## **CHAPTER - 1** SETS, RELATIONS AND FUNCTIONS

| 1. | If $A = \{(x, y) \colon y =$ | $e^x, x \in R$ | and $B = \{(x, y) : y = e^{-x}, x \in A\}$ | $R$ } then $n(A \cap B)$ is |
|----|------------------------------|----------------|--------------------------------------------|-----------------------------|
|    | (a) Infinity                 | (b) 0          | (c) 1                                      | (d) 2                       |

- 2. If  $A = \{(x, y): y = sinx, x \in R\}$  and  $B = \{(x, y): y = cosx, x \in R\}$  then  $A \cap B$  contains
  - (a) No element (b) infinity many elements (d) cannot be determined (c) only one element
- 3. The relation R defined on a set  $A = \{0, -1, 1, 2\}$  by xRy if  $|x^2 + y^2| \le 2$ , then which one of the following is true?

(a) 
$$R = \{(0,0), (0,-1), (0,1), (-1,0), (-1,1), (1,2), (1,0)\}$$

(b) 
$$R^{-1} = \{(0,0), (0,-1), (0,1), (-1,0), (1,0)\}$$

- (*d*) Range of *R* is  $\{0, -1, 1\}$ (c) Domain of R is  $\{0, -1, 1, 2\}$
- 4. If  $f(x) = |x 2| + |x + 2|, x \in \mathbb{R}$ , then

$$(a) f(x) = \begin{cases} -2x & if & x \in (-\infty, -2] \\ 4 & if & x \in (-2, 2] \\ 2x & if & x \in (2, \infty) \end{cases}$$

$$(b) f(x) = \begin{cases} 2x & if & x \in (-\infty, -2] \\ 4x & if & x \in (-2, 2] \\ -2x & if & x \in (2, \infty) \end{cases}$$

$$(c) f(x) = \begin{cases} -2x & if & x \in (-\infty, -2] \\ -4x & if & x \in (-2, 2] \\ 2x & if & x \in (2, \infty) \end{cases}$$

$$(d) f(x) = \begin{cases} -2x & if & x \in (-\infty, -2] \\ 2x & if & x \in (-2, 2] \\ 2x & if & x \in (2, \infty) \end{cases}$$

$$(c) f(x) = \begin{cases} -2x & \text{if} & x \in (-\infty, -2] \\ -4x & \text{if} & x \in (-2, 2] \\ 2x & \text{if} & x \in (2, \infty) \end{cases}$$
 
$$(d) f(x) = \begin{cases} -2x & \text{if} & x \in (-\infty, -2] \\ 2x & \text{if} & x \in (-2, 2] \\ 2x & \text{if} & x \in (2, \infty) \end{cases}$$

5. Let  $\mathbb{R}$  be the set of all real numbers. Consider the following subsets of the plane  $\mathbb{R} \times \mathbb{R}$ :

$$S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\} \text{ and } T = \{(x, y): x - y \text{ is an integer}\}$$

Then which of the following is true?

- (a)T is an equivalence relation but S is not an equivalence relation.
- (b) Neither S nor T is an equivalence relation.
- (c) Both S and T are equivalence relation.
- (d) S is an equivalence relation but T is not an equivalence relation.
- 6. Let A and B be subsets of the universal set N, the set of natural numbers.

Then 
$$A' \cup [(A \cap B) \cup B']$$
 is

$$(a) A (b) A' (c) B (d) \mathbb{N}$$

7. The number of students who take both the subjects Mathematics and Chemistry is 70. This represents 10% of the enrollment in Mathematics and 14% of the enrolment in Chemistry. The number of students take at least one of these two subjects, is

|     | (a) 1120                                                                          | (b) 1130                                              | (c) 1100                                    | (d) insufficient data               |  |
|-----|-----------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------------------------|-------------------------------------|--|
| 8.  | If $n((A \times B) \cap (A \times C)) = 8$ and $n(B \cap C) = 2$ , then $n(A)$ is |                                                       |                                             |                                     |  |
|     | (a) 6                                                                             | (b) 4                                                 | (c) 8                                       | (d) 16                              |  |
| 9.  | If $n(A) = 2$ and $n(B \cup C)$                                                   | $G(A) = 3$ , then $n[(A \times B) \cup (A \times B)]$ | $(A \times C)$ ] is                         |                                     |  |
|     | (a) $2^3$                                                                         | $(b) 3^2$                                             | (c) 6                                       | (d) 5                               |  |
| 10. | If two sets Aand B have                                                           | 17 elements in common, t                              | then the number of eleme                    | ents common to the set              |  |
|     | $A \times B$ and $B \times A$ is                                                  |                                                       |                                             |                                     |  |
|     | (a) $2^{17}$                                                                      | $(b) 17^2$                                            | (c) 34                                      | (d) insufficient data               |  |
| 11. | For non-empty sets A and                                                          | d B, if $A \subset B$ then $(A \times B)$             | $) \cap (B \times A)$ is equal to           |                                     |  |
|     | $(a) A \cap B$                                                                    | $(b) A \times A$                                      | (c) $B \times B$                            | (d) none of these                   |  |
| 12. | The number of relations                                                           | on a set containing 3 element                         | ents is                                     |                                     |  |
|     | (a) 9                                                                             | (b) 81                                                | (c) 512                                     | (d) 1024                            |  |
| 13. | Let <i>R</i> be the universal rel                                                 | lation on a set X with more                           | e than ne element, then R                   | is                                  |  |
|     | (a) not reflexive                                                                 | (b) not symmetric                                     | (c) transitive                              | (d) none of the above               |  |
| 14. | Let $X = \{1,2,3,4\}$ and $R$                                                     | $= \{(1,2), (1,2), (1,3), (2,2)\}$                    | 2), (3,3)(2,1)(3,1), (1,4)                  | (4,1). Then $R$ is                  |  |
|     | (a) reflexive                                                                     | (b) symmetric                                         | (c)transitive                               | (d) equivalence                     |  |
| 15. | The range of the function                                                         | $1 \frac{1}{1-2sinx}$ is                              |                                             |                                     |  |
|     | $(a) (-\infty, -1) \cup \left(\frac{1}{3}, \infty\right)$                         |                                                       | $(b) \left(-1, \frac{1}{3}\right)$          |                                     |  |
|     | $(c) \left[-1, \frac{1}{3}\right]$                                                | ( <i>d</i> ) (−∞,                                     | $-1] \cup \left[\frac{1}{3}, \infty\right)$ |                                     |  |
| 16. | The range of the function                                                         | $f(x) =  [x] - x , x \in \mathbb{R}$                  | is                                          |                                     |  |
|     |                                                                                   | $(b) [0, \infty)$                                     | (c) [0,1)                                   | (d)(0,1)                            |  |
| 17. | The rule $f(x) = x^2$ is a l                                                      | oijection if the domain and                           | the co-domain are given                     | ı by                                |  |
|     | $(a) \mathbb{R}, \mathbb{R}$                                                      | $(b) \mathbb{R}, (0, \infty)$                         | $(c)$ $(0,\infty)$ , $\mathbb{R}$           | $(d)$ $[0,\infty)$ , $[0,\infty)$ , |  |
| 18. | The number of constant f                                                          | functions from a set contai                           | ning $m$ elements to a set                  | containing $n$ elements             |  |
|     | is                                                                                |                                                       |                                             |                                     |  |
|     | (a) mm                                                                            | (b) m                                                 | (c) n                                       | (d) m + n                           |  |
| 19. | The function $f: [0,2\pi] \rightarrow$                                            | [-1,1] defined by $f(x)$ =                            | = sin x is                                  |                                     |  |
|     | (a) One-to-one                                                                    | (b) onto                                              | (c) bijection                               | (d) cannot be defined               |  |
| 20. | If the function $f: [-3,3]$                                                       | $\rightarrow S$ defined by $f(x) = x^2$               | $^2$ is onto, then $S$ is                   |                                     |  |
|     | (a) $[-9,9]$                                                                      | (b) ℝ                                                 | (c) [-3,3]                                  | ( <i>d</i> ) [0,9]                  |  |
|     |                                                                                   |                                                       |                                             |                                     |  |

- 21. Let  $X = \{1,2,3,4\}, Y = \{a,b,c,d\}$  and  $f = \{(1,a),(4,b),(2,c),(3,d),(2,d)\}$ . Then f is
  - (a) an one-to-one function

- (b) an onto function
- (c) a function which is not one-to-one
- (d) not a function
- 22. The inverse of  $f(x) = \begin{cases} x & \text{if } x < 1 \\ x^2 & \text{if } 1 \le x \le 4 \text{ is } \\ 8\sqrt{x} & \text{if } x > 4 \end{cases}$ 
  - (a)  $f^{-1}(x) = \begin{cases} \frac{x}{\sqrt{x}} & \text{if } x < 1\\ \frac{x^2}{64} & \text{if } 1 \le x \le 16 \end{cases}$
- (b)  $f^{-1}(x) = \begin{cases} -x & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16\\ \frac{x^2}{64} & \text{if } x > 16 \end{cases}$
- $(c) f^{-1}(x) = \begin{cases} x^2 & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16\\ \frac{x^2}{64} & \text{if } x > 16 \end{cases} \qquad (d) f^{-1}(x) = \begin{cases} \frac{2x}{\sqrt{x}} & \text{if } x < 1\\ \frac{x^2}{6} & \text{if } x > 16 \end{cases}$
- 23. Let  $f: \mathbb{R} \to \mathbb{R}$  is defined by f(x) = 1 |x|. Then the range of f is

- (b)  $(1, \infty)$
- (*c*) (−1,∞)
- 24. The function  $f: \mathbb{R} \to \mathbb{R}$  is defined by f(x) = sinx + cosx is
  - (a) an odd function

(b) neither an odd function nor an even function

(c) an even function

- (d) both odd function and even function
- 25. The function  $f: \mathbb{R} \to \mathbb{R}$  is defined by  $f(x) = \frac{(x^2 + \cos x)(1 + x^4)}{(x \sin x)(2x x^3)} + e^{-|x|}$ 
  - (a) an odd function

(b) neither an odd function nor an even function

(c) an even function

(d) both odd function and even function

#### **CHAPTER-2**

#### BASIC ALGEBRA

- 1. If  $|x + 2| \le 9$ , then x belongs to
  - (a)  $(-\infty, -7)$
- (b)[-11,7]
- (c)  $(-\infty, -7) \cup [11, \infty]$
- (d)(-11,7)

- 2. Give that x, y and b are real numbers x < y, b > 0, then
  - (a) xb < yb
- (b) xb > yb
- $(c) xb \leq yb$

 $(d) \frac{x}{h} \ge \frac{y}{h}$ 

- 3. If  $\frac{|x-2|}{x-2} \ge 0$ , then x belongs to
  - $(a) [2, \infty)$
- (b)  $(2, \infty)$

 $(d)(-2,\infty)$ 

- 4. The solution of 5x 1 < 24 and 5x + 1 > -24 is
  - (a) (4,5)
- (b)(-5,-4)

(d)(-5,4)

| 5. | The solution set of the following inequality $ x-1  \ge  x-3 $ is |                               |                                             |                      |  |
|----|-------------------------------------------------------------------|-------------------------------|---------------------------------------------|----------------------|--|
|    | (a) [0,2]                                                         | $(b)$ [2, $\infty$ )          | (c) (0,2)                                   | $(d)(-\infty,2)$     |  |
| 6. | The value of $log_{\sqrt{2}}$ 512 is                              | s                             |                                             |                      |  |
|    | (a)16                                                             | (b) 18                        | (c) 9                                       | (d) 12               |  |
| 7. | The value of $log_3 \frac{1}{81}$ is                              |                               |                                             |                      |  |
|    | (a) - 2                                                           | (b) - 8                       | (c) - 4                                     | (d) - 9              |  |
| 8. | If $log_{\sqrt{x}}0.25 = 4$ , then the                            | ne value of $x$ is            |                                             |                      |  |
|    | (a) 0.5                                                           | (b) 2.5                       | (c) 1.5                                     | (d) 1.25             |  |
| 9. | The value of $log_ab log_b$                                       | $c \log_c a$ is               |                                             |                      |  |
|    | (a) 2                                                             | (b) 1                         | (c) 3                                       | (d) 4                |  |
| 10 | If 3 is the logarithm of 3                                        | 343, then the base is         |                                             |                      |  |
|    | (a) 5                                                             | (b) 7                         | (c) 6                                       | (d) 9                |  |
| 11 | Find $a$ so that the sum ar                                       | nd product of the roots of t  | he equation $2x^2 + (a-3)x$                 | c + 3a - 5 = 0  are  |  |
|    | equal is                                                          |                               |                                             |                      |  |
|    | (a) 1                                                             | (b) 2                         | (c) 0                                       | (d) 4                |  |
| 12 | If $a$ and $b$ are the roots of                                   | f the equation $x^2 - kx + 1$ | $16 = 0 \text{ and satisfy } a^2 + b^2 = 0$ | = 32, then the value |  |
|    | of k is                                                           |                               |                                             |                      |  |
|    | (a) 10                                                            | (b) -8                        | (c) -8,8                                    | ( <i>d</i> ) 6       |  |
| 13 | The number of solutions                                           | of $x^2 +  x - 1  = 1$ is     |                                             |                      |  |
|    | (a) 1                                                             | (b) 0                         | (c) 2                                       | (d) 3                |  |
| 14 |                                                                   |                               | t opposite in sign to the root              | ts of                |  |
|    | $3x^2 - 5x - 7 = 0 \text{ is}$                                    |                               |                                             |                      |  |
|    | (a) $3x^2 - 5x - 7 = 0$                                           | $(b) \ 3x^2 + 5x - 7 = 0$     | $(c) 3x^2 - 5x + 7 = 0$                     | $(d) 3x^2 + x - 7$   |  |
| 15 | If 8 and 2 are the roots or roots of the equation $x^2$           |                               | 3 are the roots of $x^2 + dx +$             | b = 0, then the      |  |
|    | (a) 1,2                                                           | (b) -1,1                      | (c) 9.1                                     | (d) -1.2             |  |
| 16 |                                                                   | (-)                           | x + c = 0, then the distance 1              |                      |  |
|    | (a, 0) and $(b, 0)$ is                                            | ous or use equation in        |                                             | pomos                |  |
|    | $(a) \sqrt{k^2 - 4c}$                                             | $(h)\sqrt{4k^2-c}$            | $(c)\sqrt{4c-k^2}$                          | $(d)\sqrt{k-8c}$     |  |
|    |                                                                   |                               | (c) v + c                                   | $(u)$ $\forall k$    |  |
| 17 | If $\frac{kx}{(x+2)(x-1)} = \frac{2}{x+2} + \frac{1}{x-1}$        | then the value of $k$ is      |                                             |                      |  |
|    |                                                                   |                               |                                             |                      |  |

(a) 1(b) 2 (c) 3 (d) 4 18. If  $\frac{1-2x}{3+2x-x^2} = \frac{A}{3-x} + \frac{B}{x+1}$ , then value A + B is (b)  $-\frac{2}{3}$  $(d)^{\frac{2}{3}}$  $(c)^{\frac{1}{2}}$ 19. The number of roots of  $(x + 3)^4 + (x + 5)^4 = 16$  is (b) 2 (d) 020. The value of  $\log_3 11.\log_{11} 13.\log_{13} 15.\log_{15} 27\log_{27} 81$  is (b) 2 (d) 4 **CHAPTER-3** TRIGONOMETRY 1.  $\frac{1}{\cos 80^{\circ}} - \frac{\sqrt{3}}{\sin 80^{\circ}} =$  $(a)\sqrt{2}$  $(b)\sqrt{3}$ (c) 2 (d) 42. If  $\cos 28^{\circ} + \sin 28^{\circ} = k^3$ , then  $\cos 17^{\circ}$  is equal to  $(b) - \frac{k^3}{\sqrt{2}}$  $(d) - \frac{k^3}{\sqrt{2}}$  $(a)\frac{k^3}{\sqrt{2}}$ 3. The maximum value of  $4\sin^2 x + 3\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$  is (a)  $4 + \sqrt{2}$ (b)  $3 + \sqrt{2}$ (d) 44.  $\left(1 + COS\frac{\pi}{8}\right)\left(1 + COS\frac{3\pi}{8}\right)\left(1 + COS\frac{5\pi}{8}\right)\left(1 + COS\frac{7\pi}{8}\right) =$ (b)  $\frac{1}{2}$ (c)  $\frac{1}{\sqrt{3}}$  $(d)\frac{1}{\sqrt{2}}$ 5. If  $\pi < 2\theta < \frac{3\pi}{2}$ , then  $\sqrt{2 + \sqrt{2 + 2\cos 4\theta}}$  equals to  $(b) - 2\sin\theta$  $(a) - 2\cos\theta$ (c)  $2\cos\theta$ (d)  $2sin\theta$ 6. If  $tan40^{\circ} = \lambda$ , then  $\frac{tan140^{\circ} - tan130^{\circ}}{1 + tan140^{\circ} tan130^{\circ}} =$  $(a)^{\frac{1-\lambda^2}{2}}$  $(b)^{\frac{1+\lambda^2}{2}}$  $(c)^{\frac{1+\lambda^2}{2\lambda}}$  $(d)^{\frac{1-\lambda^2}{2\lambda}}$ 7.  $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \cdots \cdot \cos 179^{\circ} =$ (a) 0(b) 1 (c) - 1(d)898. Let  $f_k(x) = \frac{1}{k} [\sin^k x + \cos^k x]$  where  $x \in \mathbb{R}$  and  $k \ge 1$ . Then  $f_4(x) - f_6(x) =$ (a)  $\frac{1}{4}$  $(b)^{\frac{1}{12}}$  $(c)^{\frac{1}{6}}$  $(d)^{\frac{1}{3}}$ 9. Which of the following is not true?

|    | (a) $\sin\theta = -\frac{3}{4}$                                                                | $(b)\cos\theta = -1$                                 | (c) $tan\theta = 25$                                             | $(d) \sec \theta = \frac{1}{4}$  |
|----|------------------------------------------------------------------------------------------------|------------------------------------------------------|------------------------------------------------------------------|----------------------------------|
| 10 | . $cos2θcos2φ + sin^2(θ -$                                                                     | $-\phi$ ) $-\sin^2(\theta+\phi)$ is equ              | ıal to                                                           |                                  |
|    | (a) $sin2(\theta + \phi)$                                                                      | (b) $cos2(\theta + \phi)$                            | (c) $sin2(\theta - \phi)$                                        | $(d)\cos 2(\theta-\phi)$         |
| 11 | $\frac{\sin(A-B)}{\cos A \cos B} + \frac{\sin(B-c)}{\cos B \cos C} + \frac{\sin(B-c)}{\cos B}$ | $\frac{(C-A)}{C\cos A}$ is                           |                                                                  |                                  |
|    | (a) $sinA + sinB + sinC$                                                                       | ( <i>b</i> )1                                        | (c) 0                                                            | $(d) \cos A + \cos B + \cos C$   |
| 12 | . If $cosp\theta + cosq\theta = 0$ and                                                         | nd if $p \neq q$ , then $\theta$ is equal            | al to (n is any integer                                          | ·)                               |
|    | $(a) \frac{\pi(3n+1)}{p-q}$                                                                    | $(b) \frac{\pi(2n+1)}{p\pm q}$                       | (c) $\frac{\pi(n\pm 1)}{p\pm q}$                                 | $(d) \frac{\pi(n+2)}{p+q}$       |
| 13 | . If $tanlpha$ and $taneta$ are the                                                            | e roots of $x^2 + ax + b = 0$                        | 0, then $\frac{\sin(\alpha+\beta)}{\sin\alpha\sin\beta}$ is equa | l to                             |
|    | (a) $\frac{b}{a}$                                                                              | $(b)\frac{a}{b}$                                     | $(c)-\frac{a}{b}$                                                | $(d)-\frac{b}{a}$                |
| 14 | . In a triangle $ABC$ , $sin^2A$                                                               | $+\sin^2 B + \sin^2 C = 2$ , th                      | en the triangle is                                               | •                                |
|    | (a) Equilateral triangle                                                                       | (b) isosco                                           | eles triangle                                                    |                                  |
|    | (c) right triangle                                                                             | (d) scaler                                           | ne triangle                                                      |                                  |
| 15 | $. If f(\theta) =  \sin\theta  +  \cos\theta $                                                 | $\theta , \theta \in R$ , then $f(\theta)$ is in the | e interval                                                       |                                  |
|    | (a) [0,2]                                                                                      | $(b)[1,\sqrt{2}]$                                    | (c)[1,2]                                                         | (d)[0,1]                         |
| 16 | $\cdot \frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 5x + 5\cos 3x + 10\cos x}$              | s equal to                                           | 0                                                                |                                  |
|    | (a) cos2x                                                                                      | (b)cosx                                              | $(c)\cos 3x$                                                     | (d)2cosx                         |
| 17 | . The triangle of maximum                                                                      | n area with constant perim                           | eter 12m                                                         |                                  |
|    | (a) Is an equilateral trian                                                                    | gle with side $4m$ (b)                               | ) is an isosceles triang                                         | le with sides $2m$ , $5m$ , $5m$ |
|    | (c) Is a triangle with side                                                                    | es $3m, 4m, 5m$ (d                                   | ) does not exist                                                 |                                  |
| 18 | A wheel is spinning at 2 rotations?                                                            | radians/second. How man                              | ny seconds will it take                                          | to make 10 complete              |
|    | $(a)10\pi$ seconds                                                                             | $(b)20\pi$ seconds                                   | (c) $5\pi$ seconds                                               | $(d)15\pi$ seconds               |
| 19 | . If $sin\alpha + cos\alpha = b$ , then                                                        | $1 \sin 2\alpha$ is equal to                         |                                                                  |                                  |
|    | (a) $b^2 - 1$ , if $b \le \sqrt{2}$                                                            | (b) $b^2 - 1$ , if $b > \sqrt{2}$                    | (c) $b^2 - 1$ , if $b \ge 1$                                     | $(d) b^2 - 1, if b \ge \sqrt{2}$ |
| 20 | . In a $\triangle ABC$ if (i)sin $\frac{A}{2}$ sin                                             | $n\frac{B}{2}\sin\frac{C}{2} > 0$ (ii) $\sin As$     | inBsinC > 0                                                      |                                  |
|    | (a) Both (i) and (ii) are                                                                      | true                                                 | (b) only $(i)$ is true                                           |                                  |
|    | (c) Only (ii) is true                                                                          |                                                      | (d) Neither (i) nor (i                                           | (i) is true.                     |

### **CHAPTER- 4**

| 1.                                                                                    | The sum of the digits at t                                                                              | the digits at the $10^{th}$ place  | of all numbers formed wit     | th the help of 2,4,5,7        |  |
|---------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------|------------------------------------|-------------------------------|-------------------------------|--|
|                                                                                       | taken all at a time is                                                                                  |                                    |                               |                               |  |
|                                                                                       | (a) 432                                                                                                 | (b) 108                            | (c) 36                        | (d) 18                        |  |
| 2.                                                                                    | In an examination there a                                                                               | are three multiple choice q        | uestions and each question    | has 5 choice.                 |  |
|                                                                                       | Number of ways in which                                                                                 | h a student can fail to get a      | all answer correct is         |                               |  |
|                                                                                       | (a) 125                                                                                                 | (b) 124                            | (c) 64                        | (d) 63                        |  |
| 3.                                                                                    | The number of ways in w                                                                                 | which the following prize b        | be given to a class of 30 bo  | ys first and second in        |  |
|                                                                                       | mathematics, first and se                                                                               | cond in physics, first in ch       | emistry and first in English  | h is                          |  |
|                                                                                       | (a) $30^4 \times 29^2$                                                                                  | (b) $30^3 \times 29^3$             | (c) $30^2 \times 29^4$        | ( <i>d</i> ) $30 \times 29^5$ |  |
| 4.                                                                                    | The number of 5 digit nu                                                                                | umbers all digits of which a       | are odd is                    |                               |  |
|                                                                                       | (a) 25                                                                                                  | $(b)5^5$                           | $(c)5^6$                      | (d) 625                       |  |
| 5.                                                                                    | In 3 fingers, the number                                                                                | of ways four rings can be          | worn is ways                  |                               |  |
|                                                                                       | (a) $4^3 - 1$                                                                                           | $(b)3^4$                           | (c) 68                        | (d) 64                        |  |
| 6.                                                                                    | If $(n+5)P_{(n+1)} = \left(\frac{11(n+1)}{2}\right)^{n+1}$                                              | $\left((n+3)P_n\right)$ , then the | value of n are                |                               |  |
|                                                                                       | (a) 7 and 11                                                                                            | (b) 6 and 7                        | (c) 2 and 11                  | (d) 2 and 6.                  |  |
| 7.                                                                                    | The product of $r$ consecu                                                                              | ntive positive integer is div      | risible by                    |                               |  |
|                                                                                       | (a) r!                                                                                                  | (b) (r-1)!                         | (c) $(r+1)!$                  | $(d) r^r$                     |  |
| 8. The number of five-digit telephone numbers having at least one of their digits rep |                                                                                                         |                                    |                               | repeated is                   |  |
|                                                                                       | (a) 90000                                                                                               | (b) 10000                          | (c) 30240                     | (d) 69760                     |  |
| 9.                                                                                    | If $(a^2 - a)C_2 = a^2 - a$                                                                             | $C_4$ then the value of 'a' is     |                               |                               |  |
|                                                                                       | (a) 2                                                                                                   | (b) 3                              | (c) 4                         | (d) 5                         |  |
| 10                                                                                    | 10. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining an |                                    |                               |                               |  |
|                                                                                       | two points is                                                                                           |                                    |                               |                               |  |
|                                                                                       | (a) 45                                                                                                  | (b) 40                             | (c) 39                        | (d) 38                        |  |
| 11                                                                                    | . The number of ways in v                                                                               | which a host lady invite 8 p       | people for a party of 8 out   | of 12 people of whom          |  |
|                                                                                       | two do not want to atten                                                                                | d the party together is            |                               |                               |  |
|                                                                                       | (a) $2 \times 11C_7 + 10C_8$                                                                            | (b) $11C_7 + 10C_8$                | (c) $12C_8 - 10C_6$           | (d) $10C_6 + 2!$              |  |
| 12                                                                                    | . The number of parallelog                                                                              | grams that can be formed f         | From a set of four parallel l | ines intersecting             |  |
|                                                                                       | another set of three para                                                                               | llel lines.                        |                               |                               |  |
|                                                                                       | (a) 6                                                                                                   | ( <i>b</i> ) 9                     | (c) 12                        | (d) 18                        |  |
|                                                                                       |                                                                                                         |                                    |                               |                               |  |

| 13. Everybody in a room shannumber of persons in the                                                 |                                                          | else. The total number of s                               | shake hands is 66 .The |  |  |
|------------------------------------------------------------------------------------------------------|----------------------------------------------------------|-----------------------------------------------------------|------------------------|--|--|
| (a) 11                                                                                               | (b)12                                                    | (c)10                                                     | (d) 6                  |  |  |
| 14. Number of sides of a pol                                                                         | lygon having 44 diagonals                                | is                                                        |                        |  |  |
| (a) 4                                                                                                | (b) 4!                                                   | (c) 11                                                    | (d) 22                 |  |  |
| 15. If 10 lines are drawn in                                                                         | a plane such that no two of                              | them are parallel and no t                                | hree are concurrent,   |  |  |
| then the total number of                                                                             | points of intersection are                               |                                                           |                        |  |  |
| (a) 45                                                                                               | ( <i>b</i> )40                                           | (c) 10!                                                   | $(d) 2^{10}$           |  |  |
| 16. In a plane there are 10 p                                                                        | oints are there out of which                             | h 4 points are collinear, the                             | en the number of       |  |  |
| triangles formed is                                                                                  |                                                          |                                                           |                        |  |  |
| (a) 110                                                                                              | (b) $10C_3$                                              | (c) 120                                                   | (d) 116                |  |  |
| 17. In $2nC_3$ : $nC_3 = 11$ : 1 the                                                                 | en $n$ is                                                |                                                           |                        |  |  |
| (a) 5                                                                                                | (b) 6                                                    | (c) 11                                                    | (d) 7                  |  |  |
| 18. $(n-1)C_r + (n-1)C_{(r)}$                                                                        | -1) is                                                   |                                                           |                        |  |  |
| $(a) (n+1)C_r$                                                                                       | $(b) (n-1)C_r$                                           | $(c) nC_r$                                                | $(d) nC_{r-1}$         |  |  |
| 19. The number of ways of choosing 5 cards out of a deck of 52 cards which include at least one king |                                                          |                                                           |                        |  |  |
| is                                                                                                   |                                                          | O                                                         |                        |  |  |
| (a) $52C_5$                                                                                          | (b) $48C_5$                                              | $(c)$ 52 $C_5$ + 48 $C_5$                                 | $(d) 52C_5 - 48C_5$    |  |  |
| 20. The number of rectangle                                                                          | es that a chessboard has                                 |                                                           |                        |  |  |
| (a) 8                                                                                                | $(b) 9^9$                                                | (c) 1296                                                  | (d) 6561               |  |  |
| 21. The number of 10 digit r                                                                         | number that can be written                               | by using the digits 2 and 3                               | 3 is                   |  |  |
| $(a) 10C_2 + 9C_2$                                                                                   | (b) $2^{10}$                                             | $(c) 2^{10} - 2$                                          | (d) 10!                |  |  |
| 22. If $P_r$ stands for $P_r$ then the sum of the series $1 + P_1 + 2P_2 + 3P_3 + \cdots + nP_n$ is  |                                                          |                                                           |                        |  |  |
| $(a) P_{n+1}$                                                                                        | (b) $P_{n+1} - 1$                                        | $(c) P_{n+1} + 1$                                         | $(d) (n+1)P_{n+1}$     |  |  |
| 23. The product of first $n$ odd natural numbers equals                                              |                                                          |                                                           |                        |  |  |
| (a) $2nC_n \times nP_n$                                                                              | $(b)\left(\frac{1}{2}\right)^n \times 2nC_n \times nP_n$ | $(c)\left(\frac{1}{4}\right)^n \times 2nC_n \times 2nP_n$ | (d) $nC_n \times nP_n$ |  |  |
| 24. If $nC_4$ , $nC_5$ , $nC_6$ are in                                                               | AP the value of $n$ can be                               |                                                           |                        |  |  |
| (a) 14                                                                                               | (b) 11                                                   | (c) 9                                                     | (d) 5                  |  |  |
| $25.\ 1 + 3 + 5 + 7 + \dots + 17$                                                                    | 7 is equal to                                            |                                                           |                        |  |  |
| (a) 101                                                                                              | (b) 81                                                   | (c) 71                                                    | (d) 61                 |  |  |
|                                                                                                      |                                                          |                                                           |                        |  |  |

### **CHAPTER-5**

# BINOMIAL THEOREM, SEQENCES AND SERIES

| 1. | The value of $2 + 4 + 6 + 6$                                        | $-\cdots + 2n$ is                                                          |                                              |                                 |
|----|---------------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------|---------------------------------|
|    | (a) $\frac{n(n-1)}{2}$                                              | $(b)^{\frac{n(n+1)}{2}}$                                                   | $(c)^{\frac{2n(2n+1)}{2}}$                   | (d) n(n+1)                      |
| 2. | The coefficient of $x^6$ in (                                       | $(2+2x)^{10}$ is                                                           |                                              |                                 |
|    | (a) $10C_6$                                                         | $(b) 2^6$                                                                  | $(c)\ 10C_62^6$                              | $(d) \; 10 C_6 2^{10}$          |
| 3. | The coefficient of $x^8y^{12}$                                      | $^2$ in the expansion of $(2x +$                                           | $(-3y)^{20}$ is                              |                                 |
|    | (a) 0                                                               | $(b) 2^8 3^{12}$                                                           | $(c) 2^8 3^{12} + 2^{12} 3^8$                | $(d) \ 20C_8 2^8 3$             |
| 4. | If $nC_{10} > nC_r$ for all pos                                     | sible $r$ , then a value of $n$                                            | is                                           |                                 |
|    | (a) 10                                                              | (b) 21                                                                     | (c) 19                                       | (d) 20                          |
| 5. | If $a$ is the arithmetic mea                                        | an and $g$ is the geometric r                                              | nean of two numbers, ther                    |                                 |
|    | (a) $a \leq g$                                                      | (b) $a \ge g$                                                              | (c) a = g                                    | (d) a > g                       |
| 6. | If $(1+x^2)^2(1+x)^n = a$                                           | $a_0 + a_1 x + a_1 x^2 + \dots + x$                                        | $^{n+4}$ and if $a_0$ , $a_1$ , $a_2$ are in | AP, then $n$ is                 |
|    | (a) 1                                                               | (b) 5                                                                      | (c) 2                                        | (d) 4                           |
| 7. | If $a$ , 8, $b$ are in $AP$ , $a$ , 4,                              | b are in $GP$ , and if $a, x, b$                                           | are in $HP$ then $x$ is                      |                                 |
|    | (a) 2                                                               | (b) 1                                                                      | (c) 4                                        | (d) 16                          |
| 8. | The sequence $\frac{1}{\sqrt{3}}$ , $\frac{1}{\sqrt{3}+\sqrt{2}}$ , | $\frac{1}{\sqrt{3}+2\sqrt{2}}$ ,form an                                    |                                              |                                 |
|    | (a) AP                                                              | (b) GP                                                                     | (c) HP                                       | (d) AGP                         |
| 9. | The HM of two positive                                              | number whose AM and G                                                      | M are 16,8 respectively is                   |                                 |
|    | (a) 10                                                              | (b) 6                                                                      | (c) 5                                        | (d) 4                           |
| 10 | . If $S_n$ denotes the sum of                                       | n terms of an AP whose c                                                   | ommon difference is $d$ , the                | e value of                      |
|    | $S_n - 2S_{n-1} + S_{n-2}$                                          |                                                                            |                                              |                                 |
|    | (a) d                                                               | (b) 2d                                                                     | (c) 4d                                       | $(d) d^2$                       |
| 11 | . The remainder when 38 <sup>1</sup>                                | <sup>5</sup> is divided by 13 is                                           |                                              |                                 |
|    | (a) 12                                                              | (b) 1                                                                      | (c) 11                                       | ( <i>d</i> ) 5                  |
| 12 | . The $n^{th}$ term of the sequ                                     | ence 1,2,4,7,11, is                                                        |                                              |                                 |
|    | (a) $n^3 + 3n^2 + 2n$                                               | (b) $n^3 - 3n^2 + 3n$                                                      | $(c)^{\frac{n(n+1)(n+2)}{3}}$                | $(d)^{\frac{n^2-n+2}{2}}$       |
| 13 | . The sum up to $n$ term of                                         | the series $\frac{1}{\sqrt{1}+\sqrt{3}}$ , $\frac{1}{\sqrt{3}+\sqrt{5}}$ , | $\frac{1}{5+\sqrt{7}}$ + , is                |                                 |
|    | $(a)\sqrt{2n+1}$                                                    | $(b)^{\frac{\sqrt{2n+1}}{2}}$                                              | $(c)\sqrt{2n+1}-1$                           | $(d)^{\frac{\sqrt{2n+1}-1}{2}}$ |
|    |                                                                     |                                                                            |                                              |                                 |

- 14. The  $n^{th}$  term of the sequence  $\frac{1}{2}$ ,  $\frac{3}{4}$ ,  $\frac{7}{8}$ ,  $\frac{15}{16}$ , ... is
  - (a)  $2^n n 1$
- (b)  $1 2^{-n}$
- (c)  $2^{-n} + n 1$
- $(d) 2^{n-1}$
- 15. The sum up to n terms of the series  $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \cdots$  is
- (b) 2n(n+1)
- $(c)\frac{n(n+1)}{\sqrt{2}}$
- (d) 1

- 16. The value of the series  $\frac{1}{2} + \frac{7}{4} + \frac{13}{8} + \frac{19}{16} + \cdots$  is
  - (a) 14

(b) 7

(c) 4

- (d) 6
- 17. The sum of an infinite GP is 18. If the first term is 6, the common ratio is
  - $(a)^{\frac{1}{2}}$

 $(b)^{\frac{2}{3}}$ 

 $(c)^{\frac{1}{6}}$ 

- 18. The coefficient of  $x^5$  in the series  $e^{-2x}$  is
  - $(a)^{\frac{2}{3}}$

 $(b)^{\frac{3}{2}}$ 

- 19. The value of  $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \dots$  is

  - $(a)\frac{e^2+1}{2e}$   $(b)\frac{(e+1)^2}{2e}$

- 20. The value of  $1 \frac{1}{2} \left(\frac{2}{3}\right) + \frac{1}{3} \left(\frac{2}{3}\right)^2 \frac{1}{4} \left(\frac{2}{3}\right)^3 + \cdots$  is
  - (a)  $\log\left(\frac{5}{3}\right)$
- $(b)\frac{3}{2}\log\left(\frac{5}{3}\right)$
- $(c) \frac{5}{3} \log \left(\frac{5}{3}\right)$
- $(d) \frac{2}{3} \log \left(\frac{2}{3}\right)$

#### **CHAPTER-6**

### TWO DIMENTIONAL ANALYTICAL GEOMETRY

- 1. The equation of the locus of the point whose distance from y –axis is half the distance from origin

- (a)  $x^2 + 3y^2 = 0$  (b)  $x^2 3y^2 = 0$  (c)  $3x^2 + y^2 = 0$  (d)  $3x^2 y^2 = 0$
- 2. Which of the following equation is the locus of  $(at^2, 2at)$ 
  - (a)  $\frac{x^2}{a^2} \frac{y^2}{h^2} = 1$  (b)  $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$
- (c)  $x^2 + y^2 = a^2$  (d)  $y^2 = 4ax$
- 3. Which of the following point lie on the locus of  $3x^2 + 3y^2 8x 12y + 17 = 0$ 
  - (a)(0,0)
- (b)(-2,3)
- (c)(1,2)
- (d)(0,-1)
- 4. If the point (8, -5) lies on the locus  $\frac{x^2}{16} \frac{y^2}{25} = k$ , then the value of k is

- (d) 3
- 5. Straight line joining the points (2,3) and (-1,4) passes through the point  $(\alpha, \beta)$  if

(a) 
$$\alpha + 2\beta = 7$$
 (b)  $3\alpha + \beta = 9$  (c)  $\alpha + 3\beta = 11$  (d)  $3\alpha + \beta = 11$   
6. The slope of the line which makes an angle  $45^{\circ}$  with the line  $3x - y = -5$  are
(a)  $1, -1$  (b)  $\frac{1}{2}, -2$  (c)  $1, \frac{1}{2}$  (d)  $2, -\frac{1}{2}$ 

7. Equation of the straight line that forms an isosceles triangle with coordinate axes in the  $I$  – quadrant
(a)  $x + y + 2 = 0$  (b)  $x + y - 2 = 0$  (c)  $x + y - \sqrt{2} = 0$  (d)  $x + y + \sqrt{2} = 0$ 

8. The coordinates of the four vertices of a quadrilateral are  $(-2,4), (-1,2), (1,2)$  and  $(2,4)$  taken in order. The equation of the line passing through the vertex  $(-1,2)$  and dividing the quadrilateral in the equal areas is
(a)  $x + 1 = 0$  (b)  $x + y = 1$  (c)  $x + y + 3 = 0$  (d)  $x - y + 3 = 0$ 

9. The intercepts of the perpendicular bisector of the line segment joining  $(1,2)$  and  $(3,4)$  with coordinate axes are
(a)  $5, -5$  (b)  $5, 5$  (c)  $5, 3$  (d)  $5, -4$ 

10. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to  $\sqrt{5}$  is
(a)  $x - 2y = \sqrt{5}$  (b)  $2x - y = \sqrt{5}$  (c)  $2x - y = 5$  (d)  $x - 2y - 5 = 0$ 

11. A line perpendicular to the line 5x - y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. unit, then its equation is

(a) 
$$x + 5y \pm 5\sqrt{2} = 0$$
  
(b)  $x - 5y \pm 5\sqrt{2} = 0$   
(c)  $5x + y + 5\sqrt{2} = 0$   
(d)  $5x - y + 5\sqrt{2} = 0$ 

12. Equation of the straight line perpendicular to the line x - y + 5 = 0, through the point of intersection the y – axis and the given line

(a) 
$$x - y - 5 = 0$$
 (b)  $x + y - 5 = 0$  (c)  $x + y + 5 = 0$  (d)  $x + y + 10 = 0$ 

13. Equation of the base opposite to the vertex (2,3) of an equilateral triangle is x + y = 2, then the length of a side is

(a) 
$$\sqrt{\frac{3}{2}}$$
 (b) 6 (c)  $\sqrt{6}$  (d)  $3\sqrt{2}$ 

14. The line (p + 2q)x + (p - 3q)y = p - q for different values of p and q passes through the point

$$(a) \left(\frac{3}{5}, \frac{5}{2}\right) \qquad \qquad (b) \left(\frac{2}{5}, \frac{2}{5}\right) \qquad \qquad (c) \left(\frac{3}{5}, \frac{3}{5}\right) \qquad \qquad (d) \left(\frac{2}{5}, \frac{3}{5}\right)$$

15. The point on the line 2x - 3y = 5 is equidistance from (1,2) and (3,4) is

| (a) (7,3)           | 5)                               | (b) (4,1)                          | (c)(1,-1)                                                                         | (d)(-2,3)                               |
|---------------------|----------------------------------|------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------------|
| 16. The ima         | age of the point (2              | (3) in the line $y = -1$           | x is                                                                              |                                         |
| (a) (-3)            | (-2)                             | (b)(-3,2)                          | (c)(-2, -3)                                                                       | (d)(3,2)                                |
| 17. The len         | gth of ⊥ from the                | origin to the line $\frac{x}{3}$ – | $\frac{y}{4} = 1$ , is                                                            |                                         |
| (a) $\frac{11}{5}$  |                                  | $(b) \frac{5}{12}$                 | $(c) \frac{12}{5}$                                                                | $(d) - \frac{5}{12}$                    |
| 18. The <i>y</i> –  | intercept of the s               | traight line passing th            | nrough (1,3) and perpendicu                                                       | a                                       |
| is                  |                                  |                                    |                                                                                   |                                         |
| (a) $\frac{3}{2}$   |                                  | (b) $\frac{9}{2}$                  | (c) $\frac{2}{3}$                                                                 | $(d) \frac{2}{9}$                       |
| 19. If the tv       | o straight lines $x$             | +(2k-7)y+3=0                       | 0  and  3kx + 9y - 5 = 0  are                                                     | e perpendicular then the                |
| value o             | f k is                           |                                    |                                                                                   |                                         |
| (a) k =             | 3                                | $(b) k = \frac{1}{3}$              | $(c) k = \frac{2}{3}$                                                             | $(d) k = \frac{3}{2}$                   |
| 20. If a vert       | ex of a square is a              | at the origin and its on           | he side lies along the line $4x$                                                  | +3y - 20 = 0, then                      |
| the area            | of the square is                 |                                    |                                                                                   |                                         |
| (a) 20              | sq.units                         | (b) 16 sq. units                   | (c) 25 sq. units                                                                  | (d) 4 sq. units                         |
| 21. If the li       | nes represented by               | the equation $6x^2 + 4$            | $41xy - 7y^2 = 0 \text{ make angl}$                                               | es $\alpha$ and $\beta$ with $x$ – axis |
| then ta             | $n \alpha \tan \beta =$          |                                    | .0.                                                                               |                                         |
| (a) $-\frac{6}{7}$  |                                  | $(b)\frac{6}{7}$                   | $(c) -\frac{7}{6}$                                                                | $(d)^{\frac{7}{6}}$                     |
| 22. The are         | a of the triangle fo             | ormed by the lines $x^2$           | $-4y^2 = 0 \text{ and } x = a \text{ is}$                                         |                                         |
| $(a) 2a^2$          | 2                                | $(b)\frac{\sqrt{3}}{2}a^2$         | $(c)\frac{1}{2}a^2$                                                               | $(d) \frac{2}{\sqrt{3}} a^2$            |
| 23. If one o        | f the lines given b              | $y 6x^2 - xy + 4cy^2 =$            | $= 0 \text{ is } 3x + 4y = 0 \text{ ,then } c \in \mathbb{R}$                     | equals to                               |
| (a) -3              |                                  | (b) -1                             | (c) 3                                                                             | (d) 1                                   |
| 24. $\theta$ is acu | te angle between                 | the lines $x^2 - xy - 6$           | $y^2 = 0$ , then $\frac{2\cos\theta + 3\sin\theta}{4\sin\theta + 5\cos\theta}$ is |                                         |
| (a) 1               |                                  | $(b) - \frac{1}{9}$                | $(c)^{\frac{5}{9}}$                                                               | $(d)^{\frac{1}{9}}$                     |
| 25. One of          | the equation of the              | e lines given by $x^2$ +           | $2xy \cot \theta - y^2 = 0 \text{ is}$                                            |                                         |
| (a) x -             | $-y \cot \theta = 0$             |                                    | $(b) x + y \tan \theta = 0$                                                       |                                         |
| (c) x c             | $\cos\theta + y(\sin\theta + 1)$ | 1 = 0)                             | $(d) x \sin \theta + y(\cos \theta + 1)$                                          | = 0)                                    |
|                     |                                  |                                    |                                                                                   |                                         |
|                     |                                  |                                    |                                                                                   |                                         |