## COMMON QUATERLY EXAMINATION 2023

## X - STD - MATHEMATICS

Time: 3.00 Hrs
Maximum Marks: 100

## PART - I (Marks: 14)

I. Choose the correct answer:
$1 \times 14=14$

1. If the ordered pairs $(a+2,4)$ and $(5,2 a+b)$ are equal then $(a, b)$ is
(A) $(2,-2)$
(B) $(5,1)$
(C) $(2,3)$
(D) $(3,-2)$
2. If $f: A \rightarrow B$ is a bijective function and if $\mathrm{n}(\mathrm{B})=7$, then $\mathrm{n}(\mathrm{A})$ is equal to
(A) 7
(B) 49
(C) 1
(D) 14
3. $f(x)=(x+1)^{3}-(x-1)^{3}$ represents a function which is
(A)Linear
(B) cubic
(C) reciprocal
(D) quadratic
4. Using Euclid's division lemma, if the cube of any positive integer is divided by 9 then the possible remainders are
(A) $0,1,8$
(B) $1,4,8$
(C) $0,1,3$
(D) $1,3,5$
5. Given $F_{1}=1, F_{2}=3$, and $F_{n}=F_{n-1}+F_{n-2}$ then $F_{5}$ is
(A) 3
(B) 5
(C) 8
(D) 11
6. A system of three linear equations in three variables is inconsistent if their planes
(A) intersect only at a point
(B) intersect in a line
(C) coincides with each other
(D) do not intersect
7. $\mathrm{y}^{2}+\frac{1}{\mathrm{y}^{2}}$ is not equal to
(A) $\frac{y^{4}+1}{y^{2}}$
(B) $\left(y+\frac{1}{y}\right)^{2}$
(C) $\left(y-\frac{1}{y}\right)^{2}+2$
(D) $\left(y+\frac{1}{y}\right)^{2}-2$
8. Which of the following should be added to make $\mathrm{x}^{4}+64$ a perfect square?
(A) $4 x^{2}$
(B) $16 x^{2}$
(C) $8 x^{2}$
(D) $-8 x^{2}$
9. All the squares are $\qquad$ .
(A) shaped
(B) omnipresence
(C) parallel
(D) none of these
10.If in $\triangle \mathrm{ABC}, \mathrm{DE} \| \mathrm{BC} . \mathrm{AB}=3.6 \mathrm{~cm}, \mathrm{AC}=2.4 \mathrm{~cm}$ and $\mathrm{AD}=2.1 \mathrm{~cm}$ then the length of AE is (A) 1.4 cm
(B) 1.8 cm
(C) 1.2 cm
(D) 1.05 cm
11.The area of triangle formed by the points $(-5,0),(0,-5)$ and $(5,0)$ is
(A) 0 sq. Units
(B) 25 sq. Units
(C) 5 sq. Units
(D) none of these
10. What is inclination of a line whose slope is 1 ?
(A) $0^{\circ}$
(B) $30^{\circ}$
(C) $45^{\circ}$
(D) $60^{\circ}$
13.If $(5,7),(3, p)$ and $(6,6)$ are collinear, then the value of $p$ is
(A) 3
(B) 6
(C) 9
(D) 12
14.A tangent is perpendicular to the radius at the
(A) centre
(B) point of contact
(C) infinity
(D) chord

## PART - II (Marks: 20)

II. Answer 10 Questions. Question No. 28 is compulsory. $10 \times 2=20$
15.If $\mathrm{A} \times \mathrm{B}=\{(3,2),(3,4),(5,2),(5,4)\}$ then find A and B . (Eg.1.2)
16.Let $\mathrm{A}=\{1,2,3, \ldots \ldots ., 45\}$ and R be the relation defined as "is square of" on A , write R as a subset of $\mathrm{A} \times \mathrm{A}$. Also, find the domain and range of R. (Ex.1.2-2)
17.Solve $5 x \equiv 4(\bmod 6)($ Ex.2.3-3)
18.If $1+2+3+\cdots . .+n=666$ then find $n$. (Eg.2.58)
19. Which term of an A.P. 16, 11, 6, 1, .. ...... is - 54 (Ex.2.5-5)
20.Simplify : $\frac{x^{2}-16}{x^{2}+8 x+1}$ (Ex.3.5 Model)
21. Determine the quadratic equations, whose sum and product of roots are
$-\frac{3}{2}$ and $-1 \quad$ (Ex.3.9-1 (iii))
22.Solve $2 x-3 y=6, x+y=1$ (Eg.3.2)
23.If $\Delta \mathrm{ABC}$ is similar to $\triangle \mathrm{DEF}$ such that $\mathrm{BC}=3 \mathrm{~cm}, \mathrm{EF}=4 \mathrm{~cm}$ and area of $\Delta \mathrm{ABC}=$ $54 \mathrm{~cm}^{2}$. Find the area of $\triangle$ DEF. (Eg.4.8)
24. What is the slope of a line whose inclination is $30^{\circ}$ ? (Eg.5.8)
25.Show that the given points are collinear: $(-3,-4),(7,2)$ and $(12,5)$. (Ex.5.2-5)
26. Show that the straight lines $x-2 y+3=0$ and $6 x+3 y+8=0$ are Perpendicular. (Eg.5.33)
27.Find the slope of the straight line $6 x+8 y+7=0$ (Eg.5.30)
28.Determine the nature of the roots for the following quadratic equations $15 x^{2}+11 x+2=0 \quad$ (Ex.3.13-1(i))

## PART - III (Marks: 50)

III. Answer 10 Questions. Question No. 42 is compulsory. $10 \times 5=50$
29.Given $\mathrm{A}=\{1,2,3\}, B=\{2,3,5\}, C=\{3,4\}$, check if (Eg.1.3 model)

$$
A \times(B \cup C)=(A \times B) \cup(A \times C)
$$

30.Let $\mathrm{A}=\{1,2,3,4\}$ and $\mathrm{B}=\{2,5,8,11,14\}$ be two sets. Let $f: A \rightarrow B$ be a function given by $f(x)=3 x-1$ represent this function (i) by arrow diagram (ii) in a table form (iii) as a set ordered pairs (iv) in a graphical form. (Eg.1.11)
31.Find the sum to $n$ terms of the series $5+55+555+\cdots$.... (Eg.2.51)
32.Rekha has 15 square colour papers of sizes $10 \mathrm{~cm}, 11 \mathrm{~cm}, 12 \mathrm{~cm}, \ldots, 24 \mathrm{~cm}$. How much area can be decorated with these colour papers? (Ex.2.9-6)
33.Find the sum of all natural numbers between 300 and 600 which are divisible by 7. (Eg.2.36)
34.Find the square root of $9 x^{4}+12 x^{3}+28 x^{2}+16 x+16$ (Eg.3.22 model)
35.Find the GCD of the polynomials $x^{3}+x^{2}-x+2$ and $2 x^{3}-5 x^{2}+5 x-3$
36.State and prove Thales theorem. (Th.4.1) (35. Eg.3.10)
37.Find the area of the quadrilateral formed by the points $(8,6),(5,11)$, $(-5,12)$ and $(-4,3)$. (Eg.5.6)
38.Find the equation of the median and altitude of $\triangle \mathrm{ABC}$ through A where the vertices are $A(6,2), B(-5,-1)$ and $C(1,9)$. (Ex.5.3-9)
39. Show that the points $\mathrm{P}(-1.5,3), Q(6,-2), R(-3,4)$ are collinear. (Eg.5.2)
40.If the points $A(2,2), B(-2,-3), C(1,-3)$ and $D(x, y)$ form a parallelogram then find the value of $x$ and $y$. (Ex.5.2-11)
41.Find the equation of a straight line through the point of intersection of the lines $8 x+3 y=18, \quad 4 x+5 y=9$ and bisecting the line segment joining the points $(5,-$ 4) and (-7,6). (Ex.5.4-12)
42.In a geometric progression, the $4^{\text {th }}$ and $7^{\text {th }}$ terms are 54 and 1458 respectively. Find the geometric progression. (Eg. 2.43 model)

## PART - IV (Marks: 16)

## IV. Answer both questions.

$$
2 \times 8=16
$$

43. Construct a triangle similar to a given triangle PQR with its sides equal to $\frac{3}{5}$ of the corresponding sides of the triangle PQR (scale factor $\frac{3}{5}<1$ ) (Eg. 4.10) (OR) Construct a $\triangle \mathrm{PQR}$ which the base $\mathrm{PQ}=4.5 \mathrm{~cm}, \angle \mathrm{R}=35^{\circ}$ and the median from R to RG is 6 cm . (Ex.4.2-11)
44.A bus is travelling at a uniform speed of $50 \mathrm{~km} / \mathrm{hr}$. Draw the distance-time graph and hence find(i) the constant of variation. (ii) how far will it travel in 90 minutes? (iii) the time required to cover a distance of 300 km from the graph. (Eg. 3.48) (OR) Draw the graph of $x y=24, x, y>0$. Using the graph find, (i) $y$ when $x=3$ and (ii) $x$ when $y=6$. (Ex 3.15-2)
K. MURUGANANDHAM. $\mathcal{M S c}$ MEd. $\mathcal{M P h i l . ~}$
P.G - ASST IN MATHS

SEARCH IN YOU TUBE MURUGANANDHAM MATHS

LINK : https://youtube.com/user/TheMuruganandham

