SECTION -A

I. Choose the correct answer:

$14 \times 1=14$

1. If there are 1024 relations from a set $A=\{1,2,3,4,5\}$ to a set B, then the number of elements in B is
(A) 3
(B) 2
(C) 4
(D) 8
2.If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then (a, b) is
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
3.If $\{(a, 8),(6, b)\}$ represents an identity function, then the value of a and b are respectively
(A) $(8,6)$
(B) $(8,8)$
(C) $(6,8)$
(D) $(6,6)$
2. An A.P. consists of 31 terms. If its 16 th term is m, then the sum of all the terms of this A.P. is
(A) 16 m
(B) 62 m
(C) 31 m
(D) $\frac{31}{2} \mathrm{~m}$
3. The next term of the sequence $\frac{3}{16}, \frac{1}{8}, \frac{1}{12}, \frac{1}{18}, \cdots$
(A) $\frac{1}{24}$
(B) $\frac{1}{27}$
(C) $\frac{2}{3}$
(D) $\frac{1}{81}$
4. If the HCF of 65 and 117 is expressible in the form of $65 m-117$, then the value of m is
(A) 4
(B) 2
(C) 1
(D) 3
5. If 6 times of $6^{\text {th }}$ term of an A.P. is equal to 7 times the $7^{\text {th }}$ term, then the 13 th term of the A.P. is
(A) 0
(B) 6
(C) 7
(D) 13
6. If $(x-6)$ is the HCF of $x^{2}-2 x-24$ and $x^{2}-k x-6$ then the value of k is
(A) 3
(B) 5
(C) 6
(D) 8
7. Graph of a linear equation is a \qquad
(A) straight line (B) circle
(C) parabola
(D) hyperbola
10.If $\triangle A B C$ is an isosceles triangle with $\angle C=90^{\circ}$ and $A C=5 \mathrm{~cm}$, then $A B$ is
(A) 2.5 cm
(B) 5 cm
(C) 10 cm
(D) $5 \sqrt{2} \mathrm{~cm}$
8. Which of the following should be added to make $x^{4}+64$ a perfect square
(A) $4 x^{2}$
(B) $16 x^{2}$
(C) $8 x^{2}$
(D) $-8 x$
12.The straight line given by the equation $x=11$ is
(A) parallel to X axis (B) parallel to Y axis
(C) passing through the origin (D) passing through the point $(0,11)$
13.If $5 \mathrm{x}=\sec \theta$ and $\frac{5}{y}=\tan \theta$ then $x^{2}-\frac{1}{y^{2}}$ is equal to
(A) 25
(B) $1 / 25$
(C) 5
(D) 1
9. The range of the data $8,8,8,8,8 \ldots 8$ is
(A) 0
(B) 1
(C) 8
(D) 3

SECTION-B

II. Answer any 10 questions. Question No. 28 is compulsory
 $10 \times 2=20$

15. If $B \times A=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$ find A and B.
16. Let $f(x)=2 x+5$. If $x \neq 0$ then find $\frac{f(x+2)-f(2)}{x}$
17. If $f(x)=3 x-2, g(x)=2 x+k$ and if $f \circ g=g \circ f$, then find the value of k.
18. Find the number of terms in the A.P. $3,6,9,12, \ldots, 111$
19. Find the $19^{\text {th }}$ term of an A.P. $-11,-15,-19, \ldots$
20. Find the excluded values $\frac{7 p+2}{8 p^{2}+13 p+5}$
21. If $13824=2^{a} \times 3^{b}$ then find a and b
22. If the difference between a number and its reciprocal is $\frac{24}{5}$, find the number
23. Solve $2 m^{2}+19 m+30=0$
24. Prove that $\sqrt{\frac{1+\cos \theta}{1-\cos \theta}}=\operatorname{cosec} \theta+\cot \theta$
25. If the area of the triangle formed by the vertices $\mathrm{A}(-1,2), \mathrm{B}(k,-2)$ and $\mathrm{C}(7,4)$ (taken in order) is 22 sq.units, find the value of k.
26. Find the equation of a line passing through the point $(3,-4)$ and having slope $\frac{-5}{7}$
27. A boy of height 90 cm is walking away from the base of a lamp post at a Speed of $1.2 \mathrm{~m} / \mathrm{sec}$. If the lamppost is 3.6 m .
28. If the range and the smallest value of a set of data are 36.8 and 13.4 respectively, then find the largest value.

SECTION -C

III. Answer any 10 questions. Question No. 42 is compulsory $10 \times 5=50$
29. Let $A=$ The set of all natural numbers less than $8, B=$ The set of all prime numbers less than $8, C=$ The set of even prime number. Verify that $(A \cap B) \times C=(A \times C) \cap(B \times C)$
30. If $f(x)=2 x+3, g(x)=1-2 x$ and $h(x)=3 x$. Prove that $f \circ(g \circ h)=(f \circ g) \circ h$
31. If the function $f ; R \rightarrow R$ is defined by $f(x)=\left\{\begin{array}{c}2 x+7, x<-2 \\ x^{2}-2,-2 \leq x<3 \\ 3 x-2, x \geq 3\end{array}\right.$ then find the values of
(ii) $f(4)+2 f(1) \quad$ (iii) $\frac{f(1)-3 f(4)}{f(-3)}$
32. The product of three consecutive terms of a Geometric Progression is 343 and their sum is $91 / 3$. Find the three terms
33. Find the sum to n terms of the series $6+66+666 \ldots . .$.
34. Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$. How much area can be decorated with these colour papers?
35.Find the equation of a straight line parallel to Y axis and passing through the point of intersection of the lines $4 x+5 y=13$ and $x-8 y+9=0$.
36. Find the GCD of $6 \mathrm{x}^{3}-30 x^{2}+60 x-48$ and $3 \mathrm{x}^{3}-12 x^{2}+21 x-18$.
37. Find the area of the quadrilateral formed by the points $(8,6),(5,11),(-5,12)$ and $(-4,3)$
38. If $\frac{\cos ^{2} \theta}{\sin \theta}=\mathrm{p}$ and $\frac{\sin ^{2} \theta}{\cos \theta}=\mathrm{q}$, then prove that $p^{2} q^{2}\left(p^{2}+q^{2}+3\right)=1$
39. Find the values of a and b if the following polynomials are perfect squares $4 x^{4}-12 x^{3}+37 x^{2}+b x+a$
40. State and prove Thales theorem
41. The marks scored by 10 students in a class test are $25,29,30,33,35,37,38$, $40,44,48$. Find the standard deviation..
42. Solve $3 x+y-3 z=1 ;-2 x-y+2 z=1 ;-x-y+z=2$.

SECTION - D

IV. Answer the following questions.

43.a) Draw the graph of $x y=24, x, y>0 . U s i n g$ the graph find,
(i) y when $x=3$ and (ii) x when $y=6$.

[OR]

b) Nishanth is the winner in a Marathon race of 12 km distance. He ran at the uniform speed of $12 \mathrm{~km} / \mathrm{hr}$ and reached the destination in 1 hour. He was followed by Aradhana, Ponmozhi, Jeyanth, Sathya and Swetha with their respective speed of $6 \mathrm{~km} / \mathrm{hr}, 4 \mathrm{~km} / \mathrm{hr}, 3$ $\mathrm{km} / \mathrm{hr}$ and $2 \mathrm{~km} / \mathrm{hr}$. And, they covered the distance in $2 \mathrm{hrs}, 3 \mathrm{hrs}, 4 \mathrm{hrs}$ and 6 hours respectively.Draw the speed-time graph and use it to find the time taken to Kaushik with his speed of $2.4 \mathrm{~km} / \mathrm{hr}$.
44.a) Construct a triangle similar to a given triangle $P Q R$ with its sides equal to $\frac{7}{4}$ of the corresponding sides of the triangle $P Q R$ (scale factor $\frac{7}{4}>1$

> (OR)
b) Construct a triangle $\triangle P Q R$ such that $Q R=5 \mathrm{~cm}, \angle P=30^{\circ}$ and the altitude from P to $Q R$ is of length 4.2 cm

Model Question Paper
Prepared by -

