Standard 10
 MATHEMATICS
 PART-I

Marks: 50

Note: i) Answer all the questions:

ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1) If $A=\{a, b, p\}, B=\{2,3\}, C=\{p, q, r, s\}$, then $n[(A \cup C) \times B]$ is
a) 8
b) 20
c) 12
d) 16
2) If $f: A \rightarrow B$ is a objective function and if $n(B)=7$, then $n(A)$ is equal to
a) 49
b) 7
c) 1
d) 14
3) $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
a) quadratic
b) reciprocal
c) cubic
d) linear
4) If A and B are two finite sets such that $n(A)=p$ and $n(B)=q$, then what is the total number of functions that exist from A to B ?
a) p^{q}
b) q^{p}
c) $2^{p q}$
d) $2^{p q-1}$
5) The sum of the exponents of the prime factors in the prime factorization of 1729 is
a) 2
b) 3
c) 1
d) 4
6) The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \ldots \ldots$. is
a) $\frac{1}{24}$
b) $\frac{1}{27}$
C) $\frac{2}{3}$
d) $\frac{1}{81}$
7) Which among the following sequences is not an AP?
a) $\sqrt{3}, \sqrt{3}, \sqrt{3}$.
b) $5 \sqrt{5}, 10 \sqrt{5}, 15 \sqrt{5} \ldots \ldots$
C) $\sqrt{2}, \sqrt{3}, \sqrt{4}$
d) $-100,0,100$

PART-II

Note: i) Answer five questions only:

ii) Question number 14 is compulsory.
8) If $B \times A=\{(1, a),(1, b),(1, c),(2, a),(2, b),(2, c),(3, a),(3, b),(3, c)\}$, then find A and B.
9) A relation R is given by the set $\{(x, y) / y=x+3, x \in\{0,1,2,3,4,5\}\}$. Determine its domain and range.
10) If $f(x)=2 x-k$ and $g(x)=4 x+5$ and if fog $=g$ of then find the value of k.
11) A man starts his journey from chennai to Delhi by train. He starts at 22:30 hours on Wednesday. If it takes 32 hours of travelling time and assuming kinaty the senain is yoitr lated when will he reach Delni?

V10M

12) Find the $8^{\text {th }}$ term of $n=666$, then find n
13) If $1+2+3+\ldots+n=6$ eorem of Arithmetic.
14) State the Fundamental Theor

PART-III
$5 \times 5=25$

Note: i) Answer five questions only:

ii) Question number 21 is compulsory.

15) Let $A=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than 8 and $C=$ The set of all even prime numbers. Verify that $A \times(B-C)=(A \times B)-(A \times C)$.
16) Let $A=\{1,2,3,4\}$ and $B=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function defined by $f(x)=3 x-1$. Represent this function.
i) by an arrow diagram
iii) as a set of ordered pairs
ii) in a table form
iv) in a graphical form
17) Let f be a function $f: ¥ \rightarrow ¥$ defined by $f(x)=3 x+2, x \in ¥$
i) Find the images of 1,2, and 3
ii) Find the pre-images of 29 and 53
iii) Identify the type of function
18) In an AP, sum of four consecutive terms is 28 and the sum of their squares is 276. Find the four numbers.
19) Find the HCF of 396,504 and 636 using Euclid's division algorithm.
20) Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}$, 24 cm . How much area can be decorated with these colour papers?
21) if $f(x)=x-4, g(x)=x^{2}$ and $h(x)=3 x-5$, then prove that $f \circ(g \circ h)=(f \circ g) \circ h$.

PART -IV

i) Answer the following:

22) Construct a triangle similar to given triangle $P Q R$ with its sides equal to $7 / 4$ of the corresponding sides of the triangle PQR. (scale factor $7 / 4>1$)
(OR)
Construct a triangle similar to a given triangle LMN with its sides equal to $4 / 5$ of the corresponding sides of the triangle LMN. (scale factor $4 / 5<1$).
