

Time: 1.30 Hrs.

Standard 12
PHYSICS
Part - A

Marks: 35
I. Answer ALL questions:

1) If voltage applied on a capacitor is increased from V to $2 V$, choose the connect conclusion.
a) Q remains the same, C is doubled
b) Q is doubled, C is doubled
c) C remains same, Q doubled
d) Both Q and C remain same
2) An electric dipole is placed at an alignment angle of 30° with an electric field of $2 \times 10^{5} \mathrm{NC}^{-1}$. If experiences a torque equal to 8 Nm . The change on the dipole if the dipole length is 1 cm is
a) 4 mC
b) 8 mC
c) 5 mC
d) 7 mC
3) The internal resistance of a 2.1 v cell which gives a current of 0.2 A through a resistance of 10Ω is
a) 0.2Ω
b) 0.5Ω
c) 0.8Ω
d) 1.0Ω
4) There is a current of 1.0 A in the circuit shown below. What is the resistance of P ?

a) 1.5Ω
b) 2.5Ω
c) 3.5Ω
d) 4.5Ω
5) What is the minimum value of resistance of the following resistor?

a) 1000Ω
b) 900Ω
c) 1100Ω
d) $1.1 \mathrm{~K} \Omega$
6) The temperature co-efficient of resistance of a wire is 0.00125 per ${ }^{\circ} \mathrm{C}$ at $20^{\circ} \mathrm{C}$ its resistance is 1Ω. The resistance of the wire will be 2Ω at
a) $800^{\circ} \mathrm{C}$
b) $700^{\circ} \mathrm{C}$
c) $850^{\circ} \mathrm{C}$
d) $820^{\circ} \mathrm{C}$
7) A circular coil of radius 10 cm and 50 turns carries a current of 3 amphere. The magnetic dipole moment of the coil is nearly
a) $1.0 \mathrm{Am}^{2}$
b) $1.2 \mathrm{Am}^{2}$
c) $4.7 \mathrm{Am}^{2}$
d) $0.5 \mathrm{Am}^{2}$
8) The vertical component of Earth's magnetic field at a place is equal to the horizontal component. What is the value of angle of dip at this place?
a) 30°
b) 45°
c) 60°
d) 90°
9) The potential energy of magnetic dipole whose dipole moment is $\tilde{p}_{m}=(-0.5 \hat{i}+0.4 \hat{j}) \mathrm{Am}^{2}$ kept is uniform magnetic field $\stackrel{\mu}{B}=0.2 \hat{i} T$.
a) $-0.1 \hat{\mathrm{j}}$
b) $-0.8 \hat{j}$
c) $0.1 \hat{\mathrm{j}}$
d) $0.8 \hat{\mathrm{j}}$
10) Electric field due to electric dipole at its axial line is $8 \hat{\mathrm{i} N C^{-1}}$. What is the electric field due to the same dipole at its equtorial line at same distance from the centre of the dipole is
a) $4 \hat{\mathrm{i}} \mathrm{NC}^{-1}$
b) $-4 \hat{\mathrm{i}} \mathrm{NC}^{-1}$
c) $16 \mathrm{i} \mathrm{NC}^{-1}$
d) $-16 \mathrm{i} \mathrm{NC}^{-1}$

Part - B

II. Answer any three questions. Qn. No. 12 is compulsory:
11) Give the gauss Law.
12) Duiring lighting accompanied by a thunderstorm. It is always safer to sit inside a bus them in open ground on under a tree.
13) Define: Temperature co-efficient of resistance.
14) Give the Kirchhoff's second law.
15) Write down the Fleming's left hand rule.

Part - C

III. Answer any three questions. Qn.No. 18 is compulsory:
16) Write the special features of magnetic Lorentz force.
17) How will you convert the galvanometer in the voltmeter explain with diagram?
18) In a meter bridge experiment, the valve of resistance in the resistance box connected in the right gap is 10Ω. The balancing length is $\ell_{1}=55 \mathrm{~cm}$. Find the value of unknown resistance.
19) Find the effective capacitance of the capacitors connected in series.
20) Obtain the Gauss Law from Coloumb's Law.

Part - D

IV. Answer for all the questions:

21) Derive the expression for the potential due to the dipole.
(OR)
Derive the expression for the bridge balance condition for Wheatstone's bridge.
22) Obtain the expression for the electric field due to dipole at its axial line.
(OR)
Derive to expression for the force acting on the current canning conduction placed in an uniform magnetic field.
