

(a) $adj A = |A| A^{-1}$

ALPHA MATHS ACADAMY

JEE, CBSE AND BOARD EXAMINATION COACHING CENTER TENKASI

MOBILE: 9489006077, 8778733955

CHAPTER 1 TO 4

STANDARD 12

TIME: 3.00 HOURS **MATHEMATICS MARKS: 90 PART-A** $20 \times 1 = 20$ 1. If $sin^{-1} x + sin^{-1} y = \frac{2\pi}{3}$; then $cos^{-1} x + cos^{-1} y$ is equal to (a) $\frac{2\pi}{3}$ $(b)^{\frac{\pi}{2}}$ $(d) \pi$ 2. If $z = \frac{(\sqrt{3}+i)^3(3i+4)^2}{(8+6i)^2}$, then |z| is equal to (a) 0(c) 2 (d) 3 3. If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$ $(a) \begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix} \qquad (b) \begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ $(c)\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ $(d)\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$ The solution of the equation |z| - z = 1 + 2i is (b) $-\frac{3}{2} + 2i$ (c) $2 - \frac{3}{2}i$ (a) $\frac{3}{2} - 2i$ $(d) 2 + \frac{3}{2}i$ 5. If $\cot^{-1} x = \frac{2\pi}{5}$ for some $x \in R$, the value of $\tan^{-1} x$ is $(a) - \frac{\pi}{10}$ $(d) - \frac{\pi}{5}$ 6. If $A = \begin{bmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{bmatrix}$ and $A(adjA) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then $k = \frac{1}{2}$ (b) $\sin \theta$ (a) 0 $(c)\cos\theta$ (d) 1 7. $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is (a) 0(b) 1 (c) -1(d) i 8. If $(1+i)(1+2i)(1+3i)\cdots(1+ni) = x+iy$, then 2.5.10 ... $(1+n^2)$ is (c) $x^2 + v^2$ (d) $1 + n^2$ 9. $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) =$ $(d)^{\frac{\pi}{\epsilon}}$ $(a)^{\frac{\pi}{a}}$ $(c)^{\frac{\pi}{4}}$ 10. The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if, k satisfies (b) k = 0(a) $|k| \le 6$ (c) |k| > 6 $(d) |k| \ge 6$ 11. If the order of a square matrix A is 4 and |A| = 5, then |adj(adjA)| is $(b) 5^4$ (c)125 $(d)5^9$ (a)2512. If A, B and C are invertible matrices of some order, then which one of the following is not true?

(b) adj(AB) = (adj A)(adj B)

(c)
$$det A^{-1} = (det A)^{-1}$$

$$(d) (ABC)^{-1} = C^{-1}B^{-1}A^{-1}$$

13. If α, β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is

$$(a) - \frac{q}{r}$$

$$(b)-\frac{p}{r}$$

$$(c) \frac{q}{r}$$

$$(d) -\frac{q}{n}$$

- 14. If $A = \begin{bmatrix} 3 & 1 \\ 7 & 5 \end{bmatrix}$ and $A^2 + xI = yA$, then the values of x and y are respectively
 - (a) 6, 4

- (b) 8,6
- (c)8,8

- (d) 5, 8
- 15. The conjugate of a complex number is $\frac{1}{i-2}$, Then the complex number is

(a)
$$\frac{1}{i+2}$$

(b)
$$\frac{-1}{i+2}$$

$$(c) \frac{-1}{i-2}$$

$$(d) \ \frac{1}{i-2}$$

- 16. If $\left|z-\frac{3}{z}\right|=2$, then the least value of |z| is
 - (a) 1

(b) 2

(c) 3

- (d) 5
- 17. Multiplication of a complex number Z by (-i) is the rotation about the origin by
 - (a) 90 ° counter clockwise direction
- (b) 90 ° clockwise direction
- (c) 180° counter clockwise direction
- (d) 180° clockwise direction
- 18. If $sin^{-1} x + cot^{-1} \left(\frac{1}{2}\right) = \frac{\pi}{2}$, then x is equal to

(a)
$$\frac{1}{2}$$

(b)
$$\frac{1}{\sqrt{5}}$$

$$(c) \frac{2}{\sqrt{5}}$$

- $(d) \frac{\sqrt{3}}{2}$
- 19. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if

$$(a) a \geq 0$$

$$(b) \ a > 0$$

(c)
$$a < 0$$

 $(d) \ a \leq 0$

20. A zero of $x^3 + 64$ is

(d) - 4

PART-B

 $7 \times 2 = 14$

- Note: i) Answer any seven questions.
 - ii) Question No.30 is compulsory.
- 21. If A is symmetric, prove that then Adj A is also symmetric
- 22. Show that $(2 + i\sqrt{3})^{10} + (2 i\sqrt{3})^{10}$ is real
- 23. Show that, if p, q, r are rational, the roots of the equation $x^2 2px + p^2 q^2 + 2qr r^2 = 0$ are rational.
- 24. Find the period and amplitude of $y = \sin 7x$
- 25. Find non –zero integral solution of $|1 i|^x = 2^x$

26. If
$$Adj A = \begin{bmatrix} -1 & 2 & 2 \\ 1 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$
. Find A^{-1}

- 27. Write in polar form of the complex numbers $3 i\sqrt{3}$
- 28. Prove that a line cannot intersect a circle at more than two points.
- 29. For the value of x, the inequality $\frac{\pi}{2} < \cos^{-1}(3x 1) < \pi$ holds?
- 30. Solve the equation $\cos^2 x 9\cos x + 20 = 0$.

PART-C $7 \times 3 = 21$

Note: i) Answer any seven questions.

- ii) Question No.40 is compulsory.
- 31. Given $A = \begin{bmatrix} 1 & -1 \\ 2 & 0 \end{bmatrix}$; $B = \begin{bmatrix} 3 & -2 \\ 1 & 1 \end{bmatrix}$ and $C = \begin{bmatrix} 1 & 1 \\ 2 & 2 \end{bmatrix}$, Find a matrix X such that AXB = C
- 32. If z_1 , z_2 and z_3 are complex numbers such that $|z_1| = |z_2| = |z_3| = |z_1 + z_2 + z_3| = 1$, Find the value of $\left| \frac{1}{z_1} + \frac{1}{z_2} + \frac{1}{z_3} \right|$
- 33. Find the condition that the roots of cubic equation $x^3 + ax^2 + bx + c = 0$ are in the ratio p:q:r.
- 34. Find the value of $tan\left[\frac{1}{2}sin^{-1}\left(\frac{2a}{1+a^2}\right) + \frac{1}{2}cos^{-1}\left(\frac{1-a^2}{1+a^2}\right)\right]$
- 35. Find the rank of the matrices $\begin{bmatrix} 1 & 2 & 3 \\ 2 & 1 & 4 \\ 3 & 0 & 5 \end{bmatrix}$ by reducing it to a row-echelon form.
- 36. If $\tan^{-1} x \tan^{-1} y \tan^{-1} z = \pi$, show that x + y + z = xyz.
- 37. If the system of equations px + by + cz = 0, ax + qy + cz = 0, ax + by + rz = 0 has a non-trivial solution and $p \neq a$, $q \neq b$, $r \neq c$ prove that $\frac{p}{p-a} + \frac{q}{q-b} + \frac{r}{r-c} = 2$
- 38. Find the argument of $\frac{1-i}{1+i}$
- 39. Determine the possible number of positive real zeros and negative real zeros of $x^4 6x^3 + 8x^2 + 2x 1$.
- 40. If $\tan^{-1} x \cot^{-1} x = \tan^{-1} \frac{1}{\sqrt{3}}$, find the value of x.

 $7 \times 5 = 35$

PART-D

Note: Answer all the questions.

- 41. (a) The prices of three commodities A, B and C are rupees x, y and z per units respectively. A person P purchases 4 units of B and sells two units of A and 5 units of B. Person B purchases one unit of B and sells 3 units of B and 1 unit of B. In the process B, B and B
 - (b) Find the number of solution of the equation $\tan^{-1}(x-1) + \tan^{-1}x + \tan^{-1}(x+1) = \tan^{-1}(3x)$
- 42. (a) $\cos \alpha + \cos \beta + \cos \gamma = \sin \alpha + \sin \beta + \sin \gamma = 0$, Show that (i) $\cos 3\alpha + \cos 3\beta + \cos 3\gamma = 3\cos(\alpha + \beta + \gamma)$
 - (ii) $\sin 3\alpha + \sin 3\beta + \sin 3\gamma = 3 \sin (\alpha + \beta + \gamma)$ (or)
 - (b) Solve the system of linear equations by matrix inversion method 2x + 3y z = 9, x + y + z = 9, 3x y z = -1
- 43. (a) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. (or)
 - (b) If $\cos^{-1} x + \cos^{-1} y + \cos^{-1} z = \pi$ and 0 < x, y, z, < 1, show that $x^2 + y^2 + z^2 + 2xyz = 1$
- 44. (a) Determine the values of λ for which the following system of equations x + y + 3z = 0, $4x + 3y + \lambda z = 0$, 2x + y + 2z = 0 has (i) a unique solution (ii) a non-trivial solution (or)
 - (b) If the system of equations ax + y + z = 0, x + by + z = 0, x + y + cz = 0, (where $a \ne 1$, $b \ne 1$, $c \ne 1$) has a non-trivial solution, then show that $\frac{a}{1-a} + \frac{b}{1-c} + \frac{c}{1-c} = 1$.
- 45. (a) If z = x + iy is a complex number such that $Im\left(\frac{2z+1}{iz+1}\right) = 0$. Show that the locus of z is $2x^2 + 2y^2 + x 2y = 0$. (or)
 - (b) Find the sum of squares of roots of the equation $2x^4 8x^3 + 6x^2 3 = 0$
- 46. (a) Suppose z_1, z_2 , and z_3 , are the vertices of an equilateral triangle inscribed in the circle |z| = 2.

If
$$z_1 = 1 + i\sqrt{3}$$
, then find z_2 and z_3 .

- (b) Let P and Q be rational numbers such that \sqrt{q} is irrational. If $p + \sqrt{q}$ is a root of a quadratic equation with rational coefficients, then $p \sqrt{q}$ is also a root of the same equation.
- 47. (a) If $a = \cos 2\alpha + i \sin 2\alpha$, $b = \cos 2\beta + i \sin 2\beta$ and $c = \cos 2\gamma + i \sin 2\gamma$

Prove that
$$i) \sqrt{abc} + \frac{1}{\sqrt{abc}} = 2\cos(\alpha + \beta + \gamma)$$
 $ii) \frac{a^2b^2 + c^2}{abc} = 2\cos 2(\alpha + \beta - \gamma)$

$$(or)$$

(b) Solve $\tan^{-1} 2x + \tan^{-1} 3x = \frac{\pi}{4}$, if $6x^2 < 1$

PREPARED BY

M.KARTHIGAI GANAPATHY M.Sc., M.Ed.,

PG ASST. MATHEMATICS

TENKASI-627802

CONTACT NUMBER: 9489006077

E.MAIL: karthiksabi13@gmail.com

