St. Paul's Mat. Hr. Sec. School, Block - 4, Neyveli, Cuddalore District
 Common Quarterly Examination - 2023
 Computer Science Answer Key

III. Answer the following (Any six) Q.No 33 is Compulsory		
25	Characteristics of Interface > The class template specifies the interfaces to enable an object to be created and operated properly. > An object's attributes and behaviour is controlled by sending functions to the object.	3
26	Asymptotic Notation: > Asymptotic Notationsare languages that use meaningful statements about time and space complexity. The following three asymptotic notations are mostly used to represent time complexity of algorithms (I) $\operatorname{Big} \mathrm{O}$ Big O is often used to describe the worst-case of an algorithm. (ii) $\operatorname{Big} \Omega$ Big Omega is the reverse Big 0. (iii) $\operatorname{Big} 0$ When an algorithm has a complexity with lower bound = upper bound,	3
27	Global scope: - A variable which is declared outside of all the functions in a program is known as global variable. $>$ Global variable can be accessed inside or outside of all the functions in a program.	3
28	Arithmetic operator An arithmetic operator is a mathematical operator used for simple arithmetic It takes two operands and performs a calculation on them.	3
29	range () function : $>$ range() generates a list of values starting from start till stop-1 in for loop. > The syntax of range() is as follows: range (start,stop,[step]) Where, start - refers to the initial value stop - refers to the final value step-refers to increment value, this is optional part.	3
30	Ceil() Floor () Returns the smallest integer greater than or equal to x Returns the largest integer less than or equal to x math.ceil (x) math.floor (x)	3
31	sort () sort the element in list $>$ syntax: list.sort (reverse = true \| false, key = myfunc	3

	Both arguments are optional If reverse is set as True, list sorting is in descending order. Ascending is default. Key=myFunc; "myFunc" - the name of the user defined function that specifies the sorting criteria. Example : MyList=['Thilothamma', 'Tharani', 'Anitha', 'SaiSree', 'Lavanya'] MyList.sort() print(MyList) MyList.sort(reverse=True) print(MyList) Output: ['Anitha', 'Lavanya', 'SaiSree', 'Tharani', 'Thilothamma'] ['Thilothamma', 'Tharani', 'SaiSree', 'Lavanya', 'Anitha']	
32	while loop Syntax : while <condition>: statements block 1 [else: statements block2]	3
33	```str1 = "COMPUTER" index = len(str1) fori in str1: print(srt1 [: index]) index -1```	3
IV. Ans	er all the questions 5 m	
34 a)		
34 b)	Characteristics of Modules The following are the desirable characteristics of a module. 1. Modules contain instructions, processing logic, and data. 2. Modules can be separately compiled and stored in a library. 3. Modules can be included in a program. 4. Module segments can be used by invoking a name and some parameters. 5. Module segments can be used by other modules.	

36 a)	Nested if..elif...else statement: $>$ When we need to construct a chain of if statement(s) then elif clause can be used instead of else $>$ Elif clause combines if..else-if..else statements to one if..elif...else. $>$ elif can be considered to be abbreviation of else if. $>$ In an iffe statement there is no limit of ,elifee clause that can be used, but an else clause if used should be placed at the end. Syntax: if <condition-1>: statements-block 1 elif <condition-2>: statements-block 2 else: statements-block n Example : Any one valid Example			5
36 b	Explain the following built in functions			
	id ()Return the "identity" of an object. i.e. the address of the object in memory	type (object)	$x=15$ print ('address of x is :',id (x)) Output: address of x is : 1357486752	
	chr () Returns the Unicode character for the given ASCII value. This function is inverse of ord() function. Re	chr (i)	$\begin{aligned} & \mathrm{c}=65 \\ & \mathrm{~d}=43 \\ & \operatorname{print}(\operatorname{chr}(\mathrm{c})) \\ & \operatorname{print} \mathrm{t}(\mathrm{chr}(\mathrm{~d})) \\ & \mathrm{O} / \mathrm{P}: \mathrm{P}:+ \\ & \text { : } \end{aligned}$	
	$\left.\begin{array}{\|l\|l\|} & \begin{array}{l}\text { Returns the nearest integer to } \\ \text { its input. }\end{array} \\ >\text { First argument (number) } \\ \text { is used to specify the }\end{array}\right\}$value to be rounded. $>$ round () Second argument (n digits) is used to specify the number of decimal digits desired after rounding	round (number[, ndigits])	$x=17.9$ print ('x value is rounded to', round (x)) Output: X value is rounded to 18	
	type () Returns the type of object for the given single object.	type(object)	$\begin{aligned} & \mathrm{x}=15.2 \\ & \text { print (type (x)) } \\ & \text { Output: } \\ & \text { <class 'float'> } \end{aligned}$	
	Returns the computation of a,b i.e. (a**b) a raised to the power of b.	pow (a,b)	$\begin{aligned} & \mathrm{a}=5 \\ & \mathrm{~b}=2 \\ & \text { print }(\text { pow }(\mathrm{a}, \mathrm{~b})) \\ & \text { Output: } 25 \end{aligned}$	

	Selectors: > Selectors are functions that retrieve information from the data type. > Selectors extract individual pieces of information from the object. > To extract the information of a city object, you would use functions like getname(city) getlat(city) getlon(city) These are the selectors because these functions extract the information of the city object.	
$38 \mathrm{a})$	Nested tuple Tuple: > Tuples consists of a number of values separated by comma and enclosed within parentheses. $>$ Tuple is similar to list, values in a list can be changed but not in a tuple. Nested Tuples: > In Python, a tuple can be defined inside another tuple; called Nested tuple. \Rightarrow In a nested tuple, each tuple is considered as an element. $>$ The for loop will be useful to access all the elements in a nested tuple. Example:	5
38 b)	CONSTRUCTOR: > "init" is a special function begin and end with double underscore in Python act as a Constructor. > Constructor function will automatically executed when an object of a class is created. > General format of constructor: def __init_(self, [args]): <statements> DESTRUCTOR: $>$ Destructor is also a special method gets executed automatically when an object exit from the scope. > In Python, \qquad del \qquad () method is used as destructor. > General format of destructor: def \qquad del _(self): <statements>	

T. Josephine Agnel. M.Sc., B.Ed., Computer Instructor
St. Paul's Mat.Hr.Sec.School,
Cell : 8667577622

