

COMMON FIRST MID-TERM TEST - 2023

		Standar	d - 11 Reg	3. No.
		MATHEM	ATICS	
Time: 1	.30 hours			Marks: 50
		PART	-I	
Choose	the best answe	er:		10×1=10
1)	If $n(A) = 2$, $n(B)$	C) = 3 then n[(A	×B) ∪ (A×C)] is	
	a) 2 ³	b) 3 ²	c) 6	d) 5
2)	The range of the	e function $\frac{1}{1-2 \sin x}$	is is	
	a) (-∞, -1) ∪ (1/3, ∞)		
	c) $\left[-1, \frac{1}{3}\right]$		d) (-∞, -1) ∪ ($\frac{1}{3}$, ∞
3)	Let X = {1, 2, 3, 4} and R = {(1, 1), (1, 2), (1, 3), (2, 2), (3, 3), (2, 1), (3, 1), (1, 4), (4, 1)}. Then R is			
	a) Reflexive			d) Equivalence
4)		defined by $f(x) = 1$		
	a) R		c) (-1, -)	
5)	The solution set of the following inequality $ x-1 \ge x-3 $			
	a) [0, 2]	b) (2, x)	c) (0, 2)	d) (-∞, 2)
6)	The value of $\log_{\sqrt{2}} 512$ is			
-	a) 16	b) 18	c) 9	d) 12
7)	If $\frac{1-2x}{3+2x-x^2} = \frac{A}{3-x} + \frac{B}{x+1}$, then the value of A+B is			
	a) $\frac{-1}{2}$	b) $\frac{-2}{3}$	c) $\frac{1}{2}$	d) $\frac{2}{3}$
8)	Let $X = \{1, 2, 3, 4\}$, $Y = \{a, b, c, d\}$ and $f = \{(1, a), (4, b), (2, c), (3, d), (2, d)\}$, then f is			
	a) an one-to-on	e function	b) an onte	o function
	c) a function which is not one-to-one d) not a function			
	The Quadratic equation which roots are 7 and -3 is			
	a) $x^2 + 4x - 21 = 0$		b) $x^2-4x+21 =$	
	c) $x^2-4x-21=0$ d) $x^2+4x+21=0$			
10)	If a and b are the roots of the equation $x^2-kx+16=0$ and satisfy $a^2+b^2=32$			
20)	then the value of k is			
	a) 10		c) -8, 8	d) 6
	-,	PART	- II	3.51

Answer ANY FOUR questions: Qn.No. 16 is compulsory.

 $4 \times 2 = 8$

- 11) If $A = \{1, 2, 3, 4\}$ and $B = \{3, 4, 5, 6\}$, Find $n[(A \cup B) \times (A \cap B) \times (A \cap B)]$.
- 12) Let f and g be the two functions from R to R defined by f(x) = 3x-4 and $g(x) = x^2 + 3$, find gof.

XI - Mathematics

13) Prove
$$\log a + \log a^2 + \log a^3 + \dots + \log a^n = \frac{n(n+1)}{2} \log a$$

- 14) Find the radius of the spherical tank whose volume is $\frac{32\pi}{3}$ cubic units.
- 15) Find the zeros of the polynomial function $f(x) = 4x^2-25$.
- If P(A) denotes the power set of A, then find n(P(P(P(\$\phi)\$)))

PART - III

Answer ANY FOUR questions: Qn.No. 22 is compulsory.

4×3=12

- 17) If n[P(A)] = 1024, n(A∪B) = 15 and n[P(B)] = 32 then find n(A∩B)?
- 18) Find the range of the function $\frac{1}{2\cos x 1}$.
- 19) Let A = {a, b, c}, what is the equivalence relation of smallest cardinality on A? What is the equivalence relation of largest cardinality on A?
- 20) Solve: $\frac{3(x-2)}{5} \le \frac{5(2-x)}{3}$
- 21) Resolve into partial fractions: $\frac{3x+1}{(x-2)(x+1)}$
- 22) Write $f(x) = x^2 + 5x + 4$ in completed square form.

PART - IV

Answer ALL the questions:

4×5=20

23) Write the values of at -3, 5, 2, -1, 0 if
$$f(x) = \begin{cases} x^2 + x - 5 & ; & x \in (-\infty, 0) \\ x^2 + 3x - 2 & ; & x \in (3, \infty) \\ x^2 & ; & x \in (0, 2) \\ x^2 - 3 & ; & Otherwise \end{cases}$$

If $f: R \rightarrow R$ is defined by f(x) = 2x-3. Prove that f in a bijection and find its inverge.

24) If f, g: $R \rightarrow R$ be defined by f(x) = 2x-|x| and g(x) = 2x+|x|. Find fog. (OR)

Resolve the following rational expressions into partial fractions: $\frac{x^2 + x + 1}{x^2 - 5x + 6}$

25) If one root of $K(x-1)^2 = 5x-7$ is double the other root. Show that K = 2 or K = -25. (OR)

Find all the values of x that satisfies the inequality $\frac{2x-3}{(x-2)(x-4)}$.

26) In a survey of 5000 persons in a town, it was found that 45% of the persons know language A, 25% know language B, 10% know language C, 5% know languages A and B, 4% know languages B and C, and 4% know languages A and C. If 3% of the persons know all the three languages. Find the number of persons who knows only language A.

(OR)

Solve the equations $\sqrt{6-4x-x^2} = x+4$