11

Time : 1.30 Hrs

First Mid-Term Test - 2023 MATHEMATICS

Register No.

Marks: 50

PART - I

Choose the correct answer

 $10 \times 1 = 10$

- Let A and B be subsets of the universal set N₁ the set of natural numbers. Then A'U[(A ∩ B)UB'] is

 a) A b) A¹ c) B d) N
- If A = {(x, y) : y = e^x, x ∈ R}, B = { (x, y) : y = e^{-x}, x ∈ R} then n(A ∩ B) is

 a) infinity
 b) 0
 c) 1
 d) 2
- 3. If n(A) = 2 and n(BUC) = 3, then $n[(A \times B) \cup (A \times C)]$ is a) 2^3 b) 3^2 c) 6 d) 5
- 4. The range of the function $\frac{1}{1-2\sin x}$ is

a)
$$(-\infty, -1) \cup \left(\frac{1}{3}, \infty\right)$$
 b) $\left(-1, \frac{1}{3}\right)$ c) $\left[-1, \frac{1}{3}\right]$ d) $(-\infty, -1] \cup \left[\frac{1}{3}, \infty\right)$
The range of the function $f(x) = ||x| - x||_{X} \in \mathbb{R}$ is

- 5. The range of the function $f(x) = ||x| x|, x \in R$ is a) [0, 1] b) $[0, \infty)$ c) [0, 1) d) (0, 1)
 - The value of $\log_{\sqrt{2}} 512$ is
 - a) 16 b) 18 c) 9 d) 12
- The value of log₃ 11.log₁₁13.log₁₃15.log₁₅27.log₂₇81 is
 a) 1
 b) 2
 c) 3
 d) 4
- 8. The solution set of the following inequality $|x-1| \ge |x-3|$ is
 - a) [0, 2] b) $[2, \infty)$ c) (0, 2) d) $(-\infty, 2)$
- 9. If 3 is the logarithm of 343, then the base is
 - a) 5 b) 7 c) 6 d) 9
- 10. The number of solutions of $x^2 + |x 1| = 1$ is
 - a) 1 b) 0 c) 2 d) 3

PART - II

II. Answer the four questions. 16th question compulsory.

 $4 \times 2 = 8$

- 11. If (A) denotes the power set of A1 then find $n(p(p(p(\phi))))$
- 12. Find the number of subsets of A if A = $\{x : x = 4n + 1, 2 \le n \le 5, n \in \mathbb{N}\}$
- 13. Solve for x : |3 x| < 7
- 14. If the logarithm of 324 to base a is 4, then find a.
- 15. Find the complete set of values of a for which the quadratic $x^2 ax + a + 2 = 0$ has equal roots.
- 16. If $n(A \cap B) = 3$ and n(AUB) = 10, then find $n(P(A \Delta B))$

PART - III

III. Answer the four questions. 22nd question is compulsory.

 $4 \times 2 = 8$

17. By taking suitbale set A, B, C verify the following result $(A \times B) \cap (B \times A) = (A \cap B) \times (B \cap A)$

t 11 Mathematics - 1

- 18 Let A = {a, b, c} R = { (a, a) (b, b) (a, c) }. Write down the minimum number of ordered pairs to be included to R to make it i) reflexive ii) symmetric iii) transitive iv) equivalence
- 19. Let f and g be the two functions from R to R defined by f(x) = 3x 4 and $g(x) = x^2 + 3$ find gof and fog.
- 20. Solve $\frac{1}{5} |10x 2| < 1$
- 21 Find the real roots of x4 = 16
- 22. Prove $\log \frac{a^2}{bc} + \log \frac{b^2}{ca} + \log \frac{c^2}{ab} = 0$

PART - IV

IV. Answer the following questions.

 $4 \times 5 = 20$

23. If A and B are two sets so that $n(B-A) = 2n(A-B) = 4n (A \cap B)$ and if n(AUB) = 14, then find n(P(A)).

(OR)

- b) In the set z of integers, define mRn if m n is divisible by 7. Prove that R is an equivalence relation.
- 24. Let f, g R \rightarrow R be defined as f(x) = 2x |x|, and g(x) = 2x + |x|, find fog (OR)

b) Write the values of f at -4, 1, -2, 7, 0 if
$$f(x) = \begin{cases} -x + 4 & \text{if } -x < x \le -3 \\ x + 4 & \text{if } -3 < x < -2 \\ x^2 - x & \text{if } -2 \le x < 1 \\ x - x^2 & \text{if } 1 \le x < 7 \end{cases}$$
Otherwise

- 25. If f : R → R defined by f(x) = 3x 5, prove that f is a bijection and find its inverse (OR)
 - b) Find all values of x for which $\frac{x^3(x-1)}{(x-2)} > 0$
- 26. a) Resolve into partial fractions. $\frac{2x}{(x^2 + 1)(x 1)}$

(OR)

b) If
$$x = \sqrt{2} + \sqrt{3}$$
 find $\frac{x^2 + 1}{x^2 - 2}$