REGISTER NUMBER

SK MODEL QUARTERLY - 10 ${ }^{\text {th }}$ STANDARD - PART - III - MATHEMATICS

Time Allowed: 3 Hours
Maximum Marks: 100

Instructions: (1) Check the Question paper for fairness of printing. If there is any lack of fairness, inform the Hall supervisor immediately.
(2) Use Blue or Black ink to write and underline and pencil to draw diagrams.

PART I

Note: (i) All questions are compulsory
$14 \times 1=14$
(ii) Choose the most appropriate answer from the given four alternatives and write the option code and the corresponding answer.

1. Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{4,8,9,10\}$. A function $\mathrm{f}: \mathrm{A} \rightarrow \mathrm{B}$ given by $f=\{(1,4),(2,8),(3,9),(4,10)\}$ is a
(1) Many-one function
(2) Identity function
(3) One-to-one function
(4) Into function
2. $f: X \rightarrow Y$ where $X=\{-1,-2,-3\}, Y=\{3,4,5\}$ is given by $f(x)=x+6, x \in X$, then f is
(1) onto
(2) many to one
(3) constant function
(4) bijective
3. If $a_{1}=a_{2}=2, a_{n}=a_{n-1}-1$, then a_{5} is
(1) 1
(2) -1
(3) 0
(4) -2
4. The least number that is divisible by all the numbers from 1 to 10 (both inclusive) is
(1) 2025
(2) 5220
(3) 5025
(4) 2520
5. The solution of $(2 x-1)^{2}=9$ is equal to
(1) -1
(2) 2
(3) $-1,2$
(4) None of these
6. For what value of k, will the system of equations $2 x+3 y=k$ and $(k-1) x+(k+2) y=3 k$ has infinite solutions?
(1) -7
(2) 5
(3) 7
(4) 0
7. Graph of a Quadratic polynomial is a
(1) Straight line
(2) circle
(3) parabola
(4) hyperbola
8. In a $\triangle A B C, A D$ is the bisector of $\angle B A C$. If $A B=8 \mathrm{~cm}, B D=6 \mathrm{~cm}$ and $D C=3 \mathrm{~cm}$. The length of the side $A C$ is
(1) 6 cm
(2) 4 cm
(3) 3 cm
(4) 8 cm
9. In $\Delta \mathrm{LMN}, \mathrm{L}=60^{\circ}, \mathrm{M}=50^{\circ}$. If $\Delta \mathrm{LMN} \sim \Delta \mathrm{PQR}$ then the value of $\angle \mathrm{R}$ is
(1) 40°
(2) 70°
(3) 30^{0}
(4) 110^{0}
10. When proving that a quadrilateral is a trapezium, it is necessary to show
(1) Two sides are parallel.
(2) Two parallel and two non-parallel sides.
(3) Opposite sides are parallel.
(4) All sides are of equal length.
11. The point of intersection of $3 x-y=4$ and $x+y=8$ is
(1) $(5,3)$
(2) $(2,4)$
(3) $(3,5)$
(4) $(4,4)$
12. The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
(1) 0 sq.units
(2) 25 sq.units
(3) 5 sq.units
(4) none of these
13. $(1+\tan \theta+\sec \theta)(1+\cot \theta-\operatorname{cosec} \theta)$ is equal to
(1) 0
(2) 1
(3) 2
(4) -1
14. If $\tan \theta+\cot \theta=5$, then the value of $\tan ^{2} \theta+\cot ^{2} \theta$ is
(1) 23
(2) 25
(3) 27
(4) 15

Part II - 2 Marks - Q.No 28 is Compulsory
$10 \times 2=20$
15. If $B \times A=\{(-2,3),(-2,4),(0,3),(0,4),(3,3),(3,4)\}$ find A and B
16. Let $A=\{1,2,3,4\}$ and $B=N$. Let $f: A \rightarrow B$ be defined by $f(x)=x^{3}$ then, (i) find the range of f (ii) identify the type of function
17. Solve $3 x-2 \equiv 0(\bmod 11)$
18. Evaluate : $1^{2}+3^{2}+5^{2}+$ 292
19. The hypotenuse of a right angled triangle is 25 cm and its perimeter 56 cm . Find the length of the smallest side.
20. Find the sum and product of the roots for each of the quadratic equations :
$x^{2}+8 x-65=0$
21. If $\triangle \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\triangle A B C=54 \mathrm{~cm}^{2}$. Find the area of $\triangle D E F$
22. If AD is the bisector of $\angle \mathrm{BAC}$. If $\mathrm{AB}=10 \mathrm{~cm}, \mathrm{AC}=14 \mathrm{~cm}$ and $\mathrm{BC}=6 \mathrm{~cm}$, find BD and DC
23. If the area of Δ formed by $(x, y),(1,2),(2,1)$ is 6 sq.units, prove that $x+y=15$.
24. Find the intercepts made by the line $4 x-9 y+36=0$ on the coordinate axes.
25. Show that the straight lines $x-2 y+3=0$ and $6 x+3 y+8=0$ are perpendicular.
26. Prove that $\sec ^{4} \theta\left(1-\sin ^{4} \theta\right)-2 \tan ^{2} \theta=1$
27. Prove the identity $\frac{\operatorname{Sec} \theta}{\operatorname{Sin} \theta}-\frac{\operatorname{Sin} \theta}{\operatorname{Cos} \theta}=\cot \theta$
28. Find the LCM of each pair of the polynomials $a^{2}+4 a-12, a^{2}-5 a+6$ whose GCD is a - 2

Part III - 5 Marks - Q.No 42 is Compulsory
29. If $A=\{a, d\}, B=\{b, c, e\}, C=\{b, c, f\}$, then verify $A \times(B \cup C)=(A \times B) \cup(A \times C)$
30. If $f(x)=x^{2}, g(x)=3 x$ and $h(x)=x-2$. Prove that $(f o g) o h=f o(g o h)$.
31. In an A.P., sum of four consective terms is 28 and their sum of their squares is 276 . Find the four numbers
32. Evaluate : $8^{3}+9^{3}+\ldots . .+17^{3}$
33. Find the GCD of the given polynomial $3 x^{4}+6 x^{3}-12 x^{2}-24 x, 4 x^{4}+14 x^{3}+8 x^{2}-8 x$
34. If $9 x^{4}+12 x^{3}+28 x^{2}+a x+b$ is a perfect square, find the values of a and b
35. An Aeroplane left 30 min later than its scheduled time and in order to reach its destination 1500 Km away in time, it has to increase its speed by $250 \mathrm{Km} / \mathrm{hr}$ from its usual speed. Find the original speed.
36. State and Prove Thales theorem
37. Rhombus $P Q R B$ is inscribed in $D A B C$ such that $\angle B$ is one of its angle. P, Q and R lie on $A B, A C$ and $B C$ respectively. If $A B=12 \mathrm{~cm}$ and $B C=6 \mathrm{~cm}$, find the sides $P Q, R B$ of the rhombus
38. Without using Pythagoras theorem, show that the points $(1,-4),(2,-3)$ and $(4,-7)$ form a right angled triangle.
39. A line makes positive intercepts on coordinate axes whose sum is 7 and it passes through $(-3,8)$. Find its equation.
40. If $\operatorname{cosec} \theta+\cot \theta=P$, then prove that $\frac{p^{2}-1}{p^{2}+1}=\cos \theta$
41. If $\frac{\cos ^{2} \theta}{\sin \theta}=\mathrm{p} \frac{\sin \theta}{\cos \theta}=\mathrm{q}$ the $\mathrm{p}^{2} \mathrm{q}^{2}\left(\mathrm{p}^{2}+\mathrm{q}^{2}+3\right)=1$
42. The area of a triangle is 5 sq.units. Two of its vertices are $(2,1)$ and $(3,-2)$. The third vertex is (x, y) where $y=x+3$. Find the coordinates of the third vertex.

Part IV - Answer All the Questions
43. a) Draw a triangle ABC of base $\mathrm{BC}=8 \mathrm{~cm}, \angle \mathrm{~A}=600$ and the bisector of $\angle \mathrm{A}$ meets $B C$ at D such that $B D=6 \mathrm{~cm}$.
b) Construct a triangle similar to a given triangle PQR with its sides equal to $2 / 3$ of the corresponding sides of the triangle PQR (scale factor $2 / 3$)
44. a) A garment shop announces a flat 50% discount on every purchase of items for their customers. Draw the graph for the relation between the Marked Price and the Discount. Hence find (i) the marked price when a customer gets a discount of ₹3250 (from graph) (ii) the discount when the marked price is ₹2500
b) Draw the graph of $x y=36, x, y>0$. Using the graph find, (i) y when $x=9$ and (ii) x when $y=6$

