} \times \mathbf{2 4 0}=\mathbf{2 4}$ | $\frac{10}{100} \times \mathbf{6 6 0}=\mathbf{6 6}$ | $\frac{10}{100} \times \mathbf{8 5 2}=\mathbf{8 5 . 2}$ | $\frac{10}{100} \times \mathbf{1 2 0 0}=\mathbf{1 2 0}$ |
| 20\% | $\frac{20}{100} \times \mathbf{6 0}=\mathbf{1 2}$ | $\frac{20}{100} \times \mathbf{2 4 0}=\mathbf{4 8}$ | $\frac{20}{100} \times \mathbf{6 6 0}=\mathbf{1 3 2}$ | $\frac{20}{100} \times \mathbf{8 5 2}=\mathbf{1 7 0 . 4}$ | $\frac{20}{100} \times \mathbf{1 2 0 0}=\mathbf{2 4 0}$ |
| 25\% | $\frac{25}{100} \times \mathbf{6 0}=\mathbf{1 5}$ | $\frac{25}{100} \times \mathbf{2 4 0}=\mathbf{6 0}$ | $\frac{25}{100} \times \mathbf{6 6 0}=\mathbf{1 6 5}$ | $\frac{25}{100} \times \mathbf{8 5 2}=\mathbf{2 1 3}$ | $\frac{25}{100} \times \mathbf{1 2 0 0}=\mathbf{3 0 0}$ |
| $33 \frac{1}{3} \%$ | $\begin{aligned} & \frac{100}{3} \times \frac{60}{100}= \\ & \frac{6000}{300}=\mathbf{2 0} \end{aligned}$ | $\begin{aligned} & \frac{100}{3} \times \frac{1}{100}=\frac{1}{3}= \\ & \frac{1}{3} \times \mathbf{2 4 0}=\mathbf{8 0} \end{aligned}$ | $\frac{1}{3} \times \mathbf{6 6 0}=\mathbf{2 2 0}$ | $\frac{1}{3} \times \mathbf{8 5 2}=\mathbf{2 8 4}$ | $\frac{1}{3} \times 1200=400$ |

Try these

1. What percent of a day is $\mathbf{1 0}$ hours?

Sol.
In a day, there are 24 hours
$\therefore 10$ hrs out of 24 hrs is $\frac{10}{24}$
As a percentage, we need to multiply by 100

$$
\therefore \text { Percentage }=\frac{10}{24} \times 100=41.67 \%
$$

2. Divide $₹ 350$ among $P, Q$ and $R$ such that $P$ gets $50 \%$ of what $Q$ gets and $Q$ gets $\mathbf{5 0 \%}$ of what $R$ gets.
Sol. Let R get $x$, Q gets $50 \%$ of what R gets
$\therefore \quad \therefore$ Q Amount $=\frac{50}{100} \times x=\frac{x}{2}$
$P$ gets $50 \%$ of what $Q$ gets

$$
\therefore \text { P Amount }=\frac{50}{100} \times \frac{x}{2}=\frac{x}{4}
$$

Since 350 is divided among the three

$$
\begin{aligned}
\therefore 350 & =x+\frac{x}{2}+\frac{x}{4} \\
350 & =\frac{4 x+2 x+x}{4} \Rightarrow \frac{7 x}{4}=350 \\
x & =\frac{350 \times 4}{7}=200 \\
\text { Q Amount } & =\frac{x}{2}=\frac{200}{2}=100, \text { P Amount }=\frac{x}{4}=\frac{200}{4}=50
\end{aligned}
$$

$$
\therefore \mathrm{P}=50, \mathrm{Q}=100, \mathrm{R}=\mathbf{2 0 0}
$$

## [6] <br> Sura's mis 8th - Mathematics

## (3) Think

With a lot of pride, the traffic police commissioner of a city reported that the accidents had decreased by $\mathbf{2 0 0 \%}$ in one year. He came up with this number by stating that the increase in accidents from 200 to $\mathbf{6 0 0}$ is clearly a $200 \%$ rise and now that it had gone down from 600 last year to 200 this year should be a $\mathbf{2 0 0 \%}$ fall. Is this decrease from
 600 to 200 , the same $\mathbf{2 0 0 \%}$ as reported by him? Justify.
Increase from original value 200 to 600

$$
\begin{aligned}
\% \text { increase } & =\frac{\text { Change in value }}{\text { original value }} \times 100 \\
& =\frac{600-200}{200}=\frac{400^{2}}{200} \times 100=200 \% \text { increase }
\end{aligned}
$$

Decrease from original value 600 to 200

$$
\% \text { decrease }=\frac{\text { Change in value }}{\text { original value }} \times 100
$$

Here original value is 600

$$
\% \text { decrease }=\frac{600-200}{600} \times 100=\frac{400}{600} \times 100=66.67 \% \text { decrease }
$$

$\%$ Increase from $200 \rightarrow 600$ and $\%$ decrease from $600 \rightarrow 200$ are not the same

## Exercise 4.1

1. Fill in the blanks:
(i) If $30 \%$ of $x$ is 150 , then $x$ is $\qquad$ .
[Ans: 500]
Hint. Given $30 \%$ of $x$ is 150

$$
\text { i.e } \begin{aligned}
\frac{30}{100} \times x & =150 \\
\therefore x & =\frac{150^{5} \times 100}{30} \\
\therefore x & =500
\end{aligned}
$$

(ii) 2 minutes is $\qquad$ $\%$ to an hour.

Let $2 \min$ be $x \%$ of an hour

$$
\text { and } \begin{aligned}
1 \mathrm{hr} & =60 \mathrm{~min} \\
x \% & =\frac{2}{60} \times 100=\frac{200}{60}=\frac{10}{3}=3 \frac{1}{3} \\
x & =3 \frac{1}{3} \%
\end{aligned}
$$

## Sura's $=8$ 8th Std - Mathematics

## Unit Test

## Time: 1 hour

Max Marks : 25

## I. Fill in the blanks.

1. A can finish a job in 3 days whereas $B$ finishes it in 6 days. The time taken to complete the job together is $\qquad$ days.
2. If 5 persons can do 5 jobs in 5 days, then 50 persons can do 50 jobs in $\qquad$ days.
3. A can do a work in 24 days. If $A$ and $B$ together can finish the work in 6 days, then $B$ alone can finish the work in $\qquad$ days.
4. A alone can do a piece of work in 35 days. If $B$ is $40 \%$ more efficient than $A$, then $B$ will finish the work in $\qquad$ days.
5. A alone can do a work in 10 days and B alone in 15 days. They undertook the work for ₹200000. The amount that A will get is $\qquad$ .
II. Answer the following question.
$5 \times 2=10$
6. 48 is $32 \%$ of which number?
7. If a mattress is marked for ₹ 7500 and is available at two successive discount of $10 \%$ and $20 \%$, find the amount to be paid by the customer.
8. Find the compound interest on ₹ 3200 at $2.5 \%$ p.a for 2 years, compounded annually.
9. P's income is $25 \%$ more than that of Q . By what percentage is Q's income less than P's?
10. If the numerator of a fraction is increased by $50 \%$ and the denominator is decreased by $20 \%$, then it becomes $\frac{3}{5}$. Find the original fraction.
III. Answer the following question.
$2 \times 5=10$
11. A fruit vendor bought some mangoes of which $10 \%$ were rotten. He sold $33 \frac{1}{3} \%$ of the rest. Find the total number of mangoes bought by him initially, if he still has 240 mangoes with him
12. Vaidegi sold two sarees for ₹ 2200 each. On one she gains $10 \%$ and on the other she loses $12 \%$. Find her total gain or loss percentage in the sale of the sarees.

## Answers

1. 2 days
2. 5
3. 8
4. Refer Exercise 4.1 Q.No. 3
5. Refer Exercise 4.3 Q.No. 3
6. Refer Exercise 4.5 Q.No. 9
7. Refer Exercise 4.5 Q.No. 5
8. 25 5. ₹ $1,20,000$
9. Refer Exercise 4.2 Q.No. 10
10. Refer Exercise 4.5 Q.No. 4
11. Refer Exercise 4.5 Q.No. 1

## 5 <br> GEOMETRY

## POINTS TO REMEMBER

$\square$ Congruent figures are exactly the same in shape and size.
$\square$ Similar figures have the same shape but different sizes.
$\square$ In a right angled triangle, the square on the hypotenuse is equal to the sum of the squares on the other two sides. This is known as Pythagoras theorem.
$\square \quad$ The three medians of any triangle are concurrent. The point of concurrence of the three medians in a triangle is called its Centroid, denoted by the letter G.
$\square \quad$ The three altitudes of any triangle are concurrent. The point of concurrence of the three altitudes of a triangle is called as its Orthocentre, denoted by the letter H.
$\square \quad$ The three perpendicular bisectors of the sides of any triangle are concurrent. The point of concurrence of the three perpendicular bisectors of a triangle is called as its Circumcentre, denoted by the letter S.
$\square \quad$ The three angle bisectors of any triangle are concurrent. The point of concurrence of the three angle bisectors of a triangle is called as its Incentre, denoted by the letter I.

- A trapezium is a quadrilateral in which a pair of opposite sides are parallel.
$\square$ A parallelogram is a quadrilateral in which the opposite sides are parallel.
$\square$ Rhombus is a parallelogram in which all its sides are congruent.
$\square$ Rectangle is a parallelogram whose all its angles are right angles.
$\square$
Square is a parallelogram in which all its sides and angles are equal.


## Answer the following questions by recalling the properties of triangles:

1. The sum of the three angles of a triangle is $\qquad$ .
2. The exterior angle of a triangle is equal to the sum of the $\qquad$ angles to it.
[Ans: interior opposite]
3. In a triangle, the sum of any two sides is $\qquad$ than the third side.
[Ans: greater]
4. Angles opposite to equal sides are $\qquad$ and vice - versa.
5. What is $\angle \mathrm{A}$ in the triangle ABC ?


Sol. The exterior angle $=$ sum of interior opposite angles.

$$
\begin{aligned}
\therefore \angle \mathrm{A}+\angle \mathrm{C} & =150^{\circ} \text { in } \triangle \mathrm{ABC} \\
\mathrm{But} \angle \mathrm{C} & =40^{\circ} \\
\therefore \angle \mathrm{A}+\angle \mathrm{C} & =150^{\circ} \\
\Rightarrow \angle \mathrm{A}+\angle 40^{\circ} & =150^{\circ} \\
\angle \mathrm{A} & =150^{\circ}-40^{\circ} \\
\angle \mathrm{A} & =110^{\circ}
\end{aligned}
$$

## TRY THESE

Identify the pairs of figures which are similar and congruent and write the letter pairs.


## [6] Sura's $m$ 8th Std - Mathematics

## Objective Type Questions

11. Two similar triangles will always have $\qquad$ angles
(A) acute
(B) obtuse
(C) right
(D) matching
[Ans: (D) matching]
12. If in triangles $P Q R$ and $X Y Z, \frac{P Q}{X Y}=\frac{Q R}{Y Z}$ then they will be similar if
(A) $\angle \mathrm{Q}=\angle \mathrm{Y}$
(B) $\angle \mathrm{P}=\angle \mathrm{Y}$
(C) $\angle \mathrm{Q}=\angle \mathrm{X}$
(D) $\angle \mathrm{P}=\angle \mathrm{Z}$
[Ans: (a) $\angle \mathbf{Q}=\angle \mathbf{Y}$ ]
13. A flag pole 15 m high casts a shadow of 3 m at $10 \mathrm{a} . \mathrm{m}$. The shadow cast by a building at the same time is $18.6 \mathbf{~ m}$. The height of the building is
(A) 90 m
(B) 91 m
(C) 92 m
(D) 93 m

Hint.



$$
\begin{aligned}
\therefore \frac{\mathrm{AB}}{\mathrm{DE}} & =\frac{\mathrm{BC}}{\mathrm{EF}} \\
\frac{15}{x} & =\frac{13}{18.6} \Rightarrow x=\frac{15 \times 18.6}{3}=93 \mathrm{~m}
\end{aligned}
$$

14. If $\triangle \mathrm{ABC} \sim \triangle \mathrm{PQR}$ in which $\angle \mathrm{A}=53^{\circ}$ and $\angle \mathrm{Q}=77^{\circ}$, then $\angle \mathrm{R}$ is
(A) $50^{\circ}$
(B) $60^{\circ}$
(C) $70^{\circ}$
(D) $80^{\circ}$
[Ans: (A) 50]
Hint. By CPCT, angles in SPQR would be same as angles in $\triangle \mathrm{ABC}$

$$
\begin{aligned}
\therefore \angle \mathrm{R} & =180^{\circ}-\left(53^{\circ}+77\right) \\
& =180^{\circ}-130^{\circ} \\
& =50^{\circ}
\end{aligned}
$$

15. In the figure, which of the following statements is true?
(A) $\mathrm{AB}=\mathrm{BD}$
(B) $\mathrm{BD}<\mathrm{CD}$
(C) $\mathrm{AC}=\mathrm{CD}$
(D) $\mathrm{BC}=\mathrm{CD}$
[Ans: $(\mathrm{C}) \mathrm{AC}=\mathrm{CD}$ ]

Hint. In $\triangle \mathrm{DBA}, \angle \mathrm{B}=90^{\circ}, \angle \mathrm{A}=30^{\circ}+30^{\circ}=60^{\circ}$


Sum of angles in a triangle is $180^{\circ}$
$\therefore$ In $\triangle \mathrm{DBA}, \angle \mathrm{B}+\angle \mathrm{A}+\angle \mathrm{D}=180^{\circ}$

$$
\begin{aligned}
90^{\circ}+60^{\circ}+\angle \mathrm{D} & =180^{\circ} \\
\angle \mathrm{D} & =180^{\circ}-\left(90^{\circ}+60^{\circ}\right) \\
& =180^{\circ}-150^{\circ} \\
\angle \mathrm{D} & =30^{\circ}
\end{aligned}
$$

$\therefore \angle \mathrm{D}=\angle \mathrm{A}=30^{\circ}$
$\Rightarrow \mathrm{AC}=\mathrm{CD}$ (Since two angles are equal in triangle, then side opposite to them are equal)

1. We can construct sets of Pythagorean triplets as follows. Let $\boldsymbol{m}$ and $\boldsymbol{n}$ be any two positive integers $(m>n)$ :
$(a, b, c)$ is a Pythagorean triple if $a=m^{2}-n^{2}, b=2 m n$ and $c=m^{2}+n^{2}$ (Think, why?) Complete the table.
Sol:

| m | $n$ | $a=m^{2}-n^{2}$ | $b=2 m n$ | $\mathrm{c}=\mathrm{m}^{2}+n^{2}$ | Pythagorean triplet |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 | 1 | $\begin{aligned} a & =2^{2}-1^{2} \\ & =4-1 \\ & =3 \end{aligned}$ | $\begin{aligned} b & =2 \times 2 \times 1 \\ & =4 \end{aligned}$ | $\begin{aligned} & c=\mathbf{2}^{2}+\mathbf{1}^{2} \\ &=\mathbf{5} \end{aligned}$ | $(3,4,5)$ |
| 3 | 2 | $\begin{aligned} a= & 3^{2}-2^{2} \\ & =9-4 \\ & =5 \end{aligned}$ | $\begin{aligned} b & =2 \times 3 \times 2 \\ & =12 \end{aligned}$ | $\begin{gathered} c=\mathbf{3}^{2}+\mathbf{2}^{2} \\ =\mathbf{1 3} \end{gathered}$ | $(5,12,13)$ |
| 4 | 1 | 15 | 8 | 17 | $(15,8,17)$ |
| 7 | 2 | 45 | 28 | 53 | $(45,28,53)$ |

2. Find all integer-sided right angled triangles with hypotenuse 85.

$$
(x+y)^{2}-2 x y=85^{2}
$$

13, 84, 85
36, 77, 85
40, 75, 85
51, 68, 85

## (2) Think

1. In any acute angled triangle, all three altitudes are inside the triangle. Where will be the orthocentre? In the interior of the triangle or in its exterior?


Altitude of an acute triangle

Sol: Orthocentre lies in interior of the triangle.

2. In any right angled triangle, the altitude perpendicular to the hypotenuse is inside the triangle; the other two altitudes are the legs of the triangle. Can you identify the orthocentre in this case?


Sol: Vertex containing $90^{\circ}$
3. In any obtuse angled triangle, the altitude connected to the obtuse vertex is inside the triangle, and the two altitudes connected to the acute vertices are outside the triangle. Can you identify the orthocentre in this case?
Sol: Orthocentre lies in the Exterior of the triangle.


Altitude of an obtuse triangle

Identify the type of segment required in each triangle: (median, altitude, perpendicular bisector, angle bisector)

(ii)


Sol: (i) $\mathrm{AD}=$ Altitude
(ii) $1_{1}=$ Perpendicular bisector $_{\text {(iii) }}$
(iii) $\mathrm{BD}=$ Median
(iv) $\mathrm{CD}=$ Angular bisector

(iv)


## Exercise 5.2

1. Fill in the blanks:
(i) If in a $\triangle P Q R, P^{2}=P Q^{2}+Q^{2}$, then the right angle of $\triangle P Q R$ is at the vertex
[Ans: Q]
Hint.

(ii) If ' $l$ ' and ' $m$ ' are the legs and ' $n$ ' is the hypotenuse of a right angled triangle then,
$\qquad$ [Ans: $\boldsymbol{n}^{2}-\boldsymbol{m}^{2}$ ]
Hint.

(iii) If the sides of a triangle are in the ratio 5:12:13 then, it is $\qquad$ -
[Ans: a right angled triangle.]
Hint.

$$
\begin{aligned}
13^{2} & =169 \\
5^{2} & =25 \\
12^{2} & =144 \\
169 & =25+144 \\
\therefore 13^{2} & =5^{2}+12^{2}
\end{aligned}
$$

(iv) The medians of a triangle cross each other at $\qquad$ .
(v) The centroid of a triangle divides each medians in the ratio $\qquad$ - [Ans: 2:1]
2. Say True or False.
(i) 8, 15, 17 is a Pythagorean triplet.
[Ans: True]

$$
\begin{aligned}
17^{2} & =289 \\
15^{2} & =225 \\
8^{2} & =64 \\
64+225 & =289 \Rightarrow 17^{2}=15^{2}+8^{2}
\end{aligned}
$$

## 6 statistics

## POINTS TO REMEMBER

$\square$ Data is a collection of facts such as numbers, words, measurements and observations.
$\square$ A frequency distribution is the arrangement of the given data in the form of the table showing frequency with which each variable occurs.
$\square$ In the class-intervals, if the upper limit and lower limit are included in that class interval then it is called inclusive series.
$\square$ In the class intervals, if the upper limit of one class interval is the lower limit of the next class interval then it is called exclusive series.
$\square$ A pie chart is a circular graph which shows the total value with its components.
$\square$ A histogram is a graph of a continuous frequency distribution.
$\square$ A frequency polygon is a line graph for the graphical representation of the frequency distribution.

1. Arrange the given data in ascending and descending order:
$\mathbf{9 , 3 4}, 4,13,42,10,25,7,31,4,40$
Sol. Ascending order : 4, 4, 7, 9, 10, 13, 25, 31, 34, 40, 42.
Descending order : $42,40,34,31,25,13,10,9,7,4,4$
2. Find the range of the given data : 53, 42, 61, 9, 39, 63, 14, 20, 06, 26, 31, 4, 57

Sol. Ascending order of the given data :
$4,6,9,14,20,26,31,39,42,53,57,61,63$

$$
\begin{aligned}
\text { Here largest value } & =63 \\
\text { Smallest value } & =4 \\
\therefore \text { Range } & =\text { Largest value }- \text { smallest value } \\
& =63-4=59
\end{aligned}
$$

1. Prepare a frequency table for the data : $3,4,2,4,5,6,1,3,2,1,5,3,6,2,1,3,2,4$

Sol. Ascending order of the given data.
$1,1,1,2,2,2,2,3,3,3,3,4,4,4,5,5,6,6$
The distribution table :

| Data | Tally marks | Frequency |
| :---: | :---: | :---: |
| $\mathbf{1}$ | $\\|\\|$ | 3 |
| 2 | $\\|\\|\\|$ | 4 |
| 3 | $\\|\\|\\|$ | 4 |
| 4 | $\\|\\|$ | 3 |
| $\mathbf{5}$ | $\\|\\|$ | 2 |
| $\mathbf{6}$ | $\\|\\|$ | $\mathbf{2}$ |

$\therefore$ Frequency Table :

| Data | 1 | 2 | 3 | 4 | 5 | 6 |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 3 | 4 | 4 | 3 | 2 | 2 |

2. Prepare a grouped frequency table for the data :
$10,9,3,29,17,34,23,20,39,42,5,12,19,47,18,19,27,7,13,40,38,24,34,15,40$
Sol.

$$
\begin{aligned}
\text { Largest value } & =47 \\
\text { Smallest value } & =3 \\
\text { Range } & =\text { Largest value }- \text { Smallest value } \\
& =47-3=44
\end{aligned}
$$

Suppose we take class size as 10 , then number of class intervals possible

$$
=\frac{\text { Range }}{\text { Class size }}=\frac{44}{10}=4.4
$$

$\simeq 5$

| Class intervals | Tally marks | Frequency |  |  |
| :---: | :---: | :---: | :---: | :---: |
| $1-10$ |  | $\mathbf{5}\\|\\|$ |  |  |
| $10-20$ | $\\|\\|\\|$ | 8 |  |  |
| $20-30$ | $\\|$ | 6 |  |  |
| $30-40$ | $\\|$ | 2 |  |  |
| $40-50$ |  | 25 |  |  |
| Total |  |  |  |  |
|  |  |  |  |  |

## Exercise 6.1

1. Fill in the blanks
(i) Data has already been collected by some other person is $\qquad$ data.
(ii) The upper limit of the class interval (25-35) is $\qquad$ .
[Ans: 35]
(iii) The range of the data $200,15,20,103,3,196$, is $\qquad$ .
[Ans: 197]
(iv) If a class size is 10 and range is 80 then the number of classes are $\qquad$ .
(v) Pie chart is a $\qquad$ graph.
[Ans: circular]
2. Say True or False
(i) Inclusive series is a continuous series.
[Ans: False]
(ii) Comparison of parts of a whole may be done by a pie chart.
[Ans: True]
(iii) Media and business people use pie charts.
(iv) A pie diagram is a circle broken down into component sectors.
3. Represent the following data in ungrouped frequency table which gives the number of children in $\mathbf{2 5}$ families.
$1,3,0,2,5,2,3,4,1,0,5,4,3,1,3,2,5,2,1,1,2,6,2,1,4$
Sol. The data given is raw data.
Ascending order : 0,1,2,3,4,5,6

| Number of children | Tally marks | Frequency |
| :---: | :---: | :---: |
| 0 | $\\|$ | 2 |
| 1 |  | $\\|$ |
| 2 | $\\|\\|$ | 6 |
| 3 | $\\|\\|$ | 6 |
| 4 | $\\|\\|$ | 3 |
| 5 | $\mid$ | 1 |
| 6 |  | $\mathbf{2 5}$ |
| Total |  |  |

$\therefore$ Tabulating in frequency distribution table we get

| Number of children in family | 0 | 1 | 2 | 3 | 4 | 5 | 6 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| Frequency | 2 | 6 | 6 | 4 | 3 | 3 | 1 |

4. Form a continuous frequency distribution table for the marks obtained by $\mathbf{3 0}$ students in a $X$ std public examination.

328, 470, 405, 375, 298, 326, 276, 362, 410, 255, 391, 370, 455, 229, 300, 183, 283, 366, 400, 495, 215, 157, 374, 306, 280, 409, 321, 269, 398, 200.

## [1/ Sura's $=8$ th Std - Mathematics

Sol.

$$
\begin{aligned}
\text { Maximum mark obtained } & =495 \\
\text { Minimum marks obtained } & =157 \\
\text { Range } & =\text { Maximum value }- \text { Minimum value } \\
\text { Range } & =495-157 \\
& =338
\end{aligned}
$$

If we take the class size as 50 then the number of class intervals possible

$$
\begin{aligned}
& =\frac{\text { Range }}{\text { Class size }} \\
& =\frac{338}{50}=6.76 \\
& \simeq 7
\end{aligned}
$$

| Class Intervals | Tally Marks | Frequency |
| :---: | :---: | :---: |
| $150-200$ | $\\|$ | 2 |
| $200-250$ | $\\|\\|$ | 3 |
| $250-300$ |  |  |
| $300-350$ |  | 6 |
| $350-400$ | $\\|$ | 5 |
| $400-450$ | $\\|\\|$ | 7 |
| $450-500$ | $\\|\\|$ | 4 |
| Total |  |  |

5. A paint company asked a group of students about their favourite colours and made a pie chart of their findings. Use the information to answer the following questions.
(i) What percentage of the students like red colour?
(ii) How many students liked green colour?
(iii) What fraction of the students liked blue?
(iv) How many students did not like red colour?

(v) How many students liked pink or blue?
(vi) How many students were asked about their favourite colours?

Sol. Total percentage of students $=100 \%$

$$
\begin{aligned}
\therefore 50 \text { students } & =100 \%-(30 \%+20 \%+25 \%+15 \%) \\
& =100 \%-90 \% \\
50 \text { students } & =10 \% \\
\therefore \frac{10 \% \text { of total students }}{} & =50 \\
\frac{100}{100} \text { Total students) } & =50 \\
\text { Total students } & =\frac{50 \times 100}{10}=500 . \\
\text { Total students } & =500 .
\end{aligned}
$$

i) $20 \%$ of the students like red colour.
ii) $15 \%$ of the students liked green colour.

$$
\frac{15}{100} \times 500=75 \text { students liked green colour. }
$$

## Sura's $=8$ th Std - Mathematics

## Additional Questions and Answers

1. The following information shows the number of students opting different subjects in a college.

| Subject | English | Maths | Physics | Chemistry | Economics | Commerce |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No.of students | 45 | 60 | 20 | 30 | 10 | 15 |

Draw a pie-chart to represent the information.
Sol.

| Subject | No. of students | Central angle |
| :---: | :---: | :---: |
| English | 45 | $\frac{45}{180} \times 360^{\circ}=90^{\circ}$ |
| Mathematics | 60 | $\frac{60}{180} \times 360^{\circ}=120^{\circ}$ |
| Physics | 20 | $\frac{20}{180} \times 360^{\circ}=40^{\circ}$ |
| Chemistry | 30 | $\frac{30}{180} \times 360^{\circ}=60^{\circ}$ |
| Economics | 10 | $\frac{10}{180} \times 360^{\circ}=20^{\circ}$ |
| Commerce | 15 | $\frac{15}{180} \times 360^{\circ}=30^{\circ}$ |
| Total | $\mathbf{1 8 0}$ |  |

Students opting different subjects.


English
Mathematics
Physics

Chemistry
Economics

Commerce

## Sura's $=8$ th Std - Mathematics

2. The pie chart represents the expenditures of a family on different items. Find the percentage expenditures on different items by reading the pie-chart.


Sol. Percentage value of the component $=$ $\frac{\text { Central angle of the component }}{360^{\circ}}$ $\times 100$
$\therefore$ Percentage expenditures on various items are given as :

| Items | Central angles | Percentage expenditure |
| :---: | :---: | :---: |
| Food | $220^{\circ}$ | $\frac{220^{\circ}}{360^{\circ}} \times 100 \%=61 \%$ |
| Housing | $60^{\circ}$ | $\frac{60^{\circ}}{360^{\circ}} \times 100 \%=16.7 \%$ |
| Clothing | $50^{\circ}$ | $\frac{50^{\circ}}{360^{\circ}} \times 100 \%=13.9 \%$ |
| Fuel | $20^{\circ}$ | $\frac{20^{\circ}}{360^{\circ}} \times 100 \%=5.6 \%$ |
| Others | $10^{\circ}$ | $\frac{10^{\circ}}{360^{\circ}} \times 100 \%=2.8 \%$ |

3. The following table gives the marks of $\mathbf{1 0 0}$ students Represent the marks in the form of a histogram.

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency | 4 | 10 | 16 | 22 | 20 | 18 | 8 | 2 |

Sol. We take marks on X axis and frequency on Y axis.


## Sura's $=8$ th Std - Mathematics

## Unit Test

## Time: 1 Hour

Max Marks : 25
I. Fill in the blanks.

1. Data has already been collected by some other person is $\qquad$ data.
2. The area of the rectangles are proportional to the $\qquad$ given.
3. The number of times an observation occurs in the given data is called $\qquad$ .
4. Pie chart is a $\qquad$ graph.
5. If a class size is 10 and range is 80 then the numbers of classes are $\qquad$ .
II. Answer all the questions.
$4 \times 5=20$
6. Draw a pie chart for the following information.

| Ocean | Pacific | Atlantic | Indian | Arctic | Antarctic |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Water | $46 \%$ | $24 \%$ | $20 \%$ | $4 \%$ | $6 \%$ |

7. Form a continuous frequency distribution table for the marks obtained by 30 students in a X std public examination.
$328,470,405,375,298,326,276,362,410,255,391,370,455,229,300,183,283,366$, 400, 495, 215, 157, 374, 306, 280, 409, 321, 269, 398, 200.
8. Draw a histogram for the following data.

| Class interval | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No. of students | 5 | 15 | 23 | 20 | 10 | 7 |

9. The data on modes of transport used by the students to come to school are given below. Draw a pie chart for the data.

| Mode of Transport | Bus | Cycle | Walking | Scooter | Car |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Percentage of students | $40 \%$ | $30 \%$ | $15 \%$ | $10 \%$ | $5 \%$ |

10. Draw a histogram for the following data.

| Mid value (x) | 15 | 25 | 35 | 45 | 55 | 65 | 75 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Frequency (f) | 12 | 24 | 30 | 18 | 26 | 10 | 8 |

## Answers

1. Secondary
2. frequency
3. frequency
4. circular
5. 8
6. 


7. Refer Sura's Guide Exercise No. 6.1, Q.No. 4
8. Refer Sura's Guide Exercise No. 6.2, Q.No. 4
9. Refer Sura's Guide Exercise No. 6.3, Q.No. 2
10. Refer Sura's Guide Exercise No. 6.3, Challenging problem Q.No. 7

## INFORMATION PROCESSING

## POINTS TO REMEMBER

## $\square$ Principles of Counting:

(i) Addition principle: If there are two selections such that they can be done independently in $m$ ways and $n$ ways respectively, then either of the two selections can be done in $(\mathrm{m}+\mathrm{n})$ ways.
(ii) Multiplication principle: If a selection can be performed in $m$ ways, following which another selection can be performed in $n$ ways, and both the selections are dependent on each other then, the two selections together can be performed in exactly $(m \times n)$ different ways.

- Fibonacci Numbers:

Let us tabulate the Fibonacci sequence and find a rule.

| Term (n) | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | 13 | 14 | 15 | $\ldots$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| F (n) | 1 | 1 | 2 | 3 | 5 | 8 | 13 | 21 | 34 | 55 | 89 | 144 | 233 | 377 | 610 | $\ldots$ |

We observe that the $\mathbf{3}^{\text {rd }}$ term of the Fibonacci sequence is the sum of $\mathbf{2}^{\text {nd }}$ term and the $1^{\text {st }}$ term.

| $F(1)$ | $F(2)$ | $F(3)$ | $F(4)$ | $F(5)$ | $F(6)$ | $F(7)$ | $\ldots$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 2 | 3 | 5 | 8 | 13 | $\ldots$ |

That is, $\mathbf{F}(\mathbf{3})=\mathbf{F}(\mathbf{2})+\mathbf{F}(\mathbf{1})$ and so we can extend
and write the rule is $\mathbf{F}(\mathbf{n})=\mathbf{F}(\mathbf{n}-\mathbf{1})+\mathbf{F}(\mathbf{n}-\mathbf{2})$
$\square$ Methods to find HCF (Highest Common Factor):
$\square$ Repeated Division Method:
STEP 1: Divide the larger number by the smaller number.
STEP 2: The remainder from Step 1 becomes the new divisor, and divisor of Step 1 becomes the new dividend.
STEP 3: Repeat this division process till remainder becomes zero. The divisor of the last division (when remainder is zero) is the HCF.
$\square$ Repeated Subtraction Method:
STEP 1: Check whether $\mathrm{m}=\mathrm{n}$
STEP 2: $\mathrm{m}>\mathrm{n}$ perform $\mathrm{m}-\mathrm{n}$ repeat the process till $\mathrm{m}=\mathrm{n}$ or $\mathrm{m}<\mathrm{n}$ perform $\mathrm{n}-\mathrm{m}$ repeat the process till $\mathrm{m}=\mathrm{n}$
STEP 3: When $m$ and $n$ values are equal then that equal value will be the $\operatorname{HCF}(m, n)$. Cryptology
(i) Plain text: The original message is called plain text.
(ii) Cipher text or Cipher number: The encrypted output (converted message into code) is called Cipher text or Cipher number.
(iii) Encryption and Decryption: The process of converting the plain text to the Cipher text is called encryption and the vice versa is called decryption.

## [. 5 Sura's m 8th Std - Mathematics

## Recap

1. Find the number of all possible triangles that can be formed from the triangle given below.


| Ans: Single Triangles | $\Rightarrow$ | 5 |
| ---: | :--- | ---: |
| Combination of 2 | $\Rightarrow$ | 4 |
| Combination of 3 | $\Rightarrow$ | 2 |
| Big triangle | $\Rightarrow$ | 1 |
| Total |  | 12 |

2. Use the numbers given in the figure to form a $\mathbf{3} \mathbf{x} \mathbf{~ m a g i c ~ s q u a r e . ~}$

Ans:


| 15 | 7 | 5 |
| :--- | :--- | :--- |
| 1 | 17 | 9 |
| 11 | 3 | 13 |

3. Convert the tree diagram into a numeric expression

4. (i) Find the total time taken by the bus to reach from A to $\mathbf{E}$ via B , C and D.
(ii) Find which is the shortest route from $A$ to $E$.
(i) Route $\Rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$

Time taken $\Rightarrow(7+5+3+6) \mathrm{hrs}=21 \mathrm{hrs}$

(ii) Available routes

## Time taken

(a) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
$7+5+3+6=21 \mathrm{hrs}$
(b) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
$7+4+6=17 \mathrm{hrs}$
(c) $\mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{C} \rightarrow \mathrm{E}$
$7+5+8=20 \mathrm{hrs}$
Shortest route $\Rightarrow \mathrm{A} \rightarrow \mathrm{B} \rightarrow \mathrm{D} \rightarrow \mathrm{E}$
5. Connect the Fibonacci squares through diagonals by curve from corner to corner across each square to draw a Golden Spiral.
Sol.


FIBONACCI SQUARES
6. When you plan to buy a shirt, one shop offers a discount of ₹ 200 on MRP ₹ 1000 and another shop offers $15 \%$ discount on the same MRP. Where would you buy?
Sol.

$$
\begin{aligned}
\text { Price in } I^{\text {st }} \text { shop } & =₹ 1000-₹ 200=₹ 800 \\
\text { Price in } I^{\text {nd }} \text { shop } & =\frac{15}{100} \times 10 \not 0 \sigma=₹ 150 \Rightarrow 1000-150=₹ 850
\end{aligned}
$$

$\therefore$ Shop 1 has low price compared to shop 2 .
7. Amazing park is offers a package deal of 5 entrance passes for ₹ $\mathbf{1 3 0}$. If one entrance pass normally costs ₹ 30 , how much will you save by taking advantage of this special deal?
Sol.

$$
\text { Cost of one entrance pass }=₹ 30
$$

$\therefore$ Cost of 5 entrance passes

$$
\begin{aligned}
\text { But special deal price } & =₹ 130 \\
\text { Amount of saving } & =150-130=₹ 20
\end{aligned}
$$

## Agtivity

1. Determine the number of two digit numbers that can be formed using the digits $\mathbf{1 , 3}$ and 5 with repetition of digits allowed.
The activity consists of two parts
(i) Choose a one's digit.
(ii) Choose a ten's digit.

Complete the table given beside

|  |  | One's Digit |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 1 | 3 | 5 |
| Ten's <br> Digit | 1 | $\mathbf{1 1}$ | $\mathbf{1 3}$ | 15 |
|  | 3 | $\mathbf{3 1}$ | 33 | $\mathbf{3 5}$ |
|  | 5 | $\mathbf{5 1}$ | $\mathbf{5 3}$ | $\mathbf{5 5}$ |

www.Padasalai. et
hittps: $:$ ghas.me:/suraguides

## [1/2 Sura's $=8$ th Std - Mathematics

2. Find the three digit numbers that can be formed using the digits 1,3 and 5 without repetition of digits.
Complete the tree diagram given below to the numbers
Sol.


## AgTIVITY

Choose the correct card to complete the perfect SET. One is done for you.
1.

(i)

(ii)

(iii)

[Ans: (iii)

2.

(i)

(iii) A A A
(ii)

[Ans: (ii) $\qquad$
3.

(i)

(iii)

[Ans: (ii)


## Sura's $=8$ th Std - Mathematics

## Objective Type Questions

11. In a class there are 26 boys and 15 girls. The teacher wants to select a boy or a girl to represent a quiz competition. In how many ways can the teacher make this selection?
(A) 41
(B) 26
(C) 15
(D) 390 [Ans: (A) 41]

Hint. Number of possible ways $=26$ boys or 15 girls

$$
=26+15=41
$$

12. How many outcomes can you get when you toss three coins once?
(A) 6
(B) 8
(C) 3
(D) 2
[Ans: (B) 8]

Hint. Number of outcomes $=2^{n}=2^{3}=8$ ways
13. In how many ways can you answer 3 multiple choice questions, with the choices $A, B, C$ and $D$ ?
(A) 4
(B) 3
(C) 12
(D) 64
[Ans: (D) 64]
Hint. Number of possible ways $=4^{3}=64$ ways
14. How many 2 digit numbers contain the number 7 ?
(A) 10
(B) 18
(C) 19
(D) 20
[Ans: (B) 18]
Hint. Required numbers are 7, 17, 27, 37, 47, 57, 67, 71, 72, 73, 74, 75, 76, 77, 78, 79, 87, 97

## AGTVITY

Using the given Table I, find the pattern, answer the following questions and colour the values in the given Table II. One is done for you.

Table I

| Term $(n)$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | 4 | $\mathbf{5}$ | $\mathbf{6}$ | 7 | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | 13 | 14 | $\mathbf{1 5}$ | $\ldots$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{F}(n)$ | $\mathbf{1}$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{5}$ | $\mathbf{8}$ | $\mathbf{1 3}$ | 21 | 34 | $\mathbf{5 5}$ | $\mathbf{8 9}$ | $\mathbf{1 4 4}$ | 233 | 377 | $\mathbf{6 1 0}$ |  |

1. Where are the even Fibonacci Numbers?

Colour both the term n and where $\mathrm{F}(n)$ is even in yellow.
Do you find any pattern?
Every Third Fibonacci number is a multiple of 2(even).
2. Where there are Fibonacci numbers which are multiple of 3 ?

Colour both the term $n$ and where $\mathrm{F}(n)$ is multiple of 3 in red.
Write down the pattern you find
Every $\underline{4}^{\text {th }}$ Fibonacci number is a multiple of 3 .
3. What about the multiple of 5?

Colour both the term $n$ and where $\mathrm{F}(n)$ is multiple of 5 in blue.
Write down the pattern you find.
Every $5^{\text {th }}$ Fibonacci number is multiple of 5.

## Sura's $=8$ th Std - Mathematics

(iii) 6765 and 610

Sol.

(iv) 184, 230 and 276

Sol.
First let us take 184 \& 230
$1 8 4 \longdiv { 2 3 0 ( 1 }$
Last divisor is the $\mathrm{HCF} \leftarrow \frac{184}{46) 184 \text { (4 }}$ $\frac{184}{0}$
$\therefore 46$ is the HCF of 184 , and 230 .
Now the HCF of the first two numbers is the divisor for the third number.

Last divisor

$$
\begin{aligned}
& 4 6 \longdiv { 2 7 6 ( 6 } \\
& \downarrow \quad 276 \\
& \hline \Omega
\end{aligned}
$$

it is the HCF
$\therefore$ Ans: HCF of $184,230 \& 276$ is 46
2. Using repeated subtraction method, find the HCF of the following:
(i) 42 and 70 (ii) 36 and 80 (iii) 280 and 420 (iv) 1014 and 654
(i) 42 and 70

Sol.

| 42 and 70 | $m=70$, | $n=42$ |
| :--- | :--- | ---: |
| $70-42=28$, | Now $m=42$, | $n=28$ |
| $42-28=14$, | Now $m=28$, | $n=14$ |
| $28-14=14$, | Now $m=14$, | $n=14 ; \quad$ we stop here as $m=n$ |

$\therefore$ HCF of $42 \& 70$ is 14
(ii) $\mathbf{3 6}$ and 80

36 and 80
$m=80$,
$n=36$
$80-36=44$,
Now $n=44$,
$m=36$
Since $n>m$, we should do $n-m$
$44-36=8$,
Now $n=8$,
$m=36$
$36-8=28 \quad$ Similarly, processing, proceeding, we do repeated subtraction till $m=n$
$28-8=20$
$20-8=12$
$12-8=4$
$8-4=4 \quad$ Now $m=n=4 \quad \therefore$ HCF is 4

## Sura's $=8$ th Std - Mathematics

## Exercise 7.3

1. Fill in the blanks (Use Atbash Cipher that is given in code 3)

Hint. For this question, we need to use Atbash cipher. For Atbash cipher, first we write the alphabets from A to Z and then in reverse from Z to A below that.
ABCDEFGHIJKLMNOPQRSTUVWXYZ
ZYXWVUTSRQPONMLKJIHGFEDCBA
(i) $\mathrm{GZNRO}=$ $\qquad$ [Ans: TAMIL]
Hint. Now to solve, we look up the corresponding letter from the table to replace in code to get the actual word.
So, for G Z N R O, from table,

> for $G$, it is $T$
> for $Z$, It is $A$
> for $N$, it is $M$
> for $R$, it is $I$
> for $O$, it is $L$

So , the actual word is TAMILL
(ii) VMTORHS = $\qquad$ [Ans: ENGLISH]
V M T OR H S
To solve, we look up the corresponding letter from table to replace in code to get the actual word.
For V, it is E
for M , it is N
for $T$, it is $G$
for O , it is L
for R , it is I ,
for $H$, it is $S$
for S , it is H
Therefore we get E N G L I S H = ENGLISH
(iii) NZGSVNZGRXH= $\qquad$ [Ans: MATHEMATICS]
Similarly as above for
N Z G S V N Z G R X H
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
M A T H E M A T I C S = MATHEMATICS
(iv) $\quad \mathrm{HXRVMXV}=$ $\qquad$ [Ans: SCIENCE]
For H X R V M V
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
S C I E N C E
(v) HLXRZO HXRVMXV= $\qquad$ [Ans: SOCIAL SCIENCE]
Hint.
For HLXRZOHXRVMXY


SO C I A L S C I E NCE

## Sura's $=8$ th Std - Mathematics

2. Match the following ( $\mathrm{a}=00$. $\qquad$ Z=25).
(i) mathematics
(a) 1820011917000219081413
(ii) addition
(b) 0308210818081413
(iii) subtraction
(c) 1200190704120019080218
(iv) multiplication
(d) 0003030819081413
(v) division
(e) 1220111908151115020019081413
[Ans: i-c, ii - d, iii - a, iv - e, v-b]
Sol. Given that the code is

| a | b | c | d | e | f | g | h | i | j | k | l | m | n | o | p | q | r | s | t | u | v | w | x | y |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{0 0}$ | $\mathbf{0 1}$ | $\mathbf{0 2}$ | $\mathbf{0 3}$ | $\mathbf{0 4}$ | $\mathbf{0 5}$ | $\mathbf{0 6}$ | $\mathbf{0 7}$ | $\mathbf{0 8}$ | $\mathbf{0 9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ | $\mathbf{1 8}$ | $\mathbf{1 9}$ | $\mathbf{2 0}$ | $\mathbf{2 1}$ | $\mathbf{2 2}$ | $\mathbf{2 3}$ | $\mathbf{2 4}$ |

## Hint. (i) Mathematics is

| $\mathbf{m}$ | a | t | h | e | m | a | t | i | c | s |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 2}$ | $\mathbf{0 0}$ | $\mathbf{1 9}$ | $\mathbf{0 7}$ | $\mathbf{0 4}$ | $\mathbf{1 2}$ | $\mathbf{0 0}$ | $\mathbf{1 9}$ | $\mathbf{0 8}$ | $\mathbf{0 2}$ | $\mathbf{1 8}$ |

So matching option is c
(ii) addition is

| a | d | d | i | t | i | o | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{0 0}$ | $\mathbf{0 3}$ | $\mathbf{0 3}$ | $\mathbf{0 8}$ | $\mathbf{1 9}$ | $\mathbf{0 8}$ | $\mathbf{1 4}$ | $\mathbf{1 3}$ |

Matching option is d
(iii) Subtraction is

| s | u | b | t | r | a | c | t | i | o | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathbf{1 8}$ | 20 | $\mathbf{0 1}$ | $\mathbf{1 9}$ | $\mathbf{1 7}$ | $\mathbf{0 0}$ | $\mathbf{0 2}$ | 19 | $\mathbf{0 8}$ | 14 | 13 |

Matching option is a
(iv) multiplication is

| m | u | 1 | t | i | p | 1 | i | c | a | t | i | 0 | n |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 12 | 20 | 11 | 19 | 08 | 15 | 11 | 08 | 02 | 00 | 19 | 08 | 14 | 13 |

Matching option is e
however instead of 25 , it should be 08
(v) division is

| d | i | v | i | s | i | 0 | n |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| 03 | 08 | 21 | 08 | 18 | 08 | 14 | 13 |

Matching option is $b$
3. Frame Additive cipher table $(k e y=4)$.

Step 1 : write all alphabets
Step 2 : Assign numbers to each alphabet starting from 00 till 25.
Step 3 : add key value (here it is 4) to the numbers assigned in step 2 to form cipher table

|  | a | b | c | d | e | f | g | h | i | j | k | 1 | m | n | 0 | p | q | r | s | t | u | $v$ | w | x | y | z |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | 00 | 01 | 02 | 03 | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 |
| Cipher | 04 | 05 | 06 | 07 | 08 | 09 | 10 | 11 | 12 | 13 | 14 | 15 | 16 | 17 | 18 | 19 | 20 | 21 | 22 | 23 | 24 | 25 | 00 | 01 | 02 | 03 |

## Sura＇s $=8$ th Std - Mathematics

4．A message like＂Good Morning＂written in reverse would instead be＂Doog Gninrom＂． In the same way decode the sentence given below：
＂Ot dnatsrednu taht scitamehtam nac eb decneirepxe erehwreve ni erutan dna laer efil．＂

Given that good morning written in reverse is doog gninrom．
We have to decode the below by reversing，so，
Ot dnatsrednu taht scitamehtam nac eb decneirepxe erehwreve ni erutan dna laer efil．

Ans：To understand that mathematics can be experienced everywhere in nature and real life．
5．Decode the given Pigpen Cipher text and compare your answer to get the Activity 3 result．
I．The room number in which the treasure took place ：
$\sqcup \sqcap$
II．Place of the treasure ：
$\llcorner\sqcap \perp \Gamma \Gamma$
III．The name of the treasure ：


Sol．（i）The room in which the treasure took place $=28$

（ii）The place of treasure $=$ CHAIR
（iii）Identity of treasure＝GIFT VOUCHER．
6．Praveen recently got the registration number for his new two－wheeler．Here，the number is given in the form of mirror－image．Encode the image and find the correct registration number of praveen＇s two－wheeler．

TN12H2589
（a） 68 GてHてレN1
（c）е8 C SHSVT
（b） 1 И Ј S S 28 a
（d） 9852 H21N T

The mirror image is $\mathbf{e} \mathbf{8} \mathbf{C S H S I V T}$
When we place an imaginary mirror \＆visualize the image seen in the mirror，we will get the below．

$\therefore$ The answer is Option c

## Sura's $=8$ th Std - Mathematics

## Objective Type Questions

7. In questions (i) and (ii), there are four groups of letters in each set. Three of these sets are alike in some way while one is different. Find the one which is different.
(i). (A) C R D T
(B) A P B Q
(C) E U F V
(D) G W H X
(ii). (A)H K N Q
(B) I L O R
(C) J M P S
(D) A D G J

Hint. A. The four groups of letters are
CRDT APBQ EUFV GWHX
The above can be written as

We find that when we take $1^{\text {st }} \& 3^{\text {rd }}$ letter $\& 2^{\text {nd }} \& 4^{\text {th }}$ letter as 2 pairs, the $3^{\text {rd }}$ letter is the next letter alphabetically to the $1^{\text {st }}$ letter.
Similarly the $4^{\text {th }}$ letter is alphabetically the next letter of the $2^{\text {nd }}$ letter.
i.e CD, AB, EF, GH \& PQ, UV, WX

Only in CRDT, we have T instead of 'S'
So, Ans: in CRDT $\Rightarrow$ Option (A)
B. The four groups of letters are

HKNQ ILOR JMPS ADGI
If we notice, we find that 2 letters are missing in the sequence. ie.
$\mathrm{H}_{\mathrm{IJ}} \mathrm{K}_{\mathrm{LM}} \mathrm{N}_{\mathrm{OP}} \mathrm{Q}$
$\mathrm{I}_{\mathrm{JK}} \mathrm{L}_{\mathrm{MN}} \mathrm{O}_{\mathrm{PQ}} \mathrm{R}$
$\mathrm{J}_{\mathrm{KL}} \mathrm{M}_{\mathrm{NO}} \mathrm{P}_{\mathrm{QR}} \mathrm{S}$

$$
\mathrm{A}_{\mathrm{BC}} \mathrm{D}_{\mathrm{EF}} \mathrm{G}_{\mathrm{H}} \mathrm{I}
$$

We find that only in ADGI, the difference is only one letter between G \& I.
Hence it is the odd one out.
8. A group of letters are given. A numerical code has been given to each letter. These letters have to be unscrambled into a meaningful word. Find out the code for the word so formed from the 4 answers given.

LINCPE
123456
(A) 234156
(B) 563421
(C) 613524
(D) 421356

Given code is
[Ans: (B) 56342 1]

## LINCPE <br> 123456

Option (a) is 234156 . When we substitute number for each letter from code, we get, 234156
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
I N C L P E
Option (b) is 563421 , similarly, we get
$\begin{array}{lllll}5 & 6 & 3 & 4 & 1\end{array}$
$\downarrow \downarrow \downarrow \downarrow \downarrow \downarrow$
P E N C I L = PENCIL
Option (c) is $\begin{array}{llllll}6 & 1 & 3 & 5 & 2 & 4\end{array}$

[Max. Marks : 100

## PART - A

I. Choose the correct answer $10 \times \mathbf{1}=10$

1. $\frac{-5}{4}$ is a rational number which lies between $\qquad$
(A) 0 and $\frac{-5}{4}$
(B) -1 and 0
(C) -1 and -2
(D) -4 and -5
2. The Square of 43 ends with the digit $\qquad$
(A) 9
(B) 6
(C) 4
(D) 3
3. The radius of a circle of diameter 24 cm is (A) 10 cm
(B) 12 cm
(C) 6 cm
(D) 18 cm
4. If $x^{2}-y^{2}=16$ and $(x+y)=8$ then $(x-y)$ is $\qquad$
(A) 8
(B) 3
(C) 2
(D) 1
5. If the area of square is $36 x^{4} y^{2}$ then, it side is $\qquad$
(A) $6 x^{4} y^{2}$
(B) $8 x^{2} y^{2}$
(C) $6 x^{2} y$
(D) $-6 x^{2} y$
6. The single discount in $\%$ which is equivalent to two successive discount of $20 \%$ and $25 \%$ is $\qquad$
(A) $40 \%$
(B) $45 \%$
(C) $5 \%$
(D) $22.5 \%$
7. Two similar triangles will always have
$\qquad$ angles.
(A) acute
(B) obtuse
(C) right
(D) matching
8. The hypotenuse of a right angled triangle of sides 12 cm and 16 cm is $\qquad$
(A) 28 cm
(B) 20 cm
(C) 24 cm
(D) 21 cm
9. The difference between the largest value and the smallest value of the given data is
$\qquad$
(A) range
(B) frequency
(C) variable
(D) none of these
10. Common Prime factors of 30 and 250 are
(A) $2 \times 5$
(B) $3 \times 5$
(C) $2 \times 3 \times 5$
(D) $5 \times 5$

## II. Fill in the blanks

 $5 \times 1=5$11. The multiplicative inverse of -1 is $\qquad$
12. The longest chord of a circle is $\qquad$
13. Loss or gain percentage is always calculated on the $\qquad$
14. The centroid of a triangle divides each medians in the ratio $\qquad$
15. The upper limit of the class interval $(25-35)$ is $\qquad$
III. Say True or False.
$5 \times 1=5$
16. The average of two rational numbers lies between them.
17. The standard form of $2 \times 10^{-4}$ is 0.0002 .
18. $7 x^{-2}+5 x-6$ is a polynomial.
19. $8,15,17$ is pythagorean triplet.
20. Inclusive series is a continuous series.

## IV. Match the following

21. $a^{0}$

- $a^{2}-b^{2}$

22. Circumference of a
semicircle

- Origin

23. $(a+b)(a-b) \quad$ - I
24. $(0,0)$

- Inverse Proportion

25. Speed-Time

- $(\pi+2) r$


## PART - B

V. Answer any 10 of the following (Q. No. 40 is compulsory)
$10 \times 2=20$
26. Write the decimal form of the rational number $1 \frac{2}{5}$.
27. Evaluate : $\frac{9}{132} \times \frac{-11}{3}$
28. Find the sum : $\frac{6}{5}+\left(\frac{-14}{15}\right)$
29. Find the square root of 17956 .
30. Evaluate : $\left(2^{-5} \times 2^{7}\right) \div 2^{-2}$
31. $A$ is thrice as fast as $B$. If $B$ can do a piece of work in 24 days, then find the number of days they will take to complete the work together.
32. A circle of radius 70 cm is divided into 5 equal sectors. Find the area of each of the sectors.
33. Length of the arc $=48 \mathrm{~m}, r=10 \mathrm{~m}$ find the area of the sector.
34. Expand : $5 x(2 y-3)$.
35. Factorise : $x^{2}+8 x+15$.
36. Solve : $2 x+5=9$
37. Find the area of the trapezium whose measures are $h=6 \mathrm{~cm}, a=7 \mathrm{~cm}, b=5 \mathrm{~cm}$.
38. Find the unknown side of the given triangle.

$5 \times 1=5$
39. Using repeated subtraction method, find the HCF of 280 and 420.
40. Find the cube root of 27000 (OR)
Represent the following data in ungrouped frequency table which gives the number of children in 25 families. $1,3,0,2,5,2,3,4$, $1,0,5,4,3,1,3,2,5,2,1,1,2,6,2,1,4$.

PART - C
VI. Answer any 7 questions: (Question No. 50 is compulsory) $7 \times 5=35$
41. Write the following rational numbers in ascending and descending order :
$\frac{-3}{5}, \frac{7}{-10}, \frac{-15}{20}, \frac{14}{-30}, \frac{-8}{15}$
42. Evaluate : $\sqrt[3]{\frac{1728}{729}}$
43. The radius of a sector is 21 cm and its central angle is $120^{\circ}$. Find (i) the length of the arc. (ii) area of the sector. $\left(\pi=\frac{22}{7}\right)$
44. Find the area of the shaded part in the following figure. $(\pi=3.14)$


10 cm
45. Using the identity find the value of $(103)^{3}$
46. The Price of a rain coat was slashed from $₹ 1060$ to ₹ 901 by a shopkeeper in the rainy season to boost the sales. Find the rate of discount given by him.
47. Acement factory makes 7000 cement bags in 12 days with the help of 36 machines. How many bags can be made in 18 days using 24 machines?
48. A 20 feet ladder leans against a wall at height of 16 feet from the ground. How far is the base of the ladder from the wall?
49. Monthly expenditure of Kumaran's family is given below. Draw a suitable Pie chart.

| Particulars | Food | Education | Rent | Transport | Miscelleneous |
| :--- | :---: | :---: | :---: | :---: | :---: |
| Expenses (in \%) | $50 \%$ | $20 \%$ | $15 \%$ | $5 \%$ | $10 \%$ |

51. Solve for $x: \frac{2^{2 x-1}}{2^{x+2}}=4$

The sum of three consecutive odd numbers is 75 . Which is the largest among them?
VII. Answer the following questions
$1 \times 10=10$
52. Construct a quadrilateral DEAR with $\mathrm{DE}=6 \mathrm{~cm}, \mathrm{EA}=5 \mathrm{~cm}, \mathrm{AR}=5.5 \mathrm{~cm}$, $R D=5.2 \mathrm{~cm}$ and $\mathrm{DA}=10 \mathrm{~cm}$. Also find its area.
(OR)
Construct a rectangle HAND with $\mathrm{HA}=7 \mathrm{~cm}$ and $\mathrm{AN}=4 \mathrm{~cm}$. Also find its area.

## VIII. Answer the following questions

53. Draw the graph of $Y=5 x$

Draw a frequency polygon for the following data using histogram.

| Marks | $0-10$ | $10-20$ | $20-30$ | $30-40$ | $40-50$ | $50-60$ | $60-70$ | $70-80$ | $80-90$ | $90-100$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Number of <br> students | 5 | 8 | 10 | 18 | 25 | 22 | 20 | 13 | 6 | 3 |

## Answers

## PART - A

I.

1. (C) -1 and - 2
2. (A) 9
3. (B) 12 cm
4. (C) 2
5. (C) $6 x^{2} y$
6. (A) $40 \%$
7. (D) matching
8. (B) 20 cm
9. (A) range
10. (A) $2 \times 5$
II.
11. -1
12. diameter
13. cost price
14. $2: 1$
15. 35
III.
16. True
17. True
18. False
19. True
20. False
IV.
21. $a^{0}$

- 1

22. Circumference of a semicircle

- $(\pi+2) r$

23. $(a+b)(a-b)$

- $a^{2}-b^{2}$

24. $(0,0)$

- Origin

25. Speed - Time - Inverse Proportion PART - B
V.
26. $1 \frac{2}{5}=\frac{7}{5}=\frac{14}{10}=1.4$
27. $\frac{\not q}{132} \times \frac{-\not 11}{\not p}=\frac{-1}{4}$
28. $\frac{6}{5}+\left(\frac{-14}{15}\right)=\frac{(6 \times 3)+(-14)}{15}=\frac{18+(-14)}{5}=\frac{4}{5}$
