www.Padasalai.Net
www.CBSEtips.in

XII- MATHEMATICS (BOOK BACK ONE WORDS)

1.APPLICATIONS OF MATRICES AND DETERMINANTS

1. If $|\operatorname{adj}(\operatorname{adj} A)|=|A|^{9}$, then the order of the square matrix A is
[1]3
[2]4
[3]2
[4]5
2. If A is 3×3 non-singular matrix such that $A A^{T}=A^{T} A$ and $B=A^{-1} A^{T}$, then $B B^{T}=$
[1] A
[2]B
$[3] I_{3}$
$[4] B^{T}$
3. If $A=\left[\begin{array}{ll}3 & 5 \\ 1 & 2\end{array}\right], B=\operatorname{adj} A$ and $C=3 A$, then $\frac{|\operatorname{adj} B|}{|C|}=$
$[1] \frac{1}{3}$

$$
\begin{equation*}
[2] \frac{1}{9} \tag{4}
\end{equation*}
$$

$$
[3] \frac{1}{4}
$$

4. If $A\left[\begin{array}{rr}1 & -2 \\ 1 & 4\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 6\end{array}\right]$, then $A=$
[1] $\left[\begin{array}{rr}1 & -2 \\ 1 & 4\end{array}\right]$
$[2]\left[\begin{array}{rr}1 & 2 \\ -1 & 4\end{array}\right]$
$[3]\left[\begin{array}{rr}4 & 2 \\ -1 & 1\end{array}\right]$
[4] $\left[\begin{array}{cc}4 & -1 \\ 2 & 1\end{array}\right]$
5. If $A=\left[\begin{array}{ll}7 & 3 \\ 4 & 2\end{array}\right]$, then $9 I_{2}-A=$
$[1] A^{-1}$
[2] $\frac{A^{-1}}{2}$
[3] $3 A^{-1}$
$[4] 2 A^{-1}$
6. If $A=\left[\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right]$ and $B=\left[\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right]$ then $|\operatorname{adj}(A B)|=$
[1]-40
[2]-80
[3]-60
[4]-20
7. If $P=\left[\begin{array}{rrr}1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2\end{array}\right]$ is the adjoint of 3×3 matrix A and $|A|=4$, then x is

$$
\begin{array}{ccccc}
{[1] 15} & & & {[2] 12} & \\
{[3} & 1 & -1]
\end{array}{ }_{\left[a_{11}\right.} a_{13}^{[3] 14} a_{12]}
$$

[4]11
8. If $A=\left[\begin{array}{rrr}3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1\end{array}\right]$ and $A^{-1}\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$ then the value of a_{23} is [1]0

$$
[2]-2
$$

[3]-3
[4]-1
9. If A, B and C are invertible matrices of some order, then which one of the following is not true?
[1]adj $A=|A| A^{-1}$
[3] $\operatorname{det} A^{-1}=(\operatorname{det} A)^{-1}$

$$
\begin{aligned}
& {[2] \operatorname{adj}(A B)=(\operatorname{adj} A)(\operatorname{adj} B)} \\
& {[4](A B C)^{-1}=C^{-1} B^{-1} A^{-1}}
\end{aligned}
$$

10. If $(A B)^{-1}=\left[\begin{array}{rr}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{rr}1 & -1 \\ -2 & 3\end{array}\right]$, then $B^{-1}=$

$$
[1]\left[\begin{array}{rr}
2 & -5 \\
-3 & 8
\end{array}\right] \quad[2]\left[\begin{array}{ll}
8 & 5 \\
3 & 2
\end{array}\right] \quad[3]\left[\begin{array}{ll}
3 & 1 \\
2 & 1
\end{array}\right] \quad[4]\left[\begin{array}{rr}
8 & -5 \\
-3 & 2
\end{array}\right]
$$

11. If $A^{T} A^{-1}$ is symmetric, then $A^{2}=$
$[1] A^{-1}$
[2] $\left(A^{T}\right)^{2}$
$[3] A^{T}$
[4] $\left(A^{-1}\right)^{2}$
12. If A is a non-singluar matrix such that $A^{-1}=\left[\begin{array}{rr}5 & 3 \\ -2 & -1\end{array}\right]$, then $\left(A^{T}\right)^{-1}=$
$[1]\left[\begin{array}{rr}-5 & 3 \\ 2 & 1\end{array}\right]$
$[2]\left[\begin{array}{rr}5 & 3 \\ -2 & -1\end{array}\right]$
$[3]\left[\begin{array}{rr}-1 & -3 \\ 2 & 5\end{array}\right] \quad[4]\left[\begin{array}{ll}5 & -2 \\ 3 & -1\end{array}\right]$
13. If $A\left[\begin{array}{ll}\frac{3}{5} & \frac{4}{5} \\ x & \frac{3}{5}\end{array}\right]$ and $A^{T}=A^{-1}$, then the value of x is
$[1] \frac{-4}{5}$
$[2] \frac{-3}{5}$
$[3]^{\frac{3}{5}}$
$[4] \frac{4}{5}$
14. If $A=\left[\begin{array}{cc}1 & \tan \frac{\theta}{2} \\ -\tan \frac{\theta}{2} & 1\end{array}\right]$ and $A B=I_{2}$, then $B=$
$[1]\left(\cos ^{2} \frac{\theta}{2}\right) A \quad[2]\left(\cos ^{2} \frac{\theta}{2}\right) A^{T} \quad[3]\left(\cos ^{2} \theta\right) I \quad[4]\left(\sin ^{2} \frac{\theta}{2}\right) A$
15. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
[1]0
[2] $\sin \theta$
[3] $\cos \theta$
[4]1
16. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that λA^{-1}, then λ is
$\begin{array}{llll}{[1] 17} & {[2] 14} & {[3] 19} & {[4] 21}\end{array}$
17. If $\operatorname{adj} A=\left[\begin{array}{rr}2 & 3 \\ 4 & -1\end{array}\right]$ and $\operatorname{adj} B=\left[\begin{array}{rr}1 & -2 \\ -3 & 1\end{array}\right]$ then $\operatorname{adj}(A B)$ is

18. The rank of the matrix $\left[\begin{array}{rrrr}1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4\end{array}\right]$ is
[1]1
[2]2
[3]4
[4]3
19. If $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$, then the values of x and y are respectively,
$[1] e^{\left(\Delta_{2} / \Delta_{1}\right)}, e^{\left(\Delta_{3} / \Delta_{1}\right)}$
$[2] \log \left(\frac{\Delta_{1}}{\Delta_{3}}\right), \log \left(\frac{\Delta_{2}}{\Delta_{3}}\right)$
$[3] \log \left(\frac{\Delta_{2}}{\Delta_{1}}\right), \log \left(\frac{\Delta_{3}}{\Delta_{1}}\right)$
$[4] e^{\left(\Delta_{1} / \Delta_{3}\right)}, e^{\left(\Delta_{2} / \Delta_{3}\right)}$
20. Which of the following is/are correct?
(i)Adjoint of a symmetric matrix is also a symmetric matrix.
(ii) Adjoint of a diagonal matrix is also a diagonal matrix.
(iii) If A is a square matrix of order n and λ is a scalar, then $\operatorname{adj}(\lambda A)=\lambda^{n} \operatorname{adj}(A)$.
(iv) $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$
[1]Only (i) [2](ii) and (iii) [3](iii) and (iv) [4](i), (ii) and (iv)
21. If $\rho(A)=\rho([A \mid B])$, then the system $A X=B$ of linear equations is
[1]Consistent and has a unique solution [2]consistent
[3]Consistent and has infinitely many solution [4]inconsistent
22. If $\mathbf{0} \leq \boldsymbol{\theta} \leq \pi$ and the system of equations
$x+(\sin \theta) y-(\cos \theta) z=0,(\cos \theta) x-y+z=0(\sin \theta) x+y-z=0$ has a non-trivial solution then θ is
[1] $\frac{2 \pi}{3}$
[2] $\frac{3 \pi}{4}$
$[3] \frac{5 \pi}{6}$
$[4] \frac{\pi}{4}$
23. The augmented matrix of a system of linear equations is
$\begin{aligned} & {\left[\begin{array}{llcc}1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda-7 & \mu+5\end{array}\right] \text {. The system has infinitely many solutions if }} \\ & {[1] \lambda=7, \mu \neq-5}\end{aligned}[2] \lambda=-7, \mu=5 \quad[3] \lambda \neq 7, \mu \neq-5$
[4] $\lambda=7, \mu=-5$
24. Let $A=\left[\begin{array}{rrr}2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2\end{array}\right]$ and $4 B=\left[\begin{array}{rrr}3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3\end{array}\right]$. If B is the inverse of A, then the
value of x is
[1]2
25.If $A=\left[\begin{array}{lll}3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1\end{array}\right]$, then $\operatorname{adj}(\operatorname{adj} A)$ is
[3]3
[4]1

$$
[1]\left[\begin{array}{lll}
3 & -3 & 4 \\
2 & -3 & 4 \\
0 & -1 & 1
\end{array}\right] \quad[2] \quad\left[\begin{array}{lll}
6 & -6 & 8 \\
4 & -6 & 8 \\
0 & -2 & 2
\end{array}\right] \quad[3]\left[\begin{array}{ccc}
-3 & 3 & -4 \\
-2 & 3 & -4 \\
0 & 1 & -1
\end{array}\right] \quad[4]\left[\begin{array}{lll}
3 & -3 & 4 \\
0 & -1 & 1 \\
2 & -3 & 4
\end{array}\right]
$$

1. $i^{n}+i^{n+1}+i^{n+3}$ is
(1)0
(2)1
(3) -1
(4) -1
2. The value of $\sum_{i=1}^{13}\left(i^{n}+i^{n-1}\right)$ is
(1) $1+i$
(2) i
(3) 1
(4)0
3. The area of the triangle formed by the complex numbers $z, i z$, and $z+i z$ in the Argand's diagram is
(1) $\frac{1}{2}|z|^{2}$
(2) $|z|^{2}$
(3) $\frac{3}{2}|z|^{2}$
(4)2 $|z|^{2}$
4. The conjugate of a complex number is $\frac{1}{i-2}$. Then, the complex number is
(1) $\frac{1}{i+2}$
(2) $\frac{-1}{i+2}$
(3) $\frac{-1}{i-2}$
(4) $\frac{1}{i-2}$
5. If $z=\frac{(\sqrt{3}+i)^{3}(3 i+4)^{2}}{(8+6 i)^{2}}$, then $|z|$ is equal to
(1)0
(2)1
(3)2
6. If z is a non zero complex number, such that $2 i z^{2}=\bar{z}$ then $|z|$ is
(1) $\frac{1}{2}$
(2)1
(3)2
(4)3
7. The principal argument of the complex number $\frac{(1+i \sqrt{3})^{2}}{4 i(1-i \sqrt{3})^{2}}$ is
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{6}$
(3) $\frac{5 \pi}{6}$
(4) $\frac{\pi}{2}$
8. If α and β are the roots of $x^{2}+x+1=0$, then $\alpha^{2020}+\beta^{2020}$ is
(1)-2
(2) -1
(3) 1
(4)2
9. The product of all four values of $\left(\cos \frac{\pi}{3}+i \sin \frac{\pi}{3}\right)^{\frac{3}{4}}$
(1) -2
(2) -1
(3)1
(4)2
23.If $\omega \neq 1$ is a cubic root of unity and $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$ then k is equal to
(1)1
(2) -1
(3) $\sqrt{3} i$
(4) $-\sqrt{3} i$
24.The value of $\left(\frac{1+\sqrt{3} i}{1-\sqrt{3} i}\right)$ is
(1) $\operatorname{cis} \frac{2 \pi}{3}$
(2) $\operatorname{cis} \frac{4 \pi}{3}$
(3)-cis $\frac{2 \pi}{3}$
(4) $-\operatorname{cis} \frac{4 \pi}{3}$
25.If $\omega=\operatorname{cis} \frac{2 \omega}{3}$, then the number of distinct roots of $\left|\begin{array}{ccc}z+1 & \omega & \omega^{2} \\ \omega & z+\omega^{2} & 1 \\ \omega^{2} & 1 & z+\omega\end{array}\right|=0$
(1)1
(2)2
(3)3
(4)4

3.THEORY OF EQUATIONS

1. A zero of $x^{3}+64$ is
(1)0
(2) 4
(3) $4 i$
(4) -4
2. If f and g are polynomials of degrees m and n respectively, and if $h(x)=$ $(f \circ g)(x)$, then the degree of h is
(1) $m n$
(2) $m+n$
(3) m^{n}
(4) n^{m}
3. A polynomial equation in x of degree n always has
(1) n distinct roots
(2)n real roots
(3) n complex roots
(4)at most one root
4. If α, β and γ are the zeros of $x^{3}+p x^{2}+q x+r$, then $\sum \frac{1}{\alpha}$ is
(1) $-\frac{q}{r}$
(2) $-\frac{p}{r}$
(3) $\frac{q}{r}$
(4) $-\frac{q}{p}$
5. According to the rational root theorem, which number is not possible rational zero of $4 x^{7}+2 x^{4}-10 x^{3}-5$?
(1) -1
(2) $\frac{5}{4}$
(3) $\frac{4}{5}$
(4)5
6. The polynomial $x^{3}-k x^{2}+9 x$ has three real zeros if and only if, k satisfies
(1) $|k| \leq 6$
(2) $k=0$
(3) $|k|>6$
(4) $|k| \geq 6$
7. The number of real numbers in $[0,2 \pi]$ satisfying $\sin ^{4} x-2 \sin ^{2} x+1$ is
(1)2
(2)4
(3)1
(4) ∞
8. If $\boldsymbol{x}^{3}+12 x^{2}+10 a m+1999$ definitely has a positive zero, if and only if
(1) $a \geq 0$
(2) $a>0$
(3) $a<0$
(4) $a \leq 0$
9. The polynomial $x^{3}+2 x+3$ has
(1)one negative and two imaginary zeros
(2)One positive and two imaginary zeros
(3)three real zeros
(4) no zeros
10. The number of positive zeros of the polynomial $\sum_{r=0}^{n} \operatorname{nCr}(-1)^{r} x^{r}$ is
(1) 0
(2) n
(3) $<n$
(4) r

4. INVERSE TRIGONOMETRIC FUNCTIONS

1. The value of $\sin ^{-1}(\cos x), 0 \leq x \leq \pi$ is
(1) $\pi-x$
(2) $x=\frac{\pi}{2}$
3) $\frac{\pi}{2}-x$
(4) $x-\pi$
2. If $\sin ^{-1} x+\sin ^{-1} y=\frac{2 \pi}{3}$; Then $\cos ^{-1} x+\cos ^{-1} y$ is equal to
(1) $\frac{2 \pi}{3}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{6}$
(4) π
3. $\sin ^{-1} \frac{3}{5}-\cos ^{-1} \frac{12}{13}+\sec ^{-1} \frac{5}{3}-\operatorname{cosec}^{-1} \frac{13}{12}$ is equal to
(1) 2π
(2) π
(3)0
(4) $\tan ^{-1} \frac{12}{65}$
4. If $\sin ^{-1} x=2 \sin ^{-1} \alpha$ has a solution, then
(1) $|a| \leq \frac{1}{\sqrt{2}}$
(2) $|a| \geq \frac{1}{\sqrt{2}}$
(3) $|a|<\frac{1}{\sqrt{2}}$
(4) $|a|>\frac{1}{\sqrt{2}}$
5. $\sin ^{-1}(\cos x)=\frac{\pi}{2}-x$ is valid for
(1) $-\pi \leq x \leq 0$
(2) $0 \leq x \leq \pi$
(3) $-\frac{\pi}{2} \leq x \leq \frac{\pi}{2}$
(4) $-\frac{\pi}{4} \leq x \leq \frac{3 \pi}{4}$
6. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, the value of

$$
x^{2017}+y^{2018}+z^{2019}-\frac{9}{x^{101}+y^{101}+z^{101}} \text { is }
$$

(1)0
(2)1
(3)2
(4)3
7. If $\cot ^{-1} x=\frac{2 \pi}{5}$ for some $x \in R$, the value of $\tan ^{-1} x$ is
(1) $-\frac{\pi}{10}$
(2) $\frac{\pi}{5}$
(3) $\frac{\pi}{10}$
(4) $-\frac{\pi}{5}$
8. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is
(1) $[1,2]$
(2) $[-1,1]$
(3) $[0,1]$
(4) $[-1,0]$
9. If $x=\frac{1}{5}$, the value of $\cos \left(\cos ^{-1} x+2 \sin ^{-1} x\right)$ is
(1) $-\sqrt{\frac{24}{25}}$
(2) $\sqrt{\frac{24}{25}}$
(3) $\frac{1}{5}$
(4) $-\frac{1}{5}$
10. $\boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{1}{4}\right)+\tan ^{-1}\left(\frac{2}{9}\right)$ is equal to
(1) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
(2) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{5}\right)$
(3) $\frac{1}{2} \boldsymbol{\operatorname { t a n }}^{-1}\left(\frac{3}{5}\right)$
(4) $\boldsymbol{\operatorname { t a n }}^{1}\left(\frac{1}{2}\right)$
11. If the function $f(x)=\sin ^{-1}\left(x^{2}-3\right)$, then x belongs to
(1) $[-1,1]$
(2) $[\sqrt{2}, 2]$
(3) $[-2,-\sqrt{2}] \cup[\sqrt{2}, 2]$
(4) $[-2,-\sqrt{2}]$
12. If $\cot ^{-1} 2$ and $\cot ^{-1} 3$ are two angles of a triangle, then the third angle is
(1) $\frac{\pi}{4}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{6}$
(4) $\frac{\pi}{3}$
13. $\sin ^{-1}\left(\tan \frac{\pi}{4}\right)-\sin ^{-1}\left(\sqrt{\frac{3}{x}}\right)=\frac{\pi}{6}$. then x is a root of the equation
(1) $x^{2}-x-6=0$
(2) $x^{2}-x-12=0$
(3) $x^{2}+x-12=0$
(4) $x^{2}+x-6=0$
14. $\sin ^{-1}\left(2 \cos ^{2} x-1\right)+\cos ^{-1}\left(1-2 \sin ^{2} x\right)=$
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) $\frac{\pi}{4}$
(4) $\frac{\pi}{6}$
15. If $\cot ^{-1}(\sqrt{\sin \alpha})+\tan ^{-1}(\sqrt{\sin \alpha})=u$, then $\cos 2 u$ is equal to
(1) $\tan ^{2} \alpha$
(2)0
(3) -1
(4) $\tan 2 \alpha$
16. If $|x| \leq 1$, then $2 \tan ^{-1} x-\sin ^{-1} \frac{2 x}{1+x^{2}}$ is equal to
(1) $\tan ^{-1} x$
(2) $\sin ^{-1} x$
(3) 0
(4) π
17. The equation $\tan ^{-1} x-\cot ^{-1} x=\tan ^{-1}\left(\frac{1}{\sqrt{3}}\right)$ has
(1)no solution
(2)unique solution
(3)two solution
(4)infinite number of solutions
18. If $\sin ^{-1} x+\cot ^{-1}\left(\frac{1}{2}\right)=\frac{\pi}{2}$, then x is equal to
(1) $\frac{1}{2}$
(2) $\frac{1}{\sqrt{5}}$
(3) $\frac{2}{\sqrt{5}}$
(4) $\frac{3}{\sqrt{2}}$
19. If $\sin ^{-1} \frac{x}{5}+\operatorname{cosec}^{-1} \frac{5}{4}=\frac{\pi}{2}$, then the value of x is
(1) 4
(2)5
(3)2
(4)3
20. $\sin \left(\tan ^{-1} x\right),|x|<1$ is equal to
(1) $\frac{x}{\sqrt{1-x^{2}}}$
(2) $\frac{1}{\sqrt{1-x^{2}}}$
(3) $\frac{1}{\sqrt{1+x^{2}}}$
(4) $\frac{x}{\sqrt{1+x^{2}}}$

5. TWO DIMENSIONAL ANALYTICAL GEOMETRY- II

1. The equation of the circle passing through $(1,5)$ and $(4,1)$ and touching y-axis is
$x^{2}+y^{2}-5 x-6 y+9+\lambda(4 x+3 y-19)=0$ where λ is equal to
(1) $0,-\frac{40}{9}$
(2)0
(3) $\frac{40}{9}$
(4) $\frac{-40}{9}$
2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is
(1) $\frac{4}{3}$
(2) $\frac{4}{\sqrt{3}}$
(3) $\frac{2}{\sqrt{3}}$
(4) $\frac{3}{2}$
3. The circle $x^{2}+y^{2}=4 x+8 y+5$ intersects the line $3 x-4 y=m$ at two distinct
point if
(1) $15<m<65$
(2) $35<m<85$
(3) $-85<m<-35$
(4) $-35<m<15$
4. the length of the diameter of the circle of the circle which touches the x-axis at the point $(1,0)$ and passes through the point $(2,3)$
(1) $\frac{6}{5}$
(2) $\frac{5}{3}$
(3) $\frac{10}{3}$
(4) $\frac{3}{5}$
5. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
(1)1
(2) 3
(3) $\sqrt{10}$
(4) $\sqrt{11}$
6. The centre of the circle inscribed in a square formed by the lines $x^{2}-8 x-$ $12=0$ and $y^{2}-14 y+45=0$ is
(1) $(4,7)$
(2) $(7,4)$
(3) $(9,4)$
(4) $(4,9)$
7. The equation of the normal to the circle $x^{2}+y^{2}-2 x-2 y+1=0$ which is parallel to the line $2 x+4 y=3$ is
(1) $x+2 y=3$
(2) $x+2 y+3=0$
(3) $2 x+4 y+3=0$
(4) $x-2 y+3=0$
8. If $P(x, y)$ be any point on $16 x^{2}+25 y^{2}=400$ with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then $P F_{1}+P F_{2}$ is
(1)8
(2)6
(3)10
(4)12

STUDENT NAME :

9. The radius of the circle passing through the point $(6,2)$ two of whose diameter are $x+y=6$ and $x+2 y=4$ is
(1)10
(2) $2 \sqrt{5}$
(3)6
(4) 4
10. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ and $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=-1$ is
(1)4 $\left(a^{2}+b^{2}\right)$
(2)2 $\left(a^{2}+b^{2}\right)$
(3) $a^{2}+b^{2}$
(4) $\frac{1}{2}\left(a^{2}+b^{2}\right)$
11. If the normals of the parabola $y^{2}=4 x$ drawn at the end points of its latus rectum are tangents to the circle $(x-3)^{2}+(y+2)^{2}=r^{2}$, then the value of r^{2} is
(1)2
(2)3
(3)1
(4) 4
12. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then the value of k is
(1)3
(2)-1
(3)1
(4) 9
13. The ellipse $E_{1}: \frac{x^{2}}{9}+\frac{y^{2}}{4}=1$ is inscribed in a rectangle R whose sides are parallel to the coordinate axes. Another ellipse E_{2} passing through the point $(0,4)$ circumscribes the rectangle R. The eccentricity of the ellipse is
(1) $\frac{\sqrt{2}}{2}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $\frac{3}{4}$
14. Tangents are drawn to the hyperbola $\frac{x^{2}}{9}-\frac{y^{2}}{4}=1$ parallel to the straight line $2 x-y=1$. One of the points of contact of tangents on the hyperbola is
(1) $\left(\frac{9}{2 \sqrt{2}}, \frac{-1}{\sqrt{2}}\right)$
(2) $\left(\frac{-9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(3) $\left(\frac{9}{2 \sqrt{2}}, \frac{1}{\sqrt{2}}\right)$
(4) $(3 \sqrt{3},-2 \sqrt{2})$
15. The equation of the circle passing through the foci of the ellipse $\frac{x^{2}}{16}+\frac{y^{2}}{9}=1$ having centre at $(0,3)$ is
(1) $x^{2}+y^{2}-6 y-7=0$
(2) $x^{2}+y^{2}-6 y+7=0$
(3) $x^{2}+y^{2}-6 y-5=0$
(4) $x^{2}+y^{2}-6 y+5=0$
16. Let C be the circle with centre at $(1,1)$ and radius $=1$. If T is the circle centered at $(0, y)$ passing through the origin and touching the circle C externally, then the radius of T is equal to
(1) $\frac{\sqrt{3}}{\sqrt{2}}$
(2) $\frac{\sqrt{3}}{2}$
(3) $\frac{1}{2}$
(4) $\frac{1}{4}$
17. Consider an ellipse whose centre is of the origin and its major axis is along x axis. If its eccentricity is $\frac{3}{5}$ and the distance between its foci is 6 , then the area of the quadrilateral inscribed in the ellipse with diagonals as major and minor axis of the ellipse is

XII - MATHEMATICS

(1)8
(2)32
(3)80
(4)40
18. Area of the greatest rectangle inscribed in the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1$ is
(1)2ab
(2)ab
(3) $\sqrt{a b}$
(4) $\frac{a}{b}$
19. An ellipse has $O B$ as semi minor axes, F and F^{\prime} its foci and the angle $F B F^{\prime}$ is aright angle. Then the eccentricity of the ellipse is
(1) $\frac{1}{\sqrt{2}}$
(2) $\frac{1}{2}$
(3) $\frac{1}{4}$
(4) $\frac{1}{\sqrt{3}}$
20. The eccentricity of the ellipse $(x-3)^{2}+(y-4)^{2}=\frac{y^{2}}{9}$ is
(1) $\frac{\sqrt{3}}{2}$
(2) $\frac{1}{3}$
(3) $\frac{1}{3 \sqrt{2}}$
(4) $\frac{1}{\sqrt{3}}$
21. If the two tangents drawn from a point P to the parabole $y^{2}=4 x$ are at right angles then the locus of P is
(1) $2 x+1=0$
(2) $x=-1$
(3) $2 x-1=0$
(4) $x=1$
22. The circle passing through $(1,-2)$ and touching the axis of x at $(3,0)$ passing through the point
(1) $(-5,2)$
$(2)(2,-5)$
(3) $(5,-2)$
$(4)(-2,5)$
23. The locus of a point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=\frac{-9}{2}$ is
(1)a parabola
(2)a hyperbola
(3)an ellipse
(4)a circle
24. The values of m for which the line $y=m x+2 \sqrt{5}$ touches the hyperbola $16 x^{2}-9 y^{2}=144$ are the roots of $x^{2}-(a+b) x-4=0$, then the value of $(a+b)$ is
(1)2
(2) 4
(3)0
(4) -2
25. If the coordinates at one end of a diameter of the circle $x^{2}+y^{2}-8 x-4 y+c=0$ are $(11,2)$, the coordinates of the other end are
(1) $(-5,2)$
(2) $(2,-5)$
(3) $(5,-2)$
(4) $(-2,5)$

6. APPLICATIONS OF VECTOR ALGEBRA

1. If \vec{a} and \vec{b} are parallel vectors, then $[\vec{a}, \vec{c}, \vec{b}]$ is equal to
(1)3
(2) -1
(3)1
(4)0
2. If a vector $\vec{\alpha}$ lies in the plane of $\overrightarrow{\boldsymbol{\beta}}$ and $\vec{\gamma}$, then
(1) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=1$
(2) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=-1$
(3) $[\vec{\alpha}, \overrightarrow{\boldsymbol{\beta}}, \vec{\gamma}]=\mathbf{0}$
(4) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}]=2$
3. If $\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{c}=\vec{c} \cdot \vec{a}=0$, then the value of $[\vec{a}, \vec{b}, \vec{c}]$ is
(1) $|\vec{a}||\vec{b}||\vec{c}|$
(2) $\frac{1}{3}|\vec{a}||\vec{b}||\vec{c}|$
(3)1
(4) -1
4. If $\vec{a}, \vec{b}, \vec{c}$ are three unit vectors such that \vec{a} is perpendicular to \vec{b} and is parallel to \vec{c} then $\vec{a} \times(\vec{b} \times \vec{c})$ is equal to
(1) \vec{a}
(2) \vec{b}
(3) \vec{c}
(4) $\overrightarrow{0}$
5. If $[\vec{a}, \vec{b}, \vec{c}]=1$, then the value of $\frac{\vec{a} \cdot(\vec{b} \times \vec{c})}{(\vec{c} \times \vec{a}) \cdot \vec{b}}+\frac{\vec{b} \cdot(\vec{c} \times \vec{a})}{(\vec{a} \times \vec{b}) \cdot \vec{c}}+\frac{\vec{c} \cdot(\vec{a} \times \vec{b})}{(\vec{c} \times \vec{b}) \cdot \vec{a}}$ is
(1)1
(2) -1
(3)2
(4)3
6. The volume of the parallelepiped with its edges represented by the vectors $\hat{\imath}+\hat{\jmath}, \hat{\imath}+2 \hat{\jmath}, \hat{\imath}+\hat{\jmath}+\pi \widehat{k}$ is
(1) $\frac{\pi}{2}$
(2) $\frac{\pi}{3}$
(3) π
(4) $\frac{\pi}{4}$
7. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]=\frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
8. If $\vec{a}=\hat{\imath}+\hat{\jmath}+\widehat{k}, \vec{b}=\hat{\imath}+\hat{\jmath}, \vec{c}=\hat{\imath}$ and $(\vec{a} \times \vec{b}) \times \vec{c}=\lambda a+\mu b$, then the value of $\lambda+$ μ is
(1)0
(2)1
(3) 6
(4)3
9. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar, non-zero vectors such that $[\vec{a}, \vec{b}, \vec{c}]=3$, then $\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^{2}$ is equal to
(1)81
(2) 9
(3)127
(4)18
10. If $\vec{a}, \vec{b}, \vec{c}$ are three non-coplanar vectors such that $\vec{a} \times(\vec{b} \times \vec{c})=\frac{\vec{b}+\vec{c}}{\sqrt{2}}$, then the angle between \vec{a} and \vec{b} is
(1) $\frac{\pi}{2}$
(2) $\frac{3 \pi}{4}$
(3) $\frac{\pi}{4}$
(4) π
11. If the volume of the parallelepiped with $\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}$ as coterminous edges is 8 cubic units, then the volume of the parallelepiped with $(\vec{a} \times \vec{b}) \times(\vec{b} \times \overrightarrow{\boldsymbol{c}}),(\vec{b} \times \vec{c}) \times(\vec{c} \times \vec{a})$ and $(\vec{c} \times \vec{a}) \times(\vec{a} \times \vec{b})$ as coterminous edges is
(1)8 cubic units
(3)64 cubic units
(2) 512 cubic units
(4) 24 cubic units
12. Consider the vectors $\vec{a}, \vec{b}, \vec{c}, \vec{d}$ such that $(\vec{a} \times \vec{b}) \times(\vec{c} \times \vec{d})=\overrightarrow{0}$. Let P_{1} and P_{2} be the planes determined by the pairs of vectors a, b and c, d respectively. Then the angle between P_{1} and P_{2} is
(1) 0°
(2) 45°
(3) 60°
(4)90 ${ }^{\circ}$
13. If $\vec{a} \times(\vec{b} \times \vec{c})=(\vec{a} \times \vec{b}) \times \vec{c}$, where $\vec{a}, \vec{b}, \vec{c}$ are any three vectors such that $\vec{b} . \vec{c} \neq$ 0 and $\vec{a} \cdot \vec{b} \neq 0$, then \vec{a} and \vec{c} are
(1)perpendicular
(2)parallel
(3)inclined at an angle $\frac{\pi}{3}$
(4)inclined at an angle $\frac{\pi}{6}$
14. If $\vec{a}=2 \hat{\imath}+3 \hat{\jmath}-\widehat{k}, \vec{b}=\hat{\imath}+2 \hat{\jmath}-5 \hat{k}, \vec{c}=3 \hat{\imath}+5 \hat{\jmath}-\widehat{k}$, then a vector perpendicular to \vec{a} and lies in the plane containing b and c is
(1) $-1 \hat{\imath}+21 \hat{\jmath}-97 \widehat{k}$
(2) $17 \hat{\imath}+2 \hat{\jmath}-123 \widehat{k}$
(3) $-17 \hat{\imath}-21 \hat{\jmath}+97 \hat{k}$
(4) $-17 \hat{\imath}-21 \hat{\jmath}-97 \widehat{k}$
15. The angle between the lines $\frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $\frac{x-1}{1}=\frac{2 y+3}{3}=\frac{z+5}{2}$ is
(1) $\frac{\pi}{6}$
$(2) \frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
16. If the line $\frac{x-2}{3}=\frac{y-1}{-5}=\frac{z+2}{2}$ lies in the plane $x+3 y-\alpha z+\beta=0$, then (α, β) is
(1) $(-5,5)$
(2) $(-6,7)$
$(3)(5,-5)$
$(4)(6,-7)$
17. The angle between the line $\vec{r}=(\hat{\imath}+2 \hat{\imath}-3 \widehat{\boldsymbol{k}})+t(2 \hat{\imath}+\hat{\jmath}-2 \widehat{\boldsymbol{k}})$ and the plane $\vec{r} \cdot(\hat{\imath}+\hat{\boldsymbol{\jmath}})+4=0$ is
(1) 0°
(2) 30°
(3) 45°
(4)90 ${ }^{\circ}$
18. The coordinates of the point where the line $\vec{r}=(6 \hat{\imath}-\hat{\jmath}-3 \widehat{k})+t(-\hat{\imath}+4 \widehat{\boldsymbol{k}})$ meets the plane $\vec{r} .(\hat{\imath}+\hat{\jmath}-\widehat{k})=3$ are
(1) $(2,1,0)$
$(2)(7,-1,-7)$
(3) $(1,2,-6)$
(4)(5, -1, 1)
19. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
(1)0
(2)1
(3)2
(4)3
20. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+7=$ 0 is
(1) $\frac{\sqrt{7}}{2 \sqrt{2}}$
(2) $\frac{7}{2}$
(3) $\frac{\sqrt{7}}{2}$
(4) $\frac{7}{2 \sqrt{2}}$
21. If the direction cosines of a line are $\frac{1}{c}, \frac{1}{c}, \frac{1}{c}$, then
(1) $c= \pm 3$
(2) $c \pm \sqrt{3}$
(3) $c>0$
(4) $0<c<1$
22. The vector equation $\vec{r}=(\hat{\imath}-2 \hat{\jmath}-\widehat{\boldsymbol{k}})+t(6 \hat{\imath}-\widehat{\boldsymbol{k}})$ represents a straight line passing through the points
(1) $(0,6,-1)$ and $(1,-2,-1)$
(2) $(0,6,-1)$ and ($-1,-4,-2$)
(3) $(1,-2,-1)$ and $(1,4,2)$
(4) $(1,-2,-1)$ and $(0,-6,1)$
23. If the distance of the point $(1,1,1)$ from the origin is half of its distance from the plane $x+y+z+k=0$, then the values of k are
(1) ± 3
(2) ± 6
(3) $-3,9$
(4)3,-9
24. If the planes $\vec{r} \cdot(2 \hat{\imath}-\lambda \hat{\jmath}+\widehat{k})=3$ and $\vec{r} \cdot(4 \hat{\imath}+\hat{\jmath}-\mu \widehat{k})=5$ are parallel, then the value of λ and μ are
(1) $\frac{1}{2},-2$
(2) $-\frac{1}{2}, 2$
(3) $-\frac{1}{2},-2$
(4) $\frac{1}{2}, 2$
25. If the length of the perpendicular from the origin to the plane $2 x+3 y+\lambda z=1, \lambda>0$ is $\frac{1}{5}$, then the value of λ is
(1) $2 \sqrt{3}$
(2) $3 \sqrt{2}$
(3)0
(4)1

7.APPLICATIONS OF DIFFERENTIAL CALCULUS

1. The volume of a sphere is increasing in volume at the rate of $3 \pi \mathrm{~cm}^{3} / \mathrm{sec}$. The rate of change of its radius when radius is $\frac{1}{2} \mathrm{~cm}$
[1] $3 \mathrm{~cm} / \mathrm{s}$
[2] $2 \mathrm{~cm} / \mathrm{s}$
[3] $1 \mathrm{~cm} / \mathrm{s}$
$[4] \frac{1}{2} \mathrm{~cm} / \mathrm{s}$
2. A balloon rises straight up at $10 \mathrm{~m} / \mathrm{s}$. An observer is 40 m away from the spot where the balloon left the ground. Find the rate of change of the balloon's angle of elevation in radian per second when the balloon is $\mathbf{3 0}$ metres above the ground.
$[1] \frac{3}{25}$ radians/sec $[2] \frac{4}{25}$ radians/sec $[3] \frac{1}{5}$ radians/sec $[4] \frac{1}{3}$ radians $/$ sec
3. The position of a particle moving along a horizontal line of any time \boldsymbol{t} is given by $s(t)=3 t^{2}-2 t-8$. The time at which the particle is at rest is
[1] $t=0$
$[2] t=\frac{1}{3}$
[3] $t=1$
$[4] t=3$
4. A stone is thrown up vertically. The height it reaches at time t seconds is given by $x=80 t-16 t^{2}$. The stone reaches the maximum height in time t seconds is given by
[1]2
[2]2.5
[3]3
[4]3.5
5. Find the point on the curve $6 y=x^{3}+2$ at which y-coordinate changes 8 times as fast as x-coordinate is
$[1](4,11)$
$[2](4,-11)$
$[3](-4,11)$
$[4](-4,-11)$
6. The abscissa of the point on the curve $f(x)=\sqrt{8-2 x}$ at which the slope of the tangent is $\mathbf{- 0 . 2 5}$?
[1]-8
[2]-4
[3]-2
[4]0
7. The slope of the line normal to the curve $f(x)=2 \cos 4 x$ at $x=\frac{\pi}{12}$ is
[1] $-4 \sqrt{3}$
[2]-4
$[3] \frac{\sqrt{3}}{12}$
$[4] 4 \sqrt{3}$
8. The tangent to the curve $y^{2}-x y+9=0$ is vertical when
[1] $y=0$
$[2] y= \pm \sqrt{3}$
[3] $y=\frac{1}{2}$
$[4] y= \pm 3$
9. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
[1] $\boldsymbol{\operatorname { t a n }}^{-1} \frac{3}{4}$
[2] $\tan ^{-1}\left(\frac{4}{3}\right)$
$[3] \frac{\pi}{2}$
$[4] \frac{\pi}{4}$
10. The value of the limit $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$ is
[1]0
[2]1
[3]2
$[4] \infty$
11. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in the interval
[1] $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
[2] $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
[3] $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
[4] $\left[0, \frac{\pi}{4}\right]$
12. The number given by the Rolle's theorem for the function $x^{3}-3 x^{2}, x \in[0,3]$ is
[1]1
[2] $\sqrt{2}$
$[3] \frac{3}{2}$
[4]2
13. The number given by the Mean value theorem for the function $\frac{1}{x}, x \in[1,9]$ is
[1]2
[2]2. 5
[3]3
[4]3.5
14. The minimum value of the function $|3-x|+9$ is
[1]0
[2]3
[3]6
[4]9
15. The maximum slope of the tangent to the curve

$$
y=e^{x} \sin x, x \in[0,2 \pi] \text { is at }
$$

[1] $x=\frac{\pi}{4}$
$[2] x=\frac{\pi}{2}$
[3] $x=\pi$
$[4] x=\frac{3 \pi}{2}$
16. The maximum value of the function $x^{2} e^{-2 x}, x>0$ is
$[1]_{e}^{\frac{1}{e}}$
[2] $\frac{1}{2 e}$
[3] $\frac{1}{e^{2}}$
$[4] \frac{4}{e^{4}}$
17. One of the closest points on the curve $x^{2}-y^{2}=4$ to the point $(6,0)$ is
$[1](2,0)$
$[2](\sqrt{5}, 1)$
$[3](3, \sqrt{5})$
$[4](\sqrt{13},-\sqrt{3})$
18. The maximum value of the product of two positive numbers, when their sum of the squares is 200 , is
[1]100
[2]25 $\sqrt{7}$
[3]28
$[4] 24 \sqrt{14}$
19. The curve $y=a x^{4}+b x^{2}$ with $a b>0$
[1]has no horizontal tangent
[3]is concave down
[2]is concave up

0 . The point of inflection of the curve $y=(x-1)^{3}$ is
[1] $(0,0)$
[2] $(0,1)$
$[3](1,0)$
[4] $(1,1)$
8. DIFFERENTIALS AND PARTIAL DERIVATIVES

1. A circular template has a radius of 10 cm . the measurement of radius has an approximate error 0.02 cm . Then the percentage error in calculating area of this template is
[1]0.2\%
[2]0.4\%
[3]0.04\%
[4]0.08\%
2. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31?
[1] $\frac{1}{31}$
[2] $\frac{1}{5}$
[3]5
[4]31
3. If $u(x, y)=e^{x^{2}+y^{2}}$, then $\frac{\partial u}{\partial x}$ is equal to
$[1] e^{x^{2}+y^{2}}$
[2]2xu
[3] $x^{2} u$
[4] $y^{2} u$
4. If $v(x, y)=\log \left(e^{x}+e^{y}\right)$ then $\frac{\partial v}{\partial x}+\frac{\partial v}{\partial y}$ is equal to
$[1] e^{x}+e^{y}$
[2] $\frac{1}{e^{x}+e^{y}}$
[3]2
[4]1
5. If $w(x, y)=x^{y}, x>0$, then $\frac{\partial w}{\partial x}$ is equal to
[1] $x^{y} \log x$
[2] $y \log x$
[3] $y x^{y-1}$
$[4] x \log y$
6. If $f(x, y)=e^{x y}$, then $\frac{\partial^{2} f}{\partial x \partial y}$ is equal to
[1]xye ${ }^{x y}$
$[2](1+x y) e^{x y}$
$[3](1+y) e^{x y}$
$[4](1+x) e^{x y}$
7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm , then the error in our calculation of the volume is
[1] $0.4 \mathrm{cu} . \mathrm{cm}$
[2]0.45 cu.cm
[3]2 cu. cm
[4]4.8 cu. cm
8. The change in the surface area $S=6 x^{2}$ of a cube when the edge length varies from x_{0} to $x_{0}+d x$ is
$[1] 12 x_{0}+d x$
[2]12 $x_{0} d x$
[3] $6 x_{0} d x$
$[4] 6 x_{0}+d x$
9. The approximate change in the volume V of a cube of side x metres caused by increasing the side by 1% is
[1]0.3 $x d x \mathrm{~m}^{3}$
[2]0.03 xm^{3}
[3]0.03 $x^{2} m^{3}$
[4]0.03 $x^{3} m^{3}$
10. If $g(x, y)=3 x^{2}-5 y+2 y^{2}, x(t)=e^{t}$ and $y(t)=\cos t$, then $\frac{d g}{d t}$ is equal to $\begin{array}{ll}{[1] 6 e^{2 t}+5 \sin t-4 \cos t \sin t} & {[2] 6 e^{2 t}-5 \sin t+4 \cos t \sin t} \\ {[3] 3 e^{2 t}+5 \sin t+4 \cos t \sin t} & {[4] 3 e^{2 t}-5 \sin t+4 \cos t \sin t}\end{array}$
11. If $\boldsymbol{f}(\boldsymbol{x})=\frac{x}{x+1}$, then its differential is given by
$[1] \frac{-1}{(x+1)^{2}} d x$
$[2] \frac{1}{(x+1)^{2}} d x$
$[3] \frac{1}{x+1} d x$
$[4] \frac{-1}{x+1} d x$
12. If $u(x, y)=x^{2}+3 x y+y-2019$, then $\left.\frac{\partial u}{\partial x}\right|_{(4,-5)}$ is equal to
[1]-4
[2]-3
[3]-7
[4]13
13. The value of $\int_{0}^{\pi} \frac{d x}{1+5^{\cos x}}$ is
$[1] \frac{\pi}{2}$
[2] π
$[3] \frac{3 \pi}{2}$
[4] 2π
14. If $\frac{\Gamma(n+2)}{\Gamma(n)}=90$ then n is
[1]10
[2]5
[3]8
[4]9
15. The value of $\int_{0}^{\frac{\pi}{6}} \cos ^{3} 3 x d x$ is
$[1] \frac{2}{3}$
[2] ${ }_{9}^{2}$
$[3] \frac{1}{9}$
$[4] \frac{1}{3}$
16. The Value of $\int_{0}^{\pi} \sin ^{4} x d x$ is
$[1] \frac{3 \pi}{10}$
[2] $\frac{3 \pi}{8}$
$[3] \frac{3 \pi}{4}$
$[4] \frac{3 \pi}{2}$
17. The value of $\int_{0}^{\infty} e^{-3 x} x^{2} d x$ is
[1] $\frac{7}{27}$
$[2] \frac{5}{27}$
[3] $\frac{4}{27}$
$[4] \frac{2}{27}$
18. If $\int_{0}^{a} \frac{1}{4+x^{2}} d x=\frac{\pi}{8}$ then a is
[1]4
[2]1
[3]3
[4]2
19. The volume of solid of revolution of the region bounded by $y^{2}=x(a-x)$ about x-axis is
[1] πa^{3}
$[2] \frac{\pi a^{3}}{4}$
$[3] \frac{\pi a^{3}}{5}$
$[4] \frac{\pi a^{3}}{6}$
20. If $f(x)=\int_{1}^{x} \frac{e^{\sin u}}{u} d u, x>1$ and
$\int_{1}^{3} \frac{e^{\sin x^{2}}}{x} d x=\frac{1}{2}[f(a)-f(1)]$, then one of the possible value of a is
[1]3
[2]6
[3]9
[4]5
21. The value of $\int_{0}^{1}\left(\sin ^{-1} x\right)^{2} d x$ is
[1] $\frac{\pi^{2}}{4}-1$
$[2] \frac{\pi^{2}}{4}+2$
$[3] \frac{\pi^{2}}{4}+1$
$[4] \frac{\pi^{2}}{4}-2$
22. The value of $\int_{0}^{a}\left(\sqrt{a^{2}-x^{2}}\right)^{3} d x$ is
$[1] \frac{\pi a^{3}}{16}$
[2] $\frac{3 \pi a^{4}}{16}$
$[3] \frac{3 \pi a^{2}}{8}$
$[4] \frac{3 \pi a^{4}}{8}$
23. If $\int_{0}^{x} f(t) d t=x+\int_{x}^{1} t f(t) d t$, then the value of $f(1)$ is
$[1]_{\frac{1}{2}} \quad[2] 2 \quad[3] 1 \quad[4]_{\frac{3}{4}}^{3}$

10.ORDINARY DIFFERENTIAL EQUATIONS.

1. The order and degree of the differential equation $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{\frac{1}{3}}+x^{\frac{1}{4}}=0$
[1]2, 3
[2]3,3
[3]2, 6
[4]2, 4
2. The differential equation representing the family of curves $y=A \cos (x+B)$, where A and B are parameters, is
$[1] \frac{d^{2} y}{d x^{2}}-y=0$
[2] $\frac{d^{2} y}{d x^{2}}+y=0$
$[3] \frac{d^{2} y}{d x^{2}}=0$
$[4] \frac{d^{2} x}{d y^{2}}=0$
3. The order and degree of the differential equation
$\sqrt{\sin x}(d x+d y)=\cos x(d x-d y)$ is
[1]1, 2
[2]2, 2
[3]1, 1
[4]2, 1
4. The order of the differential equation of all circles with centre at (h, k) and radius ' a ' is
[1]2
[2]3
[3]4
[4]1
5. The differential equation of the family of curves $y=A e^{x}+B e^{-x}$, where A and B are arbitary constants is
$[1] \frac{d^{2} y}{d x^{2}}+y=0$
$[2] \frac{d^{2} y}{d x^{2}}-y=0$
$[3] \frac{d y}{d x}+y=0$
$[4] \frac{d y}{d x}-y=0$
6. The general solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}$ is
[1] $x y=k$
[2] $y=k \log x$
[3] $y=k x$
$[4] \log y=k x$
7. The solution of the differential equation $2 x \frac{d y}{d x}-y=3$ represents
[1]straight lines
[2]circles
[3]parabola
[4]ellipse
8. The solution of $\frac{d y}{d x}+p(x) y=0$ is
$[1] y=c e^{\int p d x}$
$[2] y=c e^{-\int p d x}$
$[3] x=c e^{-\int p d y}$
$[4] x=c e^{\int p d y}$
9. The integrating factor of the differential equation $\frac{d y}{d x}+y=\frac{1+y}{\lambda}$ is
$[1] \frac{x}{e^{\lambda}}$
$[2] \frac{\mathrm{e}^{\lambda}}{x}$
[3] λe^{x}
$[4] e^{x}$
10. The integrating factor of the differential equation $\frac{d y}{d x}+P(x) y=Q(x)$ is x, then $P(x)$
[1] x
$[2] \frac{x^{2}}{2}$
$[3]_{x}^{\frac{1}{x}}$
$[4] \frac{1}{x^{2}}$
11. The degree of the differential equation $y(x)=1+\frac{d y}{d x}+\frac{1}{1.2}\left(\frac{d y}{d x}\right)^{2}+\frac{1}{1.2 .3}\left(\frac{d y}{d x}\right)^{3}+$ \cdots is
[1]2

[2]3

[3]1
[4]4
12. If \boldsymbol{p} and \boldsymbol{q} are the order and degree of the differential equation
$y \frac{d y}{d x}+x^{3}\left(\frac{d^{2} y}{d x^{2}}\right)+x y=\cos x$ when
[1] $p<q$
[2] $p=q$
[3] $p>q$
[4] p exists and q does not exist
13. The solution of the differential equation $\frac{d y}{d x}+\frac{1}{\sqrt{1-x^{2}}}=0$ is
$[1] y+\sin ^{-1} x=c$
[2] $x+\sin ^{-1} y=0$
$[3] y^{2}+2 \sin ^{-1} x=C$
$[4] x^{2}+2 \sin ^{-1} y=0$
14. The solution of the differential equation $\frac{d y}{d x}=2 x y$ is
$[1] y=C e^{x^{2}}$
$[2] y=2 x^{2}+C$
$[3] y^{2}+2 \sin ^{-1} x=C$
[4] $y=x^{2}+C$
15. The general solution of the differential equation $\log \left(\frac{d y}{d x}\right)=x+y$ is

$$
[1] e^{x}+e^{y}=C \quad[2] e^{x}+e^{-y}=C \quad[3] y=C e^{-x^{2}}+C \quad[4] e^{-x}+e^{-y}=C
$$

16. The solution of $\frac{d y}{d x}=2^{y-x}$ is
$[1] 2^{x}+2^{y}=C$
$[2] 2^{x}-2^{y}=C$
$[3] e^{-x}+e^{y}=C$
$[4] e^{-x}+e^{-y}=C$
17. The solution of the differential equation $\frac{d y}{d x}=\frac{y}{x}+\frac{\phi\left(\frac{y}{x}\right)}{\phi^{\prime}\left(\frac{y}{x}\right)}$ is
[1] $x \phi\left(\frac{y}{x}\right)=k$
$[2] \phi\left(\frac{y}{x}\right)=k x$
$[3] y \phi\left(\frac{y}{x}\right)=k$
$[4] \phi\left(\frac{y}{x}\right)=k y$
18. If $\sin x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$, then P is
[1] $\log \sin x$
[2] $\cos x$
[3] $\tan x$
[4] $\cot x$
19. The number of arbitrary constants in the general solution of order n and $n+$ 1 are respectively
[1] $n-1, n$
[2]n, $n+1$
[3] $n+1, n+2$
$[4] n+1, n$
20. The number of arbitary constants in the particular solution of a differential equation of third order is
[1]3
[2]2
[3]1
[4]0
21. Integrating factor of the differential equation $\frac{d y}{d x}=\frac{x+y+1}{x+1}$ is
[1] $\frac{1}{x+1}$
$[2] x+1$
$[3] \frac{1}{\sqrt{x+1}}$
$[4] \sqrt{x+1}$
22. The population P in any year t is such that the rate of increase in the population is proportional to the population. Then
$[1] P=C e^{k t}$
$[2] P=C e^{-k t}$
[3] $P=C k t$
[4] $P=C$
23. P is the amount of certain substance left in after time t. in the rate of evaporation of the substance is proportional to the amount remaining, then
$[1] P=C e^{k t}$
$[2] P=C e^{-k t}$
[3] $P=C k t$
$[4] P t=C$
24. If the solution of the differential equation $\frac{d y}{d x}=\frac{a x+3}{2 y+f}$ represents a circle, then the value of a is
[1]2
[2]-2
[3]1
[4]-1
25. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. Then the equation of the curve is
$[1] y=x^{3}+2$
$[2] y=3 x^{2}+4$
$[3] y=3 x^{3}+4$
$[4] y=x^{3}+5$

11.PROBABILITY DISTRIBUTIONS

1. Let X be random variable with probability density function

$$
f(x) \begin{cases}\frac{2}{x^{3}} & x \geq 1 \\ 0 & x<1\end{cases}
$$

Which of the following statement is correct?
[1]both mean and variance exist
[2]mean exists but variance does not exist
[3]both mean and variance do not exist
[4]variance exists but Mean does not exist
2. A rod of length $2 l$ is broken into two pieces at random. The probability density function of the shorter of the two pieces is
$f(x)=\left\{\begin{array}{cc}\frac{1}{l} & 0<x<l \\ 0 & l \leq x<2 l\end{array}\right.$
The mean and variance of the shorter of the two pieces are respectively
[1] $\frac{l}{2}, \frac{l^{2}}{3}$
[2] $\frac{l}{2}, \frac{l^{2}}{6}$
[3]l, $\frac{l^{2}}{12}$
$[4] \frac{l}{2}, \frac{l^{2}}{12}$
3. consider a game where the player tosses a six-sided fair die. If the face that comes up is 6 the player wins `36 , other wise he loses` k^{2}, where is the face that comes up $k=\{1,2,3,4,5\}$. The expected amount to win at this game in is
[1] $\frac{19}{6}$
[2] $-\frac{19}{6}$
$[3] \frac{3}{2}$
[4]- $\frac{3}{2}$
4. A pair of dice numbered $1,2,3,4,5,6$ of a six-sided die and 1, 2, 3, 4 of a foursided die is rolled and the sum is determined. Let the random variable X denote this sum. Then the number of elements in the inverse image of 7 is
[1]1
[2]2
[3]3
[4]4
5. A random variable X has binomial distribution with $n=25$ and $p=0.8$ then standard deviation of X is
[1]6
[2]4
[3]3
[4]2
6. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are
$[1] i+2 n, i=0,1,2, \ldots n$
$[2] 2 i-n, i=0,1,2, \ldots n$
[3] $n-i, i=0,2, \ldots n$
$\mathbf{0}, 1,2, \ldots n$
$[4] 2 i+2 n, i=$
7. If the function $\boldsymbol{f}(\boldsymbol{x})=\frac{1}{12}$ for $\boldsymbol{a}<x<b$, represents a probability density function of a continuous random variable X, then which of the following cannot be the value of a and b ?
[1]0 and 12
[2]5 and 17
[3]7 and 19
[4]16 and 24
8. Four buses carrying 160 students from the same school arrive at a football stadium. The buses carry, respectively, 42, 36, 34, and 48 students. One of the students is randomly selected. Let X denote the number of students that were on the bus carrying the randomly selected student. One of the 4 bus drivers is also randomly selected. Let Y denote the number of students on that bus.
Then $E[X]$ and $E[Y]$ respectively are
[1]50, 40
[2]40, 50
[3]40.75, 40
[4]41, 41
9. Two coins are to be flipped. The first coin will land on heads with probability 0.6 , the second with Probability 0.5. Assume that the results of the flips are independent, and let X equal the total number of heads that result. The value of $E[X]$ is
[1]0.11
[2]1.1
[3]11
[4]1
10. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, then probability that a student will get 4 or more correct answers just by guessing is
[1] $\frac{11}{243}$
$[2] \frac{3}{8}$
$[3] \frac{1}{243}$
$[4] \frac{5}{243}$
11. If $P(X=0)=1-P(X=1)$. If $E[X]=3 \operatorname{Var}(X)$, then $P(X=0)$ is
$[1] \frac{2}{3} \quad[2] \frac{2}{5} \quad[3] \frac{1}{5} \quad[4] \frac{1}{3}$
12. If X is a binomial random variable with expected value 6 and variance 2.4 , then $P(X=5)$ is
[1] $\binom{10}{5}\left(\frac{3}{5}\right)^{6}\left(\frac{2}{5}\right)^{4}$
[2] $\binom{10}{5}\left(\frac{3}{5}\right)^{10}$
[3] $\binom{10}{5}\left(\frac{3}{5}\right)^{4}\left(\frac{2}{5}\right)^{6}$
$[4]\binom{10}{5}\left(\frac{3}{5}\right)^{5}\left(\frac{2}{5}\right)^{5}$
13. The random variable X has the probability density function

$$
f(x)=\left\{\begin{array}{lc}
a x+b & 0<x<1 \\
0 & \text { otherwise }
\end{array}\right.
$$

and $E(X)=\frac{7}{12}$, then a and b are respectively
[1]1 and $\frac{1}{2}$
[2] $\frac{1}{2}$ and 1
[3]2 and 1
[4]1 and 2
14. Suppose that X takes on one of the values 0,1 , and 2 . If for some constant k, $P(X=i)=k P(X=i-1)$ for $i=1,2$ and $P(X=0)=\frac{1}{7}$, then the value of k is
[1]1
[2]2
[3]3
[4]4
15. Which of the following is a discrete random variable?

1. The number of cars crossing a particular signal in a day.
II. The number of customers in a queue to buy train tickets at a moment.
III. The time taken to complete a telephone call
[1]I and II
[2]II only
[3]III only
[4]II and III
2. If $f(x)=\left\{\begin{array}{ll}2 x & 0 \leq x \leq a \\ 0 & \text { otherwise }\end{array}\right.$ is a probability density function of a random variable, then the value of a is
[1]1
[2]2
[3]3
[4]4
3. The probability mass function of a random variable is defined as

x	-2	-1	0	1	2
$f(x)$	k	$2 k$	$3 k$	$4 k$	$5 k$

The $E(X)$ is equal to
[1] $\frac{1}{15}$
$[2] \frac{1}{10}$
[3] $\frac{1}{3}$
$[4] \frac{2}{3}$
18. Let X have a Bernoulli distribution with mean 0.4 , then the variance of ($2 X-$ $3)$ is
[1]0.24
[2]0.48
[3]0.6
[4]0.96
19. If in 6 trails, X is a binomial variable which follows the relation $9 P(X=4)=P(X=2)$, then the probability of success is
[1]0.125
[2]0.25
[3]0.375
[4]0.75
20. A computer salesperson knows from his past experience that he sells computers to one in every twenty customers who enter the showroom. What is the probability that he will sell a computer to exactly two of the next three customers?
[1] ${ }_{20^{3}}^{\frac{37}{3}}$
$[2] \frac{57}{20^{2}}$
$[3] \frac{19^{3}}{0^{3}}$
$[4] \frac{57}{20}$

12. DISCRETE MATHEMATICS

1. A binary operation on a set S is a function from
(1) $S \rightarrow S$
(2) $(S \times S) \rightarrow S$
(3) $S \rightarrow(S \times S)$
(4) $(S \times S) \rightarrow(S \times S)$
2. Subtraction is not a binary operation in
(1) \mathbb{R}^{R}
(2) \mathbb{Z}
(3) \mathbb{N}
(4) \mathbb{Q}
3. Which one of the following is a binary operation on \mathbb{N} ?
(1) Subtraction
(2) Multiplication
(3) Division
(4) All the above
4. In the set \mathbb{R} of real numbers ' * ' is defined as follows. Which one of the following is not a binary operation on \mathbb{R} ?
(1) $a * b=\min (a . b)$
(2) $a * b=\max (a, b)$
(3) $a * b=a$
(4) $a * b=a^{b}$
5. The operation $*$ defined by $a * b=\frac{a b}{7}$ is not a binary operation on
(1) \mathbb{Q}^{+}
(2) \mathbb{Z}
(3 R
(4) \mathbb{C}
6. In the set \mathbb{Q} define $\odot \boldsymbol{b}=\boldsymbol{a}+\boldsymbol{b}+\boldsymbol{a} \boldsymbol{b}$. For what value of $\mathbf{y}, \mathbf{3} \odot(\boldsymbol{y} \odot 5)=\mathbf{7}$?
(1) $y=\frac{2}{3}$
(2) $y=\frac{-2}{3}$
(3) $y=\frac{-3}{2}$
(4) $y=4$
7. If $a * b=\sqrt{a^{2}+b^{2}}$ on the real numbers then $*$ is
www.Padasalai.Net
www.CBSEtips.in

Which one of the following is correct for the truth value of $(p \wedge q) \rightarrow \neg p$?
(a)
(b) (c)
(d)
(a)
(c)

(1)	T	T	T	T	(2)	F	T	T
(3)	F	\boldsymbol{F}	T	T	(4)	T	T	T

17. The dual of $\neg(p \vee q) \vee[p \vee(p \wedge \neg r)]$ is
(1) $\neg(p \wedge q) \wedge[p \vee(p \wedge \neg r)]$
(2) $(p \wedge q) \wedge[p \wedge(p \vee \neg r)]$
(3) $\neg(p \wedge q) \wedge[p \wedge(p \wedge r)]$
(4) $\neg(p \wedge q) \wedge[p \wedge(p \vee \neg r)]$

Which one of the following is true?

	(a)	(b)	(c)	(d)		(a)	(b)	(c)	
	(d)								
(1)	T	T	T	T	(2)	T	F	T	T
(3)	T	T	F	T	(4)	T	F	F	F

14. In the last column of the truth table for $\neg(p \vee \neg q)$ the number of final outcomes of the truth value ' F ' are
(1)1
(2) 2
(3) 3
(4) 4
15. Which one of the following is incorrect? For any two propositions p and q, we have
(1) $\neg(p \vee q) \equiv \neg p \wedge \neg q$
(2) $\neg(p \wedge q) \equiv \neg p \vee \neg q$
(3) $\neg(\boldsymbol{p} \vee \boldsymbol{q}) \equiv \neg \boldsymbol{p} \vee \neg \boldsymbol{q}$
(4) $\neg(\neg p) \equiv p$
16.

\boldsymbol{p}	\boldsymbol{q}	$(\boldsymbol{p} \wedge \boldsymbol{q}) \rightarrow \neg \boldsymbol{p}$
\boldsymbol{T}	\boldsymbol{T}	(\boldsymbol{a})
\boldsymbol{T}	\boldsymbol{F}	(\boldsymbol{b})
\boldsymbol{F}	\boldsymbol{T}	(\boldsymbol{c})
\boldsymbol{F}	\boldsymbol{F}	(\boldsymbol{d})

