Quarterly Examination - 2023
 MATHEMATICS

Answer all the questions, Choose PART - I

1. Let $X=\{1,2,3,4\}$ and $R=\{(1,1),(1,2),(1,3),(2,2),(3,3),(2,1),(3,1),(1,4),(4,1)\}$. Then R is a) reflexive b) symmetric c) transitive d) equivalence
2. If the function $f:[-3,3] \rightarrow s$ defined by $f(x)=x^{2}$ is onto, then s is a) $[-9,9]$ b) $\left.R \quad c\right)[-3,3[d)[0,9]$
3. The value of $\log _{a} b \log _{b} c \log _{c} a$ is a) 2 b) 1 c) 3 d) 4
4. If $\tan \alpha$ and $\tan \beta$ are the roots of $x^{2}+a x+b=0$ then $\frac{\sin (\alpha+\beta)}{\sin \alpha \sin \beta}$ is equal to
a) b/a
b) a / b
c) $-a / b$
d) $-b / a$
5. If $\mathrm{nC}_{10}>n \mathrm{n}_{r}$ for all possible r, then a value of n is
$\begin{array}{llll}\text { a) } 10 & \text { b) } 21 & \text { c) } 19 & \text { d) } 20\end{array}$
6. The number of five digit telephone numbers having alteast one of their digits repeated is
a) 90000
b) 10000
c) 30240
d) 69760
7. The number of roots of $(x+3)^{4}+(x+5)^{4}=16$ is
a) 4
b) 2 c) 3
d) 0
8. The principal $\cos 3^{\circ}+\ldots .+\cos 179^{\circ}$
a) 0 b) 1
c) -1 d) 89
a) I \& II quadrant
b) II quadrant only
c) III \& IV quadrant
d) None of these
9. The $\mathrm{n}^{\text {th }}$ term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{5}{16}$. \qquad a) $2^{n}-n-1$
b) $1-2^{-n}$
c) $2^{-n}+n-1$
d) 2^{n-1}

10. The equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is
a) $x-2 y=\sqrt{5}$
b) $2 x-y=\sqrt{5}$
c) $2 x-y=5$
d) $x-2 y-5=0$
11. The number of real roots of the equation $x^{2}-6 x+10=0$ is \quad a) 2 b) 1 c) 0 d) none
12. In $2 \mathrm{nC}_{3}: \mathrm{nC}_{3}=11: 1$ then n is a) 5 b) 6 c) 11 d) 7
13. The co-efficient of x^{5} in the series $e^{-2 x}$ is
a) $\frac{2}{3}$
b) $\frac{3}{2}$
c) $\frac{-4}{15}$
d) $\frac{4}{15}$
14. $1+3+5+7+\ldots+17$ is equal to \quad a) 101 b) 81 c) 71 d) 61
15. The y-intercept of the straight line passing through $(1,3)$ and perpendicular to $2 x-3 y+1=0$ is
a) $\frac{3}{2}$
b) $\frac{9}{2}$ c
c) $\frac{2}{3}$
d) $\frac{2}{9}$
16. The number of rectangles that a chessboard has
a) 81
b) 9^{9}
c) 1296
d) 6561
17. Which of the following is not true?
a) $\sin \theta=\frac{-3}{4}$
b) $\cos \theta=-1$
c) $\tan \theta=25$
d) $\sec \theta=\frac{1}{4}$
18. If $\log _{\sqrt{x}} \quad 0.25=4$ then the value of x is
a) 0.5
b) 2.5
c) 1.5
d) 1.25

PART - II
Answer any seven questions. Q.No. 30 is compulsory.
21. Find the domain of $\frac{1}{1-2 \sin x}$
22. Find the distance between the
23. Simplify and hence find the value of $n \frac{3^{2 n} 9^{2} 3^{-n}}{3^{3 n}}=27$
24. Find the value of $\sin 34^{\circ}+\cos 64^{\circ}-\cos 4^{\circ}$.
25. Find the distinct permutations of the letters of the word MISSISSIPPI?
26. Find the path traced out the point ($c t, c / t$) here $t \neq 0$ is the parameter and c is a constant.
27. Find the middle term in the expansion of $(x+y)^{7}$.
28. Find the principal value of $\tan ^{-1}\left(\frac{-1}{\sqrt{3}}\right)$

0. If $P(A)$ denotes the power set of A then find $n(P(P(P(\phi))))$
$7 \times 3=21$
PART - II

Answer any seven questions. Q.No. 40 is compulsory.

1. Find the .No. 40 is compulsory.
2. Show that the points $\left(0, \frac{-3}{2}\right),(1,-1)$ and $\left(2,-\frac{-1}{2}\right)$ are collinear.
3. Find the value of $\sin 18^{\circ}$.
4. If A and B are two sets so that $n(B-A)=2 n(A-B)=4 n(A \cap B)$ and if $n(A \cup B)=14$ then find $n(P(A))$.
5. Find the rank of the word IITJEE.
6. Compute the sum of first n terms of the series $8+88+888+8888+$ \qquad
7. In a $\triangle A B C$ prove that $(b+c) \cos A+(c+a) \cos B+(a+b) \cos C=a+b+c$.
8. Find $\sqrt[3]{1001}$ approximately (two decimal places)
9. Prove that $35 C_{5}+\sum_{r=0}^{4}(39-r) C_{4}=40 C_{5}$.
10. Compute $\log _{2} 27-\log 9$

PART - IV

$7 \times 5=30$

Answer all the questions.

41. a) If $f: R \rightarrow R$ is defined by $f(x)=3 x-5$. Prove that f is a bijection and find its inverse.
(OR)
b) If a, b, c are respectively the p^{m}, q^{m} and $r^{m h}$ terms of a GP, show that
$(q-r) \log a+(r-p) \log b+(p-q) \log c=0$
42. a) Resolve the following rational expressions into partial fractions $\frac{2 x^{2}+5 x-11}{x^{2}+2 x-3}$
(OR)
$A \triangle O P Q$ is formed by the pair of straight lines $x^{2}-4 x y+y^{2}=0$ and the line $P Q$. The equation of $P Q$ is $x+y-2=0$. Finc the equation of the merian of the triangle $\triangle \mathrm{OPQ}$ drawn from the origin O .
43. a) Prove that

$$
\frac{\cot \left(180^{\circ}+\theta\right) \sin (90-\theta) \cos (-\theta)}{\sin \left(270^{\circ}+\theta\right) \tan (-\theta) \cos e c(360+\theta)}=\cos ^{2} \theta \cot \theta
$$

(OR)
b) How many strings are there using the letters of the word INTERMEDIATE if
i) The vowels and consonants are alternative
ii) All the vowels are together iii) vowels are never together
44. a) Using the mathematical induction, show that for any natural number n

$$
\frac{1}{1.2 .3}+\frac{1}{2 \cdot 3.4}+\frac{1}{3.4 .5}+\ldots+\frac{1}{n(n+1)(n+2)}=\frac{n(n+3)}{4(n+1)(n+2)}
$$

(OR)

b) From the curve $y=|x|$, draw
45. a) Find the equation of a straight line paralle| to $2 x+3 y=$
is 15 .
(OR)
b) Prove that $\sqrt[3]{x^{3}+7}-\sqrt[3]{x^{3}+4}$ is approximately equal to $\frac{1}{x^{2}}$ when x is large.
46. a) If the difference of the roots of the equation $2 x^{2}-(a+1) x+a-1=0$ is equal to their product then prove that $a=2$. (OR)
b) If the product of the $4^{\mathrm{m}}, 5^{\mathrm{th}}$ and 6^{th} terms of a G.P is 4096 and if the product of 5 th, 6 th and 7 th terms of it is 32768 , find
47. a) State the prove Napier's formula.
(OR)
b) If $A+B+C=\pi / 2$ prove that $\cos 2 A+\cos 2 B+$
$+\cos 2 C=1+4 \sin A \sin B \sin C$

