XII-STD- CHEMISTRY MINIMUM MATERAIL (Based on Public key answer)

UNIT-1- METALLURGY
Define mineral and ore ,example
Mineral-metal free or combined
state Ex-China clay
Ore-High percentage of metal-

Why Bauxite ore but china clay is mineral-China clay

Bauxite

Baxuite-High percentage of metal Profitable extraction

China clay-Low Percentage of metal

Concentration of ore& Gangue

Ore+Non metallic +rocky material +Silicieous matter- Gangue Remove this impurities

What is Gravity separation or (Hydraulic wash)

Ore-high specific gravity Impurities-low specific gravity Impurities washed away by water Example gold

Write about Froth flotation-Sulphide ore, PbS,Zns Pine oil Eucalyptus oil-frothing agent .SodiumEthyl xanthate-

Write Alumino thermic process Cr₂O₃+2Al->Al₂O₃+2Cr

What is Auto reduction

 $HgS+O_2->Hg+SO_2$ (nv)

Ore wetted by oil
Impurities wetted by water
Zns, PbS

What is role of Depressing agent

Depressing agent NaCN

Forming Zinc complex
Na₂(Zn(CN)₄
Cementation-Zero oxidation state

Write Magnetic separation Used for ferro magnetic substance

Magnetic- Tinstone Chromite Non-magnetic- Wolframite Ore-near the magnetic region Impurities-Away from the magnetic region

What is Roasting, Calcination

Presence of oxygen 2PbS+3O₂->2PbO+2SO₂ Absence of oxygen PbCO₃->PbO+CO₂

Function of lime stone in smelting

CaO +SiO₂->CasiO₃
Flux +Gangue →Slag
Limitation of Ellingham
diagram

Does not tell about rate of reaction

Does not about Possibilities of

other reaction

ΔG assumption reactants and

Products are in equilibrium-not always true

What is Ellingham diagram
Temperature Vs Free energy

Explain Electrolytic refining

Cathode; Pure Ag
Anode; impure Ag
Electrolyte; aq.Silver nitrate
Anode;Ag->Ag+1eCathode-> Ag+1e-->Ag
Impurities are settled at bottom of anode –Anode mud.

Write about Zone Refining Fractional Crystallization

Impurities are in molten region Inert atmosphere-prevent oxidation . Ex-Ge,Ga,Si

Vapour phase method requirement

Metal+ suitable reagent->Volatile compound decompose → pure metal

Mond process

Ni+4CO->Ni(CO)₄ (350K) Ni(CO)₄->Ni+4CO (460K)

Van Arkel method

 $Ti(Zr)+2I_2->Ti(Zr)I_4$ (550K) $Ti(Zr)I_4->Ti(Zr)+2I_2$ (1800K)

What are the uses of Zinc

Galvanization
Coating of Zn on Iron
Prevent the rust and corrosion.
Brass-water valves, Die-casting
ZnS-Luminous paint.

UNIT-2-P-BLOCK -ELEMENTS
Anomalous properties of P- bloc

Small size, High I.energy electronegativity,
absence of d- orbital

Define Inert pair effect

Outer ns electron (reluctance)
Does not take part in bonding.

How will Identify borate radical H₃BO₃+3 C₂H₅OH-> B(OC₂H₅)₃

+ 3H₂0- (H₂SO₄) Green Flame Structure of Diborane

(Draw the Structure Here Refer the book) SP³-hybridisation

4 terminal B-H bond covalent-(2c-2e). 2 three centre B-H-B bond(3C-2e)four SP³ hybrid orbital in B-atom

Preparation of Alum

 $K_2SO_4.Al_2(SO_4)_3.4Al(OH)_3+6H_2SO_4$ $\rightarrow K_2SO_4+3Al_2(SO_4)_3 + 12H_2O$

How will prepare Burnt alum

 $K_2SO_4.AI_2(SO_4)_3.24H_2O-> K_2SO_4.AI_2(SO_4)_3+24H_2O$

Write about Hydroboration B₂H₆+6CH=CHR->2B(RCH-CH₂R)₃

CO Reducing agent 3CO+Fe₂O₃->2Fe +3CO₂

Write McAfee process Al₂O₃+3C+3Cl₂->2AlCl₃+3CO₂

 $2AI+3CI_2 \rightarrow 2AICI_3(1000^{\circ}C)$

Prepared by

N.Vellaichamy M.sc.B.ed

Write the Uses of Alum

Purification of water

Used in textiles dyeing, paper industries, Styptic agent (arrest Bleeding) (nv)

What is Catenation-Conditions

Valency equal to 2 or 2 <
Ability bond with itself
Self bond must be strong
compared with other

Kinetic inertness of molecule

Graphite	Diamond
Soft	Hard
Conduct	Not conduct
electricity	Electricity
SP ³	SP ²
hybridisation	hybridisation
C-C length	C-C length1.54
1.41 A ⁰	A^0
Use	Use
Hard tools	Graphite oil
Rock trilling	

Fisher Tropsch synthesis . >50 atm $nCO+(2n+1)H_2->C_nH_{2n+2}+ nH_2O$ $nCO+2nH_2->C_nH_{2n}+nH_2O(500-700K)$

Write Uses of Borax

Identification of coloured metal ions Used for flux, preservatives Manufacture of optical glass, enamels

Uses Of Sulphuric acid

Drying agent, Pigment, Explosive, Fertilizer, other chemical HCl, HNO₃

Write the Uses of silicone

Insulating material in electrical motor

Making water proofing clothes Mixed with paints(high thermal, sun light resistance), Low temperature lubricants, High temperature oil bath

UNIT-3-P-BLOCK ELEMENTS (Study book question)

What is Holmes signal.?

Calciumcarbide+Calcium phosphide->Phosphine ↑ + Acetylene (thrown into sea) Phospine- catches fire and ignite acetylene-Burning gases signal to ships

Estimation of Ozone

 $O_3 + 2KI + H_2O -> 2KOH + O_2 + I_2$

Test for Sulphate

BaCl₂+H₂SO₄->BaSO₄ +2HCl

Deacon's Process

 $4HCI+O_2 Cu_2CI_2->2H_2O+2CI_2$

Preparation Bleaching Powder

 $Ca(OH)_2+Cl_2 \rightarrow CaOCl_2+H_2O$

What is Royl water(aquaregia) 3Part Hcl +1Part Con.HNO₃

Prepare Bleaching powder

 $Ca(OH)_2+CL_2->CaOCL_2+H_2O$

Explain about Inter Halogen

Compounds

Definition

Each halogen combine with other halogen Ex; ICL

Properties

Central atom will large

Btw only two halogen (not more than two)

F-small size(Central atom)
F-small size High electro negativity
High co-ordination number
Auto ionisation.

Strong oxidizing agent

Define Bends

Air+Oxygen mixture making pain In divers body->Called bends

What Happens PCl₅Heated

PCl₅->PCl₃+Cl₂

What are the Uses of He, Ar gases

Used in cryogenic (nv)
Used in air ballons
Electric arc welldind (inert
atmosphere)

He-O₂-used for dives(sea)

Prevent the oxidation OF filament

Life time of filament will be high

Fluorine oxidation state -1 why?

High electronegativity Absence of d-orbital

Why fluorine more reactive than others

Minimum F-F dissociation energy <u>Sulphuric acid is dehydrating agent</u> HCOOH+H₂SO₄->CO+H₂SO₄.H₂O (COOH)₂+H₂SO₄->CO+ CO₂ H₂SO₄.H₂O (nv)

UNIT-4 TRANSITION & INNER TRANSITION ELEMENTS.

Catalytic properties of d-block

Energetically available d-orbital Accept e⁻ from reactingmolecules Alkenes--- Alkanes (H₂/Ni)

Alloys formation of d-Block (1 st) Interstitial compound d-block

Similar atomic	Small atom
size	(C,N,B)
One atom can	One atom
replaced by	trapped in
other atom in	interstitial
crystal lattice	hole in a
Ex Au-Cu	lattice Ex TiC

Formation of complex d-block

Small size, high charge, Vaccant low energy orbitals Accept the efrom ligand Example -[Fe(CO)₆]⁻⁴.

Position of lanthanoids P.table

3rd group 6 th period Electron filled in 4f subshell [Xe]4f¹⁻¹⁴5d⁰⁻¹ 6S² Oxidatation state is+3 Similar Physical and chemical properties.

Write Lanthanoid contraction

Atomic or ionic radii decreases
Atomic number is increases
Cause-Imperfect shielding effect
Consequence-Basicity decreases
Onic character increases but
covalent character increases

Similarities Decreases in atomic or Ionic radii 10 pm or 20 pm Zr-145 pm (4d series)
Hf-144Pm(5dseries) both have similar chemical Properties

simular sinemistar i reperties		
Lanthanoids	Actinoids	
Electron enter	Electron enter	
in 4f orbital	in 5f orbital	
4f binding	4f binding	
energy high	energy low	
Complex	Complex	
forming less	forming	
Colourless	higher	
No oxocation	Colour(U ⁺³ red)	
Common	Form xocation	
oxi.state-+3	Common	
(+2,+4)	oxi.state-+3	
	(+2,+4)	

UNIT-5-

CO-ORDINATION CHEMISTRY Explain About Werner's theory

1ºValency-Oxidation state 2ºValency –Co-ordination number 1ºValency-positive or Zero 2ºValency –-positive ,negative neutral.

Inner sphere- Co-Ordination Sphere
Outer sphere- Ionisation Sphere
1ºValency- Non-directional
2ºValency –directional
Limitation of werners theory

Limitation of werners theory Does not explain

Colour, Magnetic properties

VBT-(Valence bond Theory)

Ligand-metal (covalent nature)
Ligand- contain lone pair of e⁻
Metal-Vaccant orbital
Ligand orbital +metal orbitalHybridisation
Number of ligands attached to
central atom-Coordination
number)

number)
nd orbital involved in
Hybridisation are called outer
orbital complex nv
nd orbital involved in
Hybridisation are called outer

orbital complex
Strong field ligand pairup e CO
Limitation of VBT-Theory

Doesnot explain colour of the complex

Explain only magnetic moment
Not other magnetic property
Does not explain why some
complex are inner and some
are outer orbital complex —
same metal

Crystal field stabilization energy CFSE $\Delta E_0 = \{E_{LF}\}-\{E_{iso}\}$

Solvated Isomerism(Hydrate) Exchange of Solvent molecule in Crystal lattice [Cr(H₂O)₆Cl₃]

What is Linkage isomerism
Ambidentate ligand to centr

Ambidentate ligand to central metal atom-2 donar atom nv)

Double salt	Cordinatination
Salt &	Complex
constituted	constituted
ions	ions properties
properties are	are not same
same	donot Lose its
Lose its	identity in
identity in	liquid state
liquid state	may or may not
Equimolar	Equimolar
Proportion	Proportion

UNIT-6 –SOLID STATE

Define Unit cell

Basic repeating structural unit of crystalline solid

What Co-ordination number BCC?

The number of nearest neighbours that surrounding a particle BCC-8 **Primitive & nonPrimitive unit cell**-Unit cell contain one type of

lattice Point .Unit cell contain additional lattice point.

Number of atom in SC,FCC,BCC,

SC	BCC	FC
N _c /8	$N_c/8+N_b/8$	$N_c/8+N_f/2$
=8/8=1	8/8+1/1	8/8+6/2
	=2	=3

Write about Bragg's equation nλ=2dsinθ

 $\lambda\textsc{-Wave}$ length d-Distance $\theta\textsc{-angle}$ diffraction , n-order

Why Ionic crystal hard & brittle

Strong E.static Force of attraction lonic bond Non directional

Define Point defect

(must Diagram for all defects)
Missing of atom, displaced atom,
Extra atom, deficiency of atom
will make imperfection in crystal
lattice Ex NaCl

What is Schottky defect

Missing of equal number of cation and anion from the crystal lattice, affect density -Ex NaCl

What is Frenkel defect

Dislocation of ions from the Crystal lattice, not affect density Missing ions occupies Interstitial position. Fx -Ag Br

position. Lx Ag Di		
Metal excess	M.Deficiency	
More number	Less number	
of metal ion	of metal ion	
Low number	High number	
of anion	of anion	
Ex NaCl	Ex FeO	

Define F-Center

The anionic vacancy are filled by unpaired by Electrons

Write about Impurity defect

Adding impurity ions Add CdCl₂ to silver chloride(Agcl) Cd⁺² Occupies the Ag⁺ ions SC- 52.31, r=a/2, π a³/6 x100/a³ BCC-68, r= $\sqrt{3}a/4$, $\sqrt{3}$ π a³/8 x100/a³

FCC-74 ,r= $\sqrt{2}a/4$, $\sqrt{2}\pi$ a³/6 x100/a³

UNIT-7-CHEMICAL KINETICKS Average & Instantaneous rate N,vellaichamy M.sc.B.Ed		CH₃COOH+CH₃COONa(A.Buffer)			
		A.rate= UNIT-8- IONIC EQUILIBRIUM		QUILIBRIUM	NH ₄ Cl+NH ₄ OH(Basic Buffer)
Rate ofReaction	Rate Constant	Final con.of Reactant- Initial	Arrhenius	L.Bronsted	What is Buffer Index
Speed at which	Proportionality	Con. of Reactant/change in	Substance	Substance	$\beta = dB/d(PH)$
reactant-	constant	time (nv)	which give H⁺	Which give	Henderson –haselbalch equation
>products	Rate of	Define half life period	-acid -HCl	Proton –acid	[H₃O⁺]=Ka[acid]/[base]
Measured by	reaction=Rate	Time required for the reactant	Substance	HCL	[H₃O ⁺]=Ka[acid]/[salt]
Concentration	constant	concentration reach to one half	which give	Substance	P _H =PK _a +log [salt]/[Acid]
of reactants or	(Con of	its initial value t _{1/2} =0.693/k	OH ⁻ Base-	which accept	P _{OH} = PK _b + log [salt]/[base]
↑Concentration	reactant is	Define Pseudo First order	NaOH	proton base-	Define Solublity product
of Products	unity)	Second order reaction altered		NH ₃	$K_{sp} = [x^{n+}]^m [y^{m-}]^n$
Depends upon	Does not	to first order by taking one of	Write about Lew	vis concept	Define Salt Hydrolysis
the initial con.	Depends upon	the reactant large excess	Substance which	Accept e pair -	Acid+Base->salt +water
Of reactants	the initial con.	Example ester hydrolysis	acid-BF3. The Su	bstance which	Water+anion or cation (both)
	Of reactants	Write Arrhenius equation	Donate e pair -I	Base- Ex-NH ₃	react with water
Order of		K=A _e -Ea/RT	Define P _H and P	Он	Unit -9-Electro chemistry
reaction	Molecularity	A-Frequency factor	$P_{H} = -log_{10}[H_3O^+]$		Kohlraush's law
1)Sum of the	of reaction	R-gas constant	$P_{OH} = -log_{10}[OH^{-}]$		At infinite dilution – limiting
power of the	1Total number	Ea-Activation energy	What is Ostwald	l dilution law	molar conductivity of an
con term	of reactants	T-Absolute temperature	CH₃COOH ←→ CH₃COO⁻+H⁺(acid)		electrolyte is equal to some of
involved in the	species	Derive Integrated first order	α = K _a /c, [H ⁺]=K _a C [OH ⁻]= K _b C		the limiting molar conductivity of
experimentally	involved in	-d[A]/[A]=Kdt,	α= number of moles dissociated		its constitutents ions
determined rate	elementary	Ln [A ₀]/[A]=Kt	total no.of moles		$(\Lambda^{0}_{m})_{Ax BY} = x((\Lambda^{0}_{m})_{A}y^{+} + Y((\Lambda^{0}_{m})_{b} x^{-})$
law	step.	$K=2.303/t \log [A_0]/[A]$	Define Common Ion Effect		Derive Nernst equation
2)Zero or	2)Not to be	Derive Integrated Zero order	Dissociation of w	veak acid-	xA+yB⇔l C+m D
Fractional or	Zero Fractional	$-d[A]/dt=K(1), K=[A_0]-[A]/t$	suppressed by salt of weak acid		$Q=[C]^{I}[D]^{m}/[A]^{x}[B]^{y}$
Integer	number	Example for first order	CH₃COOH←→CH₃COO⁻+H⁺(acid)		ΔG=ΔG ⁰ +RTlan Q
3)It assigned for	Always Whole	Isomerisation of cyclopropane	CH₃COONa->CH₃COO +Na⁺(Salt)		E _{cell} = E ⁰ _{cell} -2.303RT/nF log
over all reaction	number.	to propene, Decomposition of	CH₃COONa-Common ion		[C] ^I [D] ^m /[A] ^x [B] ^y
	3)It assigned	H ₂ O ₂ ,Decomposition of SO ₂ CL ₂	LeChateliers principle		Farday's first and second law
(Nv)	each	Example for Zero order	Buffer solution(action)		Ist law m αQ , m α lt , m=Zit
	elementary	$H_2+I_2->2HI(light)$	The resist the drastic change in its		II nd law
	step of	Decomposition ofN₂O	P _н Value-by Addi	ition of acid or	$m_{N~i}\alpha~Z_{Ni}$, $m_{Cu}~\alpha~Z_{Cu}$
	mechanism	Iodination of Acetone(A.med)	Base		$m_{Ni} = Z_{Ni}/m_{Cu} = Z_{Cu}$

Define Electrochemical Series

Decreasing order Std Electro chemical potential value Greater E⁰ value-Low Corrossion

Molar & Equivalent conductance

$\Lambda_{\rm m} = k(Sm^{-1})x10^{-3}$	$\Lambda_{\rm m} = \hat{k}(Sm^{-1})x10^{-3}$	
M	N	
Mol ⁻¹ m ⁻³	gramEqui ⁻¹ m ³	

Unit-10-Surface Chemistry

Che.Adsorb	Phy.Adsorb
Slow	Fast
Specific	Non specific
Monolayer	Multilayer
Transfer the e	No e transfer
40-400KJ/mol	Heat 40KJ/Mol

Freundlich isotherm

 $x/m=K_p1/n$, $\log x/m=\log K+1/n \log P$

Explain Theories of Catalyst		
	Intermediate	Adsorbtion
	A+B->AB	i)reactant
	A+C->AC	molecule
	AC+B->AB+C	diffuse from
	C-catalyst	bulk to catalyst
	Example	ii)reactant
	I) 2Cu+1/2O ₂	adsorb on
	->CU ₂ O	catalyst
	ii) Cu ₂ O+H ₂	iii)activated
	->H ₂ O+2Cu	complex
		iv) desorbtion

Define Tyndall effect

Scattering of light by Collidal Particle-T yndall effect (nv) **Define Brownian movement**

Random, Zig -Zag motion of

Define Helmholtz double layer Surface of colloidal particle adsorb one layer type of ions Due to Preferential adsorbtion This layer attracts opposite charge ions of medium

Define Electrophoresis

Migration of sol particle under the influence of electrical current

Sol particle move to cathode If Its carries positive charge Sol particle move to anode If Its carries negative charge

Define Electro Osmosis

Migration of Dispersion
Medium under the influence of
electrical field
Medium move in opposite

direction of sol particle

Define Floculation value

Minimum concentarion (milli mole/Lit) required to cause precipitation of sol in 2 hours Flocu.. value α 1/precipitation

Define Promoter

Substance increase the catalyst speed .example Mo for Fe

Define Catalytic Poison

Substance increase the catalyst speed. example-CO for pt

Define Auto catalyst

Homogeneous
Catalyst
Reactant
product & product & catalyst are same phase

Heterogeneous
Catalyst
Reactant
product & catalyst are
different phase

Define Gold number

The number of milligrams of Hydrophilic colloid
That will prevent precipitation of 10 ml gold sol on addition of 10% NaCl solution

Gold number α Protective power **Define positive and negative**

catalyst

Substance increase the catalyst speed –Positive catalyst Substance Decrease the catalyst speed –Negative catalyst

UNIT-11- HYDROXY DERIVATIVES

Write about lucas test

1ºalcohol+ZnCl₂->no reaction 2ºalcohol+ZnCl₂-> turbidity-slow 3ºalcohol+ZnCl₂->turbidity –fast **Note**- Study All the Naming Reaction and 2 Mechanism

Explain Victor Mayer test

1ºalcohol+I₂/P-Alkyl iodide Alky iodide+AgNO₂->Nitro alkane NitroAlkane+HNO₂->resultant sol Resultant solution+KOH 1ºalcohol+I₂/P-Alkyl iodide 1ºalcohol→red colour 1ºalcohol→blue colour 1ºalcohol→no colour

Test to differentiate alcohol and phenol

Phenol+Benzenediazonium chloride->red orange Ethanol no reaction

Phenol+neutral ferric chloride->

purple colour Ethanol no reaction

Phenol+NaOH->Sodium

phenoxide

Ethanol no reaction

Write about Dows process

Chlorobenzene+NaOH->
Sodium Phenoxide+HCl->Phenol

Schotten Baumann reaction

Phenol+Acetyl chloride->

Aceto phenone

Williamson ether synthesis

Phenol+NaOH->Sodium phenoxide+CH₃I->Anisole

Kolbe's schmit reaction

Phenol+NaOH->Sodium phenoxide+CO₂-> Sodium salicylate-Hydrolysis->salicylic acid

Prepared by

N.Vellaichamy M.SC.Bed

UNIT-12 CARBONYL COMPOUND

<u>Urotrophine, Hexamethlenetetramin</u> 6HCHO+ 4NH₃->(CH₂)₆N₄ + 6 H₂O Uses - urinary infection, RDX

Write about Popoff's rule

Unsymmetrical ketone Keto group with smaller alkyl group CH₃CH₂CH₂-CO-CH₃----→ CH₃CH₂COOH +CH₃COOH

Aldol Condensation(Pg.no 161-162)

Acetaldehyde----> Acetaldol

Cannizaro reaction (Pg.No 166-167)

Benzaldehyde------→ Benzyl alcohol

Write the Test for Aldehyde

Tollens reagent(amm.AgNO₃)
Fehling solution A (aqu.CuSO₄)
Fehling solution B (alkaline.

Na,K tatrate)

Benedicts soln(CuSO₄+Na citrate + NaOH)

Schiff's reagent(Rosaniline HCl

+Water +SO₂)

Tollens reagent +CHO

Silver mirror (Ag ppt)

Fehling solution+CHO->Red ppt Benitic Reagent+CHO-> Red ppt Schiff's reagent+CHO->Red colour

What is formalin and its uses

40 % of formaldehyde

Preserve the Biological Specimens

What is Vinegar

6-8 % solution of Acetic acid

Prepared by N.Vellaichamy

Any one of the product act as catalyst (nv)

Test For Carboxylic Acid

Blue litmus to red Acid +Sodium bicarbonate -> Evolution of CO₂ Acid+Con.H₂SO₄->Ester

UNIT-14-BIO-MOLECULES

(fruity odour)

Carbohydrate r optically active Presence of one or more chiral Carbon

What type of linkage hold together monomer of DNA?

Phospho diester bond 5 OH of nucleotide and 3 OH of another nucleotide

What is mutarotation

Sugar =water-interconversion A-glucose to β -glucose Specific rotation +53 $^{\circ}$

Epimers and Epimerisation

Sugar differing in configuration At asymmetric centre

One epimer is converted to another epimer

D glucose-D-mannose

D- galactose

What is invert sugar(sucrose)

Equakl amount of glucose and fructose

Optical rotation of reaction reaction mixture changes from

dextro to levo

Carbonycarbon involved in Glycosidic linkage-non red sugar

Essential & non Essential A. acid

Amino acid can be synthesized our body –non-Essential (Thr,Val) Amino acid cannot be synthesized our body –obtained by Diet

Define Isoelectric point

Essential(Gly,Ala)

At Particular PH-charge of amino acid is neutral

What is Zwitter Ion(structure)

Amino acid contain both positive & negative charge at particular PH

What is Peptide bond

First amino acid –carboxyl group Second a.acid-Amino group Amide linkage.

What is Denaturation of Protein

Losing of higher order structure without losing primary structure

without losing primary structure		
DNA	RNA	
Deoxyribo	Ribo sugar	
sugar	lifetime high	
life time high	not replicate	
replicate	unstable	
stable	A=U C=G	
A=T G=C		

What type of linkage in DNA

Hydrogen Bonding,

Base-Stacking interaction

Define Enzyme

Boi Chemical rxn Catalysed by Catallytic protein-Ex Sucrase

Hormone	Vitamins
Organic	Organic
substance	substance
Secreted by	Not synthesis
tissue	by body
Endocrine	Used for
gland make	growth
hormone	mantainance
Ex insulin	Ex A,B,C

Write Deficiency & vitamins

Rickets-Vitamin –D Scurvy-Vitamin-C

Carbohydrate Optically active

Carbohydrate Contain one or more Chiral carbon

What are the Types of RNA? r-RNA, m-RNA, t-RANA

What is Glycosidic linkage?

Two mono saccharide are linked by Oxide linkage

UNIT-15

CHEMISTRY IN EVERY DAY LIFE Define Antibiotic

Medicine kill the Pathogenic bacteria Ex Pencilins

Define Food preservatives

Its inhibit or areresting the processes of fermentation Or Acidification or decomposition of food by micro organism Ex-Acetic acid

Hard Works never Fails

Antiseptic	Disinfectants
Stop or slow	Stop or slow
down the	down the
growth of	growth of
micro organism	micro organism
Applied on	Applied on non
Living tissue	living things
$H_2 O_2$	Alcohol

What is Bio-degradable polymer Ploymer readily decomposed bymicro organism Ex-PHB,PLA Sweeting agent for Diabetic patient Aspartame Alitame, Saccharin, Sucralose

Define VulcaniZation

Natural rupper is not strong or Elastic ,Properties of natural rupper modified by process.

Sulphur used for change Physical properties

properties		
Thermoplastic	Thermosetting	
Linear	Cross linked	
Remoulded	Not remoulded	
Soft on Heating	Not soft on	
Hard on cooling	Heating	
Ex-PVC	infusible mass	
	on heating	
	Ex-Bakelite	

Classify the following polymer
Bakelite-Cross linked polymer
Nylon-Linear Polymer (nv)
Polythene-Linear polymer

Reducing & non reducing sugar Carbonycarbon not involved in Glycosidic linkage-red sugar Carbonycarbon involved in Glycosidic linkage- non red sugar.

Explain Cleansing action of soap
Soap action (Palmitate)carboxylate ion
Hydro carbon-Non polar
Carboxyl group-Polar
Polar-Hydrophilic –attract H₂O
nonPolar-Hydrophobic- Soluble
oil and grease
Water molecule attached
Hydrophilic called- micelles
Write Structure of Glucose
Molecular Formula C₆H₁₂O₆
Glucose +HI->n-Hexane

Indicate six Carbon atom Glucose+Br₂->Gluconic acid Indicate -CHO presence Glucose +acetic anhydride – Penta acetate indicate-Five OH group presence. Write Structure of Fructose

Molecular Formula C₆H₁₂O₆ Glucose +HI->n-Hexane Indicate six Carbon atom Glucose+Br₂-> no reaction Indicate -CHO absence

Glucose +acetic anhydride -

Penta acetate indicate-Five OH group presence Fructose +Na Hg/reduction Sorbitol +mannitol presence of Ketone.

RELUTIE.		
Crystalline	Amorphous	
Long range	Short range	
order	order	
Definite shape	Irregular shape	
Definite Heat	Not definite	
of fusion	heat of fusion	
Anisotropic	Isotropic	
True solid	Pseduo solid	
Heaxgonal C.P	Cubic C.P	
ABA	ABC	
arrangement	Arrangement	
3 rd layer	3 rd layer not	
resembles first	resembles first	
Layer	layer	
Tetra hedral	Octa hedral	
voids created	voids greated	
Tetrahedral	Octahedral	
void	void	
Sphere of 2 nd	Sphere of 2 nd	
layer above	layer partially	
void of first	cover void of	
layer	first layer	
Closed back n	Closed back n	
Voids equal to	Voids equal to	
2n	n	
Four spheres	Six spheres	
joined	joined	

Define Co-Polymer & Example
Polymer contain two different
kinds of monomer Ex Nylon 6,6
Define polymer
Combination of monomer give
polymer is called polymerization.

Prepared by
N.vellaichamy M.sc.B.ed
Department of Chemistry
Ponnu Matric Higher sec. School
Dharapuram
Tiruppur district
For More details7010431615
nvchamychemist@gmail.com
Be confidence Face Every thing
in the universe – All the Best .
If you find Mistake Please
Correct it or Consult Your
Teacher .

