P – BLOCK ELEMENTS II

1. Chalcogens belongs to p – block elements. Give reason.

- Elements belonging to group 16 are called chalcogens or ore forming elements as most of the ores are oxides or sulphides.
- Their outer electronic configuration is ns²np⁴
- In these elements the last electron enters in np orbitals
- Hence, they belong to p block elements

2. Explain why fluorine always exhibit an oxidation state of -1.

Fluorine is the most electro negative element. By gaining an electron it attains the most stable inert gas configuration. So, fluorine always exhibit an oxidation state of -1.

3. What are interhalogen compounds? Give examples.

Each halogen combines with other halogens to form a series of compounds called inter halogen compounds.

Example: BrF, IF7, IBr

4. Give the uses of Helium.

- Used for filling air balloons
- He O₂ mixture is used by deep sea divers
- Used in electric arc welding of metals

5. What is the hybridization of iodine in IF₇? Give its structure.

- Hybridization is sp³d³
- Structure is pentagonal bipyramidal

6. Give the balanced equation for the reaction between chlorine with cold NaOH and Hot NaOH.

With cold NaOH:

$$Cl_2$$
 + 2NaOH \longrightarrow NaOC/ + NaC/ + H₂O

With hot NaOH:

$$3Cl_2 + 6NaOH \longrightarrow NaClO_3 + 5NaCl + 3H_2O$$

7. How will you prepare chlorine in the laboratory.

$$4NaCl + MnO_2 + 4H_2SO_4 \longrightarrow Cl_2 + MnCl_2 + 4NaHSO_4 + 2H_2O$$

8. Write the reason for the anomalous behaviour of Nitrogen.

- Small size
- High electronegativity
- High ionization energy
- Non availability of d- orbitals

9. Give the uses of Argon.

- It prevents the oxidation of hot filament and prolongs the life in filament bulbs
- It is used in radio valves and tubes

10. Write the valence shell electronic configuration of group – 15 elements.

General electronic configuration: ns² np³

Element	Valence shell	
	electronic	
	configuration	
Nitrogen	2s ² 2p ³	
Phosphorus	$3s^2 3p^3$	
Arsenic	$3d^{10} 4s^2 4p^3$	
Antimony	4d ¹⁰ 5s ² 5p ³	
Bismuth	4f ¹⁴ 5d ¹⁰ 6s ² 6p ³	

11. Write the difference between white phosphorus and red phosphorus.

S.No	White Phosphorus	Red phophorus
1	Poisonous in nature	Not poisonous in nature
2	Shows phosphorescence	Do not show phophorescence
3	Garlic smell	No smell
4	Ignition temperature is very low	Does not ignite at low temperature
5	inflammable	No such action
6	Exist as discrete P ₄ molecule	Exist as a chain of P ₄ tetrahedral
		unit
7	Colourless but turns pale yellow	Dark red colour
	on standing	

12. Give the uses of Nitrogen.

- It is used for the manufacture of ammonia, nitric acid and calcium cyanamide.
- Liquid nitrogen is used for producing low temperature required in cryosurgery and in biological preservation.

13. Give the preparation of Nitrogen.

 Pure nitrogen gas can be obtained by the thermal decomposition of sodium azide about 575K.

• It can also be obtained by oxidizing ammonia using bromine water.

$$8NH_3 + 3Br_2 \longrightarrow 6NH_4Br + N_2$$

14. Give the laboratory preparation of ammonia.

• Ammonia is prepared in the laboratory by heating an ammonium salt with a base.

$$2NH_4CI + CaO \longrightarrow CaCl_2 + 2NH_3 + H_2O$$

15. Write notes on the structure of ammonia.

Shape : Pyramidal
 Hybridisation: sp³

• N – H bond distance: 1.016 A°

• Bond angle: 107°

• Structure: Tetrahedral with one lone pair of electrons in one tetrahedral position.

16. Give the uses of Phosphorous.

• The red phosphorous is used in the match boxes

• It is also used for the production of certain alloys such as phosphor bronze.

17. Draw the structure of oxoacids of Phosphorous.


• Hypophosphorous acid: H₃PO₂

• Orthophosphorous acid: H₃PO₃

• Hypophosphoric acid: H₄P₂O₆

Orthophosphoric acid: H₃PO₄

· Pyrophospholic acid

18. Give the laboratory preparation of ozone.

- Ozone is prepared by passing electrical discharge through oxygen.
- At a potential of 20,000 V about 10% of oxygen is converted into ozone. It gives a
 mixture known as ozonized oxygen.
- Pure ozone is obtained as a pale blue gas by fractional distillation of liquified ozonized oxygen.

$$O_2$$
 O_2 O_2 O_2 2(O) atomic oxygen O_2 + (O) O_3 O_3 ozone

19. Write notes on the structure of ozone.

 Ozone have bent shape and symmetrical with delocalized bonding between the oxygen atoms.

20. How will you estimate ozone quantitatively?

$$O_3 + 2KI + H_2O \longrightarrow 2KOH + O_2 + I_2$$

21. Write the uses of oxygen.

- It is one of the essential component for the survival of living organisms.
- It is used in welding
- Liquid oxygen is used as a fuel in rockets.

22. Write notes on the Allotrophic forms of sulphur.

- Rhombic sulphur (α sulphur):
 - ➤ It is thermodynamically stable allotropic form at ordinary temperature and pressure.
 - Crystals have yellow colour and composed of S₈ molecules.
 - ➤ When heated slowly above 96°C, it converts into monoclinic sulphur.
 - \triangleright Upon cooling below 96°C the β form converts back to α form.

• Monoclinic sulphur (β sulphur):

- ➤ It also contains S₈ molecules in addition to small amount of S₆ molecules.
- It exists as a long needle like prism and is also called as prismatic sulphur.
- ➤ It is stable between 96° 119°C and slowly changes into rhombic sulphur.

• Plastic sulphur:

- ➤ When molten sulphur is poured into cold water a yellow rubbery ribbon of plastic sulphur is produced.
- > They are very soft and can be stretched easily.
- On standing, it slowly becomes hard and changes to stable rhombic sulphur.

23. Write the uses of Sulphur dioxide.

- It is used in bleaching hair, silk, wool.
- It can be used for disinfecting crops and plants in agriculture.

24. Write notes on the structure of sulphur dioxide.

- Sulphur atom undergoes sp² hybridisation.
- The double bond between S and O is due to $p\pi d\pi$ overlapping.

25. Explain the manufacture of chlorine by electrolytic process.

- Electrolytic solution: Brine (NaC/)
- When NaCl solution is electrolysed, Na⁺ and Cl⁻ are formed.

NaCl
$$\longrightarrow$$
 Na⁺ + Cl⁻
H2O \longrightarrow H⁺ + OH ⁻
Na⁺ + OH ⁻ \longrightarrow NaOH

• At cathode: H⁺ + e⁻ → H
H + H → H₂

• At anode: C/ → C/ + e − C/ + C/ → C/2

26. Write notes on Deacon's process.

- Mixture of air and HCl is passed in a chamber containing number of shelves.
- Pumice stones soaked in cuprous chloride are placed.
- Hot gases at about 400°C are passed through a jacket that surrounds the chamber.

$$4HCI + O_2 \xrightarrow{400^{\circ}C} 2H_2O + 2CI_2$$

• The catalysed reaction is given below:

$$2Cu_{2}Cl_{2} + O_{2} \longrightarrow 2Cu_{2}OCl_{2}$$

$$Cuprous oxy chloride$$

$$Cu_{2}OCl_{2} + 2HCl \longrightarrow 2CuCl_{2} + H_{2}O$$

$$2CuCl_{2} \longrightarrow Cu_{2}Cl_{2} + Cl_{2}$$

$$Cuprous chloride$$

$$Cuprous chloride$$

27. Give the uses of chlorine.

- It is used in
 - Purification of drinking water
 - > Bleaching of cotton textiles, paper and rayon
 - Extraction of gold and platinum

28. Give the uses of Radon.

- It is used as a source of gamma rays
- Radon gas is sealed as small capsules and implanted in the body to destroy malignant cancer growth.

29. Give the uses of Xenon.

- It is used in fluorescent bulbs, flash bulbs and lasers
- It is used in high speed electronic flash bulbs used by photographers.

30. Give the uses of krypton.

- It is used in fluorescent bulbs, flash bulbs.
- Lamps filed with krypton are used in airports as approaching light.

31. Give the oxidation state of halogen in the following.

a) OF_2 b) O_2F_2 c) CI_2O_3 d) I_2O_4

Compound	Oxidation state of halogen
OF ₂	-1
O_2F_2	-1
Cl ₂ O ₃	+3
I ₂ O ₄	+4

32. Why fluorine is more reactive than other halogens?

- This is due to the minimum value of F F bond dissociation energy
- Fluorine is most electro negative thus it is most reactive.

33. Give the uses of Sulphuric acid. (any three)

- It is used as a drying agent
- Used in the preparation of pigments, explosives
- Used in the manufacture of fertilisers, ammonium sulphates, super sulphates
- Used in the manufacture of chemicals like hydrochloric acid, nitric acid, etc.

34. Give a reason to support that sulphuric acid is a dehydrating agent.

- It is highly soluble in water and has strong affinity towards water and hence it is used as a dehydrating agent.
- When dissolved in water it forms mono (H₂SO₄.H₂O) and dihydrates (H₂SO₄.2H₂O) and the reaction exothermic.

$$HCOOH + H_2SO_4 \longrightarrow CO + H_2SO_4.H_2O$$

35. Write the molecular formula and the structural formula for the following molecules.

a) Nitric acid b) dinitrogen pentoxide c)phosphoric acid d) phosphine

	Molecular formula	Structure
	Nitric acid	0
	HNO ₃	-0 N+ H
		0 0
	Dinitrogen pentoxide	:0: :0:
	N_2O_5	
V		:0' '0' '0:
	Phosphoric acid	0
1	H₃PO₄	HO-P-OH
		ОН
	Phosphine	Θ
	PH ₃	P 142Å
		H H
		П

36. Give two equations to illustrate the chemical behaviour of phosphine.

$$PH_3 + 4Cl_2 \longrightarrow PCl_5 + 3HCl$$

$$3AgNO_3 + PH_3 \longrightarrow Ag_3P + 3HNO_3$$

37. Give the reaction between nitric acid and a basic oxide.

$$ZnO + 2HNO_3 \longrightarrow Zn(NO_3)_2 + H_2O$$

38. What happens when PCl₅ is heated?

$$PCl_5(g) \longrightarrow PCl_3(g) + Cl_2(g)$$
.
(Excess)

- 39. Suggest a reason why HF is a weak acid, whereas binary acids of all other halogens are strong acids.
 - The relative acidic strength of HF, HCl, HBr and HI depends upon their bond dissociation enthalpies.
 - The bond dissociation enthalpy of H − X bond decreases from H − F to H − I as the size of atom increases from F to I
 - Larger the size of atom, higher is the acidity.
 - H-F < H-Cl < H-Br < H-I
- 40. Deduce the oxidation number of oxygen in hypofluorous acid HOF
 - The oxidation number of F in hypofluorous acid is +1 and Hydrogen is +1
 - Hence, oxidation state of Oxygen is -2

$$1(H) + x + 1(F) = 0$$

 $1 + x + 1 = 0$
 $2 + x = 0$
 $X = -2$

- 41. What type of hybridization occur in
 - a) BrF₅ b) BrF₃

Compound	Hybridisation
BrF ₅	Sp ³ d ²
BrF ₃	Sp ³ d

42. What is inert pair effect?

In heavier post transition metals, the outer s electrons have a tendency to remain inert and do not take part in bonding. This is called inert pair effect.

- 43. Discuss the structure of Phosphorus.
 - White phosphorus exists as discrete P₄ molecules.
 - Red P have polymeric structure with chains of P₄ linked tetrahedrally.
 - P P single bond is stable than P ≡ P bonds
- 44. What is Phosphorescence?

White Phosphorus undergoes spontaneous oxidation in air giving a greenish yellow glow which is visible in the dark. This is known as Phosphorescence.

45. How will you prepare bleaching powder in the laboratory?

Bleaching powder is produced by passing chlorine gas through dry slaked lime (calcium hydroxide.

$$Ca(OH)_2 + Cl_2 \rightarrow CaOCl_2 + H_2O$$

46. Explain the bleaching property of chlorine.

• Chlorine is a strong oxidizing and bleaching agent because of the nascent oxygen.

$$H_2O + Cl_2 \rightarrow HCl + HOCl$$

 $HOCl \rightarrow HCl + (O)$

Colouring matter + Nascent oxygen → colourless oxidation product

47. Explain the bleaching action of sulphur dioxide (SO2).

 In presence of water, SO2 bleaches coloured wool, silk, sponges and straw into colourless due to its reducing property.

$$\begin{aligned} \mathrm{SO_2} &+ 2\mathrm{H_2O} &\longrightarrow \mathrm{H_2SO_4} + 2(\mathrm{H}) \\ \underset{\mathrm{Coloured}}{\mathrm{X}} &+ 2(\mathrm{H}) &\longrightarrow \underset{\mathrm{Colourless}}{\mathrm{XH_2}} \end{aligned}$$

48. Give the action of HF with glass and silica.

• Moist HF rapidly react with silica and glass.

$$SiO_2 + 4HF \longrightarrow SiF_4 + 2H_2O$$

 $Na_2SiO_3 + 6HF \longrightarrow Na_2SiF_6 + 3H_2O$

49. Write the properties of interhalogen compounds.

- Central atom will be the larger one
- Formed only between two halogens
- Undergo auto oxidation
- Strong oxidizing agents
- Fluorine cannot act as a central metal atom being the smallest one.

50. Complete the following reactions.

4Mg + 10HN03 -> 4Mg(NO3)2+NH4NO3 +3H20

6.
$$Kdo_3 \xrightarrow{D}$$
?
$$2Kdo_3 \xrightarrow{D} 2Kd + 3o_2$$

8.
$$Sb+d_2 \rightarrow ?$$

 $2Sb+3d_2 \rightarrow 2Sbd_3$

9.
$$HBR + H_2SO_4 \longrightarrow ?$$

 $2HBR + H_2SO_4 \longrightarrow 2H_2O + BR_2 + SO_2$

10.
$$XeF_6 + H_2O \rightarrow ?$$

 $XeF_6 + 3H_2O \rightarrow XeO_3 + 6HF$

11.
$$Xeo_6^{4^-} + Mn^{2^+} + H^+ \rightarrow ?$$

 $5xeo_6^{4^-} + 2Mn^{2^+} + 14H^+ \rightarrow 2Mn^0_4^- + 5xeo_3 + 7H_2^0$

12.
$$\times 0F_4 + Sio_2 \rightarrow ?$$

 $2\times 0F_4 + Sio_2 \rightarrow 2\times 0_2F_2 + SiF_4$

13.
$$\times e + F_2$$
 $\xrightarrow{Ni/200 \text{ atm}}$?
 $\times e + 3F_2$ $\xrightarrow{Ni/200 \text{ atm}}$ $\times e F_6$