BOOK BACK ONE MARKS

STUDENT NAME:

1. Sets, Relations and Functions

- 1. If $A = \{(x, y) : y = e^x, x \in R\}$ and $B = \{(x, y) : y = e^{-x}, x \in R\}$ then $n(A \cap B)$ is

- [4] 2

- [1] Infinity
- 2. If $A = \{(x, y) : y = \sin x, x \in R\}$ and $B = \{(x, y) : y = \cos x, x \in R\}$ then $A \cap B$ contains
 - [1] no element

[2] infinitely many elements

[3] only one element

- [4] cannot be determined
- $[1] R = \{(0,0), (0,-1), (0,1), (-1,1), (-1,1), (1,2), (1,0)\}$
- 3. The relation R defined on a set $A = \{0, -1, 1, 2\}$ by xRy if $|x^2 + y^2| \le 2$, then which one of the following is true?
 - [2] $R^{-1} = \{(0,0), (0,-1), (0,1), (-1,0), (1,0)\}$
 - [3] Domain of *R* is $\{0, -1, 1, 2\}$
- [4] Range of R is $\{0, -1, 1\}$
- 4. If f(x) = |x 2| + |x + 2|, $x \in \mathbb{R}$, then

$$[1] f(x) = \begin{cases} -2x & \text{if } x \in (-\infty, -2] \\ 4 & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \end{cases}$$

$$[2] f(x) = \begin{cases} 2x & \text{if } x \in (-\infty, -2] \\ 4x & \text{if } x \in (-\infty, -2] \\ -2x & \text{if } x \in (-\infty, -2] \end{cases}$$

$$[3] f(x) = \begin{cases} -2x & \text{if } x \in (-\infty, -2] \\ -4x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \end{cases}$$

$$[4] f(x) = \begin{cases} -2x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \\ 2x & \text{if } x \in (-\infty, -2] \end{cases}$$

5. Let $\mathbb R$ be the set of all real numbers. Consider the following subsets of the plane $\mathbb R$

 $S = \{(x, y): y = x + 1 \text{ and } 0 < x < 2\} \text{ and } T = \{(x, y): x - y \text{ is in integer}\}$

Then which of the following is true?

- [1] T is an equivalence relation but S is not an equivalence relation
- [2] Neither S nor T is an equivalence relation
- [3] Both S and T are equivalence relation
- [4] S is an equivalence relation but T is not an equivalence relation.
- 6. Let A and B be subsets of the universal set N, the set of natural numbers. The $A' \cup [A \cap B] \cup B'$ is

[2]A'

7. The number of students who take both the subjects Mathematics and Chemistry is 70. This represents 10% of the enrollment in Mathematics and 14% of the enrollment in Chemistry. The number of students take at least one of these two subjects, is

- [2] 1130
- [3] 1100

[4] insufficient data

- 8. If $n((A \times B) \cap (A \times C)) = 8$ and $n(B \cap C) = 2$, then n(A) is
- [2] 4

- [4] 16
- 9. If n(A) = 2 and $n(B \cup C) = 3$, then $n[(A \times B) \cup (A \times C)]$ is
- $[1] 2^3$
- $[2] 3^2$
- [3] 6
- [4] 5

10. If two sets A and B have 17 elements in common, then the number of elements common to the set $A \times B$ and $B \times A$ is

- $[1] 2^{17}$
- [3] 34
- [4] insufficient data
- 11. For non-empty sets A and B, if $A \subset B$ then $(A \times B) \cap (B \times A)$ is equal to
 - $[2] A \times A$
- [4] none of these
- [1] $A \cap B$ [2] $A \times A$ [3] $B \times B$ 12. The number of relations on a set containing 3 elements is
- [2] 81
- [3] 512
- [4] 1024
- 13. Let R be the universal relation on a set X with more than one element, Then R is
 - [1] not reflexive

[2] not symmetric

[3] transitive

- [4] None of the above
- 14. Let $X = \{1,2,3,4\}$ and $R = \{(1,1), (1,2), (1,3), (2,2), (3,3), (2,1), (3,1), (1,4), (4,1)\}$. Then R is [1] reflexive
- symmetric [3] transitive [4] equivalence

15. The range of the function
$$\frac{1}{1-2\sin x}$$
 is $[1](-\infty, -1) \cup (\frac{1}{3}, \infty)$

$$[2](-1,\frac{1}{2})$$

$$[3] \left| -1, \frac{1}{3} \right|$$

$$[2]\left(-1,\frac{1}{3}\right)$$

$$[4](-\infty,-1] \cup \left[\frac{1}{3},\infty\right)$$

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

ECR ROAD - ERVADI - 623515

[2]

BOOK BACK ONE MARKS

STUDENT NAME:

16. The range of the function $f(x) = ||x| - x, x \in \mathbb{R}$ is

[1][0,1]

 $[2][0, \infty)$

[4](0,1)

17. The rule $f(x) = x^2$ is a bijection if the domain and the co-domain are given by

 $[2]\mathbb{R},(0,\infty)$

 $[3](0,\infty),\mathbb{R}$

 $[4][0,\infty),[0,\infty)$

18. The number of constant functions from a set containing m elements to a set containing n elements is [4]m + n

[1]*mn*

2]m

[3]n

19. The function $f:[0,2\pi] \to [-1,1]$ defined by $f(x) = \sin x$ is [1]on-to-one

[2]onto

[3]bijection

[4] cannot be defined

20. If the function $f: [-3,3] \rightarrow S$ defined by $f(x) = x^2$ is onto, then S is

[1][-9, 9]

[2]R

[3][-3,3]

[4][0,9]

21. Let $X = \{1,2,3,4\}, Y = \{a,b,c,d\}$ and $f = \{(1,a),(4,b),(2,c),(3,d),(2,d)\}$. Then f is [1]an one-to-one function

[2]an onto function

[3]a function which is not one-to-one

[4]not a function

22. The inverse of $f(x) = \begin{cases} x & \text{if } x < 1 \\ x^2 & \text{if } 1 \le x \le 4 \end{cases}$

$$\begin{bmatrix} \frac{x^2}{64} & \text{if } x > 16 \\ \frac{x^2}{64} & \text{if } x > 16 \end{bmatrix}$$

$$\begin{bmatrix} 3 \end{bmatrix} f^{-1}(x) = \begin{cases} x^2 & \text{if } x < 1 \\ \sqrt{x} & \text{if } 1 \le x \le 16 \\ \frac{x^2}{64} & \text{if } x > 16 \end{cases}$$

$$[4]f^{-1}(x) = \begin{cases} 2x & \text{if } x < 1\\ \sqrt{x} & \text{if } 1 \le x \le 16\\ \frac{x^2}{x} & \text{if } x > 16 \end{cases}$$

23. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by f(x) = 1 - |x|. Then the range of f is

 $[2](1, \infty)$

 $[4](-\infty, 1]$

24. The function $f: \mathbb{R} \to \mathbb{R}$ is defined by $f(x) = \sin x + \cos x$

[1]an odd function

[2] neither an odd function nor an even function

[3]an even function

[4]both odd function and even function.

25. The function
$$f: \mathbb{R} \to \mathbb{R}$$
 is defined by
$$f(x) = \frac{(x^2 + \cos x)(1 + x^4)}{(x - \sin x)(2x - x^3)} + e^{-|x|}$$
 is

[1]an odd function

[2] neither an odd function nor an even function

[3]an even function

[4]both odd function and even function

2. BASIC ALGEBRA

1. If $|x + z| \le 9$, then x belongs to

$$[1](-\infty, -1)$$

$$[2][-11,7]$$

$$[3](-\infty, -7) \cup [11, \infty)$$

$$[4](-11,7)$$

2. Given that x, y and b are real numbers x < y, b > 0, then

[1]xb < yb

$$[3]xb \leq yb$$

$$[4]^{\frac{x}{h}} \geq \frac{y}{h}$$

3. If $\frac{|x-2|}{x-2} \ge 0$, then x belongs to

 $[1][2,\infty)$ $[2](2,\infty)$

 $[3](-\infty, 2)$ 4. The solution of 5x - 1 < 24 and 5x + 1 > -24 is

$$[2](-5,-4)$$
 $[3](-5,5)$

$$[4](-5,4)$$

5. The solution set of the following inequality $|x-1| \ge |x-1|$ is

[1][0, 2]

 $[2][2,\infty)$ [3](0,2)

 $[4](-\infty, 2)$

XI - MATHEMATICS BOOK BACK ONE MARKS STUDENT NAME: 6. The value of $\log_{\sqrt{2}} 512$ is [2]18 [3]9 [4]12 [1]16 7. The value of $\log_3 \frac{1}{81}$ is [3]-4[4]-98. If $\log_{\sqrt{x}} 0.25 = 4$, then the value of x is [1]0.5 [2]2.5 [3]1.5 [4]1.25 9. The value of $\log_a b \log_b C \log_c a$ is [3]3 [4]4 [2]1 10. If 3 is the logarithm of 343, then the base is [2]7 [3]6 [4]9 11. Find a so that the sum and product of the roots of the equation $2x^{2} + (a-3)x + 3a - 5 = 0$ are equal is [4]4 12. If a and b are the roots of the equation $x^2 - kx + 16 = 0$ and satisfy $a^2 + b^2 = 32$, then the value of k [3]-8,8 [2]-8[4]6 13. The number of solutions of $x^2 + |x - 1| = 1$ is [2]0 14. The equation whose roots are numerically equal but opposite in sign to the roots of 3x $[2]3x^2 + 5x - 7 = 0$ $[1]3x^2 - 5x - 7 = 0$ $[3]3x^2 - 5x + 7 = 0$ $[4]3x^2 + x - 7$ 15. If 8 and 2 are the roots of $x^2 + ax + c = 0$ and 3, 3 are the roots of $x^2 + dx + b = 0$, then the roots of the equation $x^2 + ax + b = 0$ b = 0 are [1]1,2 [2]-1,1[3]9,1 4]-1,216. If a and b are the real roots of the equation $x^2 - kx + c = 0$, then the distance between the points (a, 0) and (b, 0) is $[1]\sqrt{k^2 - 4c}$ $[2]\sqrt{4k^2-c}$ $[4]\sqrt{k - 8c}$ 17. If $\frac{kx}{(x+2)(x-1)} = \frac{2}{x+2} + \frac{1}{x-1}$ then the value of *k* is 18. If $\frac{1-2x}{++2x-x^2} = \frac{A}{3-x} + \frac{B}{x+1}$, then the value of A + B is $[4]^{\frac{2}{3}}$ 19. The number of roots of $(x + 3)^4 + (x + 5)^4 = 16$ is [4]0 [2]2 20. The value of $\log_3 11 \cdot \log_{11} 13 \cdot \log_{13} 15 \log_{15} 27 \cdot \log_{27} 81$ is [4]4 [1]1 [2]2 3.TRIGONOMETRY $1.\frac{1}{\cos 80^{\circ}} - \frac{\sqrt{3}}{\sin 80^{\circ}}$ $[1]\sqrt{2}$ [4]4 2. If $\cos 28^{\circ} \pm \sin 28^{\circ} =$ k^3 , then $\cos 17^\circ$ is equal to 3. The maximum value of $4\sin^2 x + 3\cos^2 x + \sin\frac{x}{2} + \cos\frac{x}{2}$ is [4]4 $\sqrt{\frac{3\pi}{2}}$, then $\sqrt{2+\sqrt{2+2\cos 4\theta}}$ equals to $[3]2\cos\theta$ [4]2 sin θ 6. If $\tan 40^\circ = \lambda$, then $\frac{\tan 140^\circ - \tan 130^\circ}{10^\circ}$ 7. $\cos 1^{\circ} + \cos 2^{\circ} + \cos 3^{\circ} + \dots + \cos 179^{\circ} =$ [1]0 [2]1 [3]-1[4]89 D. PALANI MURUGAN PG ASSISTANT MATHEMATICS CONTACT NO: 9361156517 , 9500392310

BOOK BACK ONE MARKS

STUDENT NAME:

8. Le $f_k(x) = \frac{1}{k} [\sin^k x + \cos^k x]$ where $x \in R$ and $k \ge 1$. then $f_4(x) - f_6(x) = 1$

$$[2]^{\frac{1}{12}}$$

$$[4]^{\frac{1}{2}}$$

9. Which of the following is not true?

 $[1]\sin\theta = -\frac{3}{4}$

$$[2]\cos\theta = -1$$

 $[3]\tan\theta=25$

$$[4]\sec\theta = \frac{1}{4}$$

10. $\cos 2\theta \cos 2\phi + \sin^2(\theta - \phi) - \sin^2(\theta + \phi)$ is equal to

 $[1]\sin 2(\theta + \phi)$

$$[2]\cos 2(\theta + \phi)$$

 $[3]\sin 2(\theta - \phi)$

$$[4]\cos 2(\theta - \phi)$$

11. $\frac{\sin(A-B)}{\cos A \cos B} + \frac{\sin(B-C)}{\cos B \cos C} + \frac{\sin(C-A)}{\cos C \cos A}$ is $[1]\sin A + \sin B + \sin C$

[2]1

[3]0

$$[4]\cos A + \cos B + \cos C$$

12. If $\cos p\theta + \cos q\theta = 0$ and if $p \neq q$, then θ is equal to (n is any integer)

$$[2]^{\frac{\pi(2n+1)}{n+a}}$$

$$[3]^{\frac{\pi(n\pm 1)}{n+a}}$$

$$[4]^{\frac{\pi(n+2)}{p+q}}$$

13. If $\tan \alpha$ and $\tan \beta$ are the roots of $x^2 + ax + b = 0$ then $\frac{\sin(\alpha + \beta)}{\sin \alpha \sin \beta}$ is equal to

14. In a triangle ABC, $\sin^2 A + \sin^2 B + \sin^2 C = 2$, then the triangle is

[1]equilateral triangle

[2]isosceles triangle

[3]right triangle

[4]scalene triangle

15. If $f(\theta) = |\sin \theta| + |\cos \theta|$, $\theta \in R$, then $f(\theta)$ is in the interval

[1][0, 2]

 $[2]|1,\sqrt{2}|$

16. $\frac{\cos 6x + 6\cos 4x + 15\cos 2x + 10}{\cos 6x + 6\cos 4x + 15\cos 2x + 10}$ is equal to $\cos 5x + 5\cos 3x + 10\cos x$

 $[1]\cos 2x$

 $[2]\cos x$

 $[3]\cos 3x$

 $12\cos x$

17. The triangle of maximum area with constant perimeter 12m

[1]is an equilateral triangle with side 4*m*

[2] is an isosceles triangle with sides 2m, 5m, 5m

[3] is a triangle with sides 3m, 4m, 5m

[4]Does not exist

18. A Wheel is spinning at 2 radians/second. How many seconds will it take to make 10 complete rotations?

[1] 10π seconds

[2]20 π

[3]5 π seconds

[4]15 π seconds

19. If $\sin \alpha + \cos \alpha = b$, then $\sin 2\alpha$ is equal to

 $[1]b^2 - 1$, if $b \le \sqrt{2}$

 $[2]b^2 - 1$, if b >

-1, if $b \ge 1$ $[4]b^2 - 1$, if $b \ge \sqrt{2}$

20. In a $\triangle ABC$, if

 $(i) \sin \frac{A}{2} \sin \frac{B}{2} \sin \frac{C}{2} > 0$

(ii) $\sin A \sin B \sin C > 0$ then

[1]Both (i) and (ii) are true

2]only (i) is true

[3]Only (ii) is true

[4]Neither (i) nor (ii) is true

4.Combinatorics and Mathematical Induction.

1. The sum of the digits at the 10^{th} place of all numbers formed with the help of 2, 4, 5, 7 taken all at a time is [1]432

 $[1]30^4 \times 29^2$

[4]18

2. In an examination there are three multiple choice questions and each question has 5 choices Number of ways in which a student can fail to get all answer correct is

[1]125

[2]124

[3]64

[4]63

3. The number of ways in which the following prize be given to a class of 30 boys first and second in mathematics, first and second in physics, first in chemistry and first in English is

 $[2]30^3 \times 29^3$ $[3]30^2 \times 29^4$

 $[4]30 \times 29^5$

4. The number of 5 digit numbers all digits of which are odd is

 $[2]5^{5}$

 $[3]5^{6}$

[4]625

5. If 3 fingers, the number of ways four rings can be worn is ways.

 $[1]4^3 - 1$

[3]68

[4]64

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

XI - MATHEMATICS BOOK BACK ONE MARKS STUDENT NAME: 6. If ${n+5 \choose 2} P_{(n+1)} = \left(\frac{11(n-1)}{2}\right)^{(n+3)} P_n$, then the value of n are [4]2 and 6 7. The product of r consecutive positive integers is divisible by [2](r-1)![3](r+1)! $[4]r^r$ 8. The number of five digit telephone numbers having at least one of their digits repeated is [2]10000 [3]30240 [4]69760 9. If $a^{2}-aC_{2} = a^{2}-aC_{4}$ then the value of 'a' is [2]3 [3]4 [4]5 10. There are 10 points in a plane and 4 of them are collinear. The number of straight lines joining any two points is [3]39 [4]38 11. The number of ways in which a host lady invite 8 people for a party of 8 out of 12 people of whom two do not want to attend the party together is $[2]^{11}C_7 + {}^{10}C_8$ $[4]^{10C_6} + 2!$ $[1]2 \times^{11} C_7 +^{10} C_8$ $[3]^{12}C_8-^{10}C_6$ 12. The number of parallelogram that can be formed from a set of four parallel lines intersecting another set of three parallel lines. [2]9 [3]12 [4]18 13. Everybody in a room shakes hands with everybody else. The total number of shake hands is 66. The number of person in the room is 14. Number of sides of a polygon having 44 diagonals is [2]4! [3]11 15. If 10 lines are drawn in a plane such that no two of them are parallel and no three are concurrent, then the total number of points of intersection are $[4]2^{10}$ [3]10! [2]40 16. In a plane there are 10 points are there out of which 4 points are collinear, then the number of triangles formed is $[2]^{20}C_3$ [3]120 4 116 17. In $^{2n}C_3$: $^nC_3 = 11: 1$ then n is [3]11 [4]718. $^{(n-1)}C_r + ^{(n-1)}C_{(r-1)}$ is $[1]^{(n+1)}C_r$ [2] $^{(n-1)}C_r$ [4] ${}^{n}C_{r-1}$ 19. The number of ways of choosing 5 cards out of a deck of 52 cards which include at least one king is $[3]^{52}C_5 + {}^{48}C_5$ [2] $^{48}C_5$ [4] $^{52}C_5 - ^{48}C_5$ 20. The number of rectangles that a chessboard has [3]1296 [2]9⁹ 21. The number of 10 digit number that can be written by using the digits 2 and 3 is $[3]2^{10} - 2$ $[1]^{10}C_2 + {}^9C_2$ $[2]2^{10}$ 22. If P_r stands for rP_r then the sum of the series $1 + P_1 + 2P_2 + 3P_3 + \dots + nP_n$... $[3]P_{n-1} + 1$ $[2]P_{n+1}-1$ 23. The product of first n odd numbers equals $[3]\left(\frac{1}{4}\right)^n \times^{2n} C_n \times^{2n} P_n \qquad [4]^n C_n \times^n P_n$ 24. If ${}^{n}C_{4}$, ${}^{n}C_{5}$, ${}^{n}C_{6}$ are in AP the value of n can be [2]11 [4]5 $25.1 + 3 + 5 + 7 + \cdots$ + 17 is equal to [1]101 [2]81 [3]71 [4]61 5. Binomial Theorem, Sequences and Series 1. The value of $2 + 4 + 6 + \cdots + 2n$ is $[3]^{\frac{2n(2n+1)}{2}}$ [4]n(n+1)2. The coefficient of x^6 in $(2 + 2x)^{10}$ is $[4]^{10}C_62^{10}$ 3. The coefficient of x^8y^{12} in the expansion of $(2x + 3y)^{20}$ is [1]0 [2]2⁸3¹² [3 $[3]2^83^{12} + 2^{12}3^8$ $[4]^{20}C_82^83^{12}$ 4. If ${}^nC_{10} > {}^nC_r$ for all possible r, then a value of n is [4]20 CONTACT NO: 9361156517 , 9500392310 D. PALANI MURUGAN PG ASSISTANT MATHEMATICS ECR ROAD - ERVADI - 623515

BOOK BACK ONE MARKS

STUDENT NAME:

5. If a is the arithmetic mean and g is the geometric mean of two numbers, then

$$[1]a \leq g$$

$$[2]a \ge g$$

$$[3]a = g$$

6. if $(1+x^2)^2(1+x)^n = a_0 + a_1x + a_2x^2 + \dots + x^{x+4}$ and if a_0, a_1, a_2 are in AP, then n is

7. If a, 8, b are in AP, a, 4, b are in GP, and if a, x, b are in HP then x is

8. The sequence $\frac{1}{\sqrt{3}}$, $\frac{1}{\sqrt{3}+\sqrt{2}}$, $\frac{1}{\sqrt{3}+2\sqrt{2}}$... from an [2]GP

9. The HM of two positive numbers whose AM and GM are 16, 8 respectively is

10. If S_n denotes the sum of n terms of an AP whose common difference is d, the value of S_n [3]4*d*

11. The remainder when 38¹⁵ is divided by 13 is

12. The n^{th} term of the sequence 1, 2, 4, 7, 11, ... is

$$[1]n^3 + 3n^2 + 2n$$

$$[2]n^3 - 3n^2 + 3n$$

$$[3]^{\frac{n(n+1)(n+2)}{2}}$$

$$[4]^{\frac{n^2-n+1}{2}}$$

13. The sum up to n terms of the series $\frac{1}{\sqrt{1}+\sqrt{3}}+\frac{1}{\sqrt{3}+\sqrt{5}}+\frac{1}{\sqrt{5}+\sqrt{7}}+\cdots$ is

$$[1]\sqrt{2n+1}$$

$$[2]^{\frac{\sqrt{2n+1}}{2}}$$

$$[3]\sqrt{2n+1}-1$$

$$[4]^{\frac{\sqrt{2n+3}}{2}}$$

14. The n^{th} term of the sequence $\frac{1}{2}, \frac{3}{4}, \frac{7}{8}, \frac{15}{16}, ...$ is

$$[1]n^n - n - 1$$

$$[2]1 - 2^{-n}$$

$$[3]2^{-n} + n - 3$$

$$[4]2^{n-1}$$

15. The sum up to *n* terms of the series $\sqrt{2} + \sqrt{8} + \sqrt{18} + \sqrt{32} + \sqrt{18} + \sqrt{18$

[1]
$$\frac{n(n+1)}{2}$$
 [2] $2n(n+1)$
16. The value of the series $\frac{1}{2} + \frac{7}{4} + \frac{13}{8} + \frac{19}{16} + \cdots$ is

$$[2]2n(n+1)$$

$$[3]\frac{n(n+1)}{\sqrt{2}}$$

17. The sum of an infinite GP is 18. If the first term is 6, the common ratio is

$$[2]^{\frac{2}{3}}$$

$$[3]^{\frac{1}{6}}$$

$$[4]^{\frac{3}{4}}$$

18. The coefficient of x^5 in the series e^{-2x} is

$$[1]^{\frac{2}{3}}$$

$$[3]^{\frac{-4}{15}}$$

$$[4]^{\frac{4}{15}}$$

[4]6

19. The value of $\frac{1}{2!} + \frac{1}{4!} + \frac{1}{6!} + \cdots$ is

$$[1]^{\frac{e^2+}{2e}}$$

$$[2]^{\frac{(e+1)^2}{2}}$$

$$[3]^{\frac{(e-1)^2}{2e}}$$

$$[4]^{\frac{e^2}{2e}}$$

20. The value of $1 - \frac{1}{2} \left(\frac{2}{3} \right) + \frac{1}{3} \left(\frac{2}{3} \right)^2$

$$[1]\log\left(\frac{5}{3}\right)$$

$$[2]^{\frac{3}{2}}\log\left(\frac{5}{3}\right)$$

$$[3]^{\frac{5}{3}}\log\left(\frac{5}{3}\right)$$

$$\left[4\right]^{\frac{2}{3}}\log\left(\frac{2}{3}\right)$$

6. Two Dimensional Analytical Geometry

1. The equation of the locus of the point whose distance from y-axis is half the distance from origin is

$$[1]x^2 + 3y^2 = 0$$
 $[2]x^2$

$$[2]x^2 - 3y^2 = 0$$

$$[3]3x^2 + y^2 = 0$$

$$[4]3x^2 - v^2 =$$

2. which of the following equation is the locus of $(at^2, 2at)$

$$[1]\frac{x^2}{x^2} - \frac{y^2}{x^2} = 1$$

$$[2]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$$

$$[3]x^2 + y^2 = a^2$$

$$[4]y^2 = 4ax$$

 $[1]\frac{x^2}{a^2} - \frac{x^2}{b^2} = 1$ [2]\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1
3. which of the following point lie one the locus of

$$3x^2 + 3y^2 - 8x - 12y + 17 = 0$$

$$[2](-2,3)$$

$$[4](0,-1)$$

4. If the point (8, \Rightarrow 5) lies on the locus $\frac{x^2}{16} - \frac{y^2}{25} = k$, then the value of k is

5. Straight line joining the points (2, 3) and (-1, 4) passes through the point
$$(\alpha, \beta)$$
 if $[1]\alpha + 2\beta = 7$ $[2] 3\alpha + \beta = 9$ $[3] \alpha + 3\beta = 11$ $[4] 3\alpha + \beta = 11$

 $[1]\alpha + 2\beta = 7$ $[2] 3\alpha + \beta = 9$ $[3] \alpha + 3\beta = 11$ 6. The lope of the line which makes an angle 45° with the line 3x - y = -5 are

$$[1]1, -1$$

$$[2]^{\frac{1}{2}}, -2$$

$$[3]1,\frac{1}{2}$$

$$[4]2, -\frac{1}{2}$$

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

BOOK BACK ONE MARKS

STUDENT NAME:

7. Equation of the straight line that forms as isosceles triangle with coordinate axes in the I-quadrant with perimeter $4 + 2\sqrt{2}$ is

$$[1]x + y + 2 = 0$$

$$[2]x + y - 2 = 0$$

$$[3]x + y - \sqrt{2} = 0$$

$$[4]x + y + \sqrt{2} = 0$$

8. The coordinates of the four vertices of a quadrilateral are (-2,4), (-1,2), (1,2) and (2,4) taken in order. The equation of the line passing through the vertex -1, 2) and dividing the quadrilateral in the equal areas is

$$[1]x + 1 = 0$$

$$[2]x + y = 1$$

$$[3]x + y + 3 = 0$$

$$[4]x - y + 3 = 0$$

9. The intercepts of the perpendicular bisector of the line segment joining (1,2) and (3,m/4) with coordinate axes are

$$[1]5, -5$$

[4]5, -410. the equation of the line with slope 2 and the length of the perpendicular from the origin equal to $\sqrt{5}$ is

e origin equal to
$$\sqrt{5}$$
 i

 $[1]x - 2y = \sqrt{5}$ $[2]2x - y = \sqrt{5}$ [3]2x - y = 5

$$1 \quad \text{A line normandi}$$

$$[2]2x - y = \sqrt{5}$$

$$[3]2x - y = 5$$

$$[4]x - 2y - 5 = 0$$

11. A line perpendicular to the line 5x - y = 0 forms a triangle with the coordinate axes. If the area of the triangle is 5 sq. then its equation is

$$[1]x + 5y \pm 5\sqrt{2} = 0$$

$$[2]x - 5y \pm 5\sqrt{2} = 0$$

$$[3]5x + y \pm 5\sqrt{2} = 0$$

$$[4]5x - y \pm 5\sqrt{2} = 0$$

12. Equation of the straight line perpendicular to the line x - y + 5 = 0, through the point of intersection the y-axis and the given

$$[1]x - 1$$

$$[1]x - y - 5 = 0$$
$$[3]x + y + 5 = 0$$

$$[2]x + y - 5 = 0$$
$$[4]x + y + 10 = 0$$

13. If the equation of the base opposite to the vertex (2,3) of an equilateral triangle is x + y = 2, then the length of a side is

$$[1]\sqrt{\frac{3}{2}}$$

$$[4]3\sqrt{3}$$

14. The line
$$(p+2q)x + (p-3q)y = p-q$$
 for different values of p and q passes through the point $(2, 3)^{3}$

$$[2](\frac{2}{2},\frac{2}{2})$$

$$[3](\frac{3}{2},\frac{3}{2})$$

$$[4]\left(\frac{2}{5},\frac{3}{5}\right)$$

15. The point on the line 2x - 3y = 5 is equidistance from (1, 2) and (3, 4) is

$$[3](1,-1)$$

$$[4](-2,3)$$

16. The image of the point (2,3) in the line y = -

$$[2](-3,2)$$

$$[3](-2,-3)$$

17. The length of \bot from the origin to the line

$$[1]^{\frac{11}{5}}$$

$$[2]^{\frac{5}{12}}$$

$$[4] - \frac{5}{12}$$

18. The y-intercept of the straight line passing through (1,3) and perpendicular to 2x - 3y + 1 = 0 is

 $[1]^{\frac{3}{2}}$

$$[2]^{\frac{9}{2}}$$

$$[3]_{\frac{2}{2}}^{2}$$

$$[4]^{\frac{2}{9}}$$

7)y + 3 = 0 and 3kx + 9y - 5 = 0 are perpendicular then the value of k is 19. If the two straight lines x + (2k - 1)

$$[1]k = 3$$

$$[2]k = \frac{1}{2}$$

$$[3]k = \frac{2}{3}$$

$$[4]k = \frac{3}{2}$$

20. If a vertex of a square is at the origin and its one side lies along the line 4x + 3y - 20 = 0, then the area of the square is [3]25 sq. units [2]16 sq. units [1]20 sq. units [4]4 sq. units

21. If the lines represented by the equation $6x^2 + 41xy - 7y^2 = 0$ make angles α and β with x —axis, then $\tan \alpha \tan \beta = 0$

$$[1] - \frac{6}{}$$

$$[4]^{\frac{7}{6}}$$

22. The area of the triangle formed by the lines $x^2 - 4y^2 = 0$ and x = a is

$$[2]^{\frac{\sqrt{3}}{2}} a^2$$

$$[3]^{\frac{1}{2}}a^2$$

$$[4]\frac{2}{\sqrt{3}}a^2$$

23. If one of the lines given by $6x^2 - xy + 4cy^2 = 0$ is 3x + 4y = 0, then c equals to

$$[2]-1$$

24. θ is acute angle between he lines $x^2 - xy - 6y^2 = 0$, then $\frac{2\cos\theta + 3\sin\theta}{4\sin\theta + 5\cos\theta}$

$$[2] - \frac{1}{2}$$

$$[4]^{\frac{1}{2}}$$

25. One of the equation of the lines given by $x^2 + 2xy \cot \theta - y^2 = 0$ is

$$[1]x - y \cot \theta = 0$$

$$[2]x + y \tan \theta = 0$$

 $[3]x\cos\theta + y(\sin\theta + 1) = 0$

$$[4] x \sin \theta + y$$

BOOK BACK ONE MARKS

STUDENT NAME:

1. If
$$a_{ij} = \frac{1}{2}(3i - 2j)$$
 and $A = [a_{ij}]_{2 \times 2}$ is

$$[1]\begin{bmatrix} \frac{1}{2} & 2\\ -\frac{1}{2} & 1 \end{bmatrix} \qquad [2]\begin{bmatrix} \frac{1}{2} & -\frac{1}{2}\\ 2 & 1 \end{bmatrix} \qquad [3]\begin{bmatrix} 2 & 2\\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$[2]\begin{bmatrix} \frac{1}{2} & -\frac{1}{2} \\ 2 & 1 \end{bmatrix}$$

$$[3]\begin{bmatrix} 2 & 2 \\ \frac{1}{2} & -\frac{1}{2} \end{bmatrix}$$

$$[4] \begin{bmatrix} -\frac{1}{2} & \frac{1}{2} \\ 1 & 2 \end{bmatrix}$$

$$\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix}$$

$$[2]\begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix}$$

$$\begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix}$$

$$[4]\begin{bmatrix} 2 & -6 \\ 4 & -2 \end{bmatrix}$$

2. What must be the matrix X, if $2X + \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix} = \begin{bmatrix} 3 & 8 \\ 7 & 2 \end{bmatrix}$? $\begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} 1 & 3 \\ 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 2 \end{bmatrix} \begin{bmatrix} 1 & -3 \\ 2 & -1 \end{bmatrix} \qquad \begin{bmatrix} 3 \end{bmatrix} \begin{bmatrix} 2 & 6 \\ 4 & -2 \end{bmatrix}$ 3. Which of the following is not true about the matrix $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$?

[1]a scalar matrix

[2]a diagonal matrix

[3]an upper triangular matrix

[4]a lower triangular matrix

4. If A and B are two matrices such that A + B and AB are both defined, then

[1] A and B are two matrices not necessarily of same order

[2] A and B are square matrices of same order

[3] Number of columns of *A* is equal to the number of rows of *B*

$$4\dot{1}A = B$$

5. If $A = \begin{bmatrix} \lambda & 1 \\ -1 & -\lambda \end{bmatrix}$, then for what value of λ , $A^2 = 0$?

$$[2]\pm 1$$

$$[3]-1$$

[1]0 [2]±1 [3]-1
6. If $A = \begin{bmatrix} 1 & -1 \\ 2 & -1 \end{bmatrix}$, $B = \begin{bmatrix} a & 1 \\ b & -1 \end{bmatrix}$ and $(A + B)^2 = A^2 + B^2$, then the values of a and b are [1]a = 4, b = 1 [2]a = 1, b = 4 [3]a = 0, b = 4 [5]

$$[1]a = 4, b = 1$$

$$[2]a = 1, b = 4$$

$$[3]a = 0, b = 4$$

$$[4]a = 2, b = 4$$

7. If $A = \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ a & 2 & b \end{bmatrix}$ is a matrix satisfying the equation $AA^T = 9I$, where I is 3×3 identify matrix, then the ordered pair (a, b) is

equal to

$$[1](2,-1)$$

$$[2](-2,1)$$

$$[4](-2,-1)$$

8. If *A* is a square matrix, then which of the following is not symmetric?

$$\lceil 1 \rceil \Delta \perp \Delta$$

$$[2]AA^T$$

$$[3]A^{\prime}A$$

$$[4]A - A^{T}$$

9. If A and B are symmetric matrices of order n, where $(A \neq B)$, then

[1]A + B is skew-symmetric

[2]
$$A + B$$
 is symmetric
[4] $A + B$ is a zero

$$[3]A + B$$
 is a diagonal matrix

$$[4]A + B$$
 is a zero

10. If $A = \begin{bmatrix} a & x \\ y & a \end{bmatrix}$ and if xy = 1, then $det(A A^T)$ is equal to

$$[1](a-1)^2$$

$$[2](a^2+1)$$

$$[3]a^2 - 1$$

$$[4](a^2-1)^2$$

11. The value of x, for which the matrix A

12. If the points (x, -2), (5, 2), (8, 8) are collinear, then x is equal to

$$[1]-3$$

 $\frac{abc}{2} \neq 0$, then the area of the triangle whose vertices are $\left(\frac{x_1}{a}, \frac{y_1}{a}\right), \left(\frac{x_2}{b}, \frac{y_2}{b}\right), \left(\frac{x_3}{c}, \frac{y_3}{c}\right)$ is

$$[1]^{\frac{1}{4}}$$

$$[2]^{\frac{1}{4}}abc$$

$$[3]^{\frac{1}{6}}$$

$$[4]^{\frac{1}{8}}abc$$

14. If the square of the matrix $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is the unit matrix of order 2, then α, β and γ should satisfy the relation

$$[1]1 + \alpha^2 + \beta \gamma = 0$$

$$[2]1 - \alpha^2 - \beta \gamma = 0$$
$$[4]1 + \alpha^2 - \beta \gamma = 0$$

$$[3]1 - \alpha^2 + \beta \gamma = 0$$

$$[a \quad b \quad c] \quad [ka]$$

$$[4]1 + \alpha^2 - \beta \gamma = 0$$

15. If
$$\Delta = \begin{bmatrix} a & b & c \\ x & y & z \\ q & r \end{bmatrix}$$
, then $\begin{bmatrix} ka & kb & kc \\ kx & ky & kz \\ kp & kq & kr \end{bmatrix}$ is

$$[1]\Delta$$
 $[2]k\Delta$

$$[3]3k\Delta$$

$$[4]k^3\Delta$$

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

BOOK BACK ONE MARKS

STUDENT NAME:

16. A root of the equation [3]0

[1]6

$$\begin{bmatrix} -6 & 3-x & c \\ 3 & 3 & 0 \end{bmatrix}$$
[2]3

17. The value of the determinant of A =

[1]-2abc

$$-c 0$$

[4]-6

 $[4]a^2 + b^2 + c^2$ 18. If x_1, x_2, x_3 as well as y_1, y_2, y_3 are in geometric progression with the same common ratio then the points

- $(x_1, y_1), (x_2, y_2), (x_3, y_3)$ are [1] vertices of an equilateral triangle
- [2] vertices of a right angled triangle
- [3] vertices of a right angled isosceles triangle
- [4]Collinear

19. If \delta denotes the greatest integer less than are equal to the real number under consideration and

z < 2, then the value of the determinant

$$\begin{vmatrix} |x| + 1 & |y| & |z| \\ |x| & |y| + 1 & |z| \\ |x| & |y| & |z| + 1 \end{vmatrix}$$

[1][z]

$$\begin{bmatrix} 2 \end{bmatrix} \lfloor x \rfloor$$
 $\begin{bmatrix} a & 2b & 2c \end{bmatrix}$

$$[3] \lfloor x \rfloor$$

$$[4] \lfloor x \rfloor +$$

 $c \mid = 0$, then abc =

$$[3]b^3$$

$$[4]ab + b$$

2 0, then B is given by

[1]B = 4A

$$[2]B = -4A$$

$$[3]B = -A$$

$$[4]B = 6A$$

22. If A skew-symmetric of order n and C is a column matrix of order $n \times 1$, then C^TAC is

- [1]an identity matrix of order *n*
- [2] an identity matrix of order 1
- [3]a zero matrix of order 1
- [4] an identity matrix of order 2

23. The matrix *A* satisfying the equation $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$

$$[1]\begin{bmatrix} 1 & 4 \\ -1 & 0 \end{bmatrix}$$

$$[2]\begin{bmatrix} 1 & -4 \\ 1 & 0 \end{bmatrix}$$

$$[3]$$
 $\begin{bmatrix} 1 & 4 \\ 0 & -1 \end{bmatrix}$

$$[4]\begin{bmatrix} 1 & -4 \\ 1 & 1 \end{bmatrix}$$

24. If $A + I = \begin{bmatrix} 3 & -2 \\ 4 & 1 \end{bmatrix}$, then (A + I)(A - I)

$$[1]\begin{bmatrix} -5 & -4 \\ 8 & -9 \end{bmatrix}$$

$$[2]$$
 $\begin{bmatrix} -5 & 4 \\ 0 & 0 \end{bmatrix}$

$$[3][5]{6}$$

$$[4]\begin{bmatrix} -5 & -4 \\ -8 & -9 \end{bmatrix}$$

25. Let A and B be two symmetric matrices of same order. Then which one of the following statement is not true?

- [1]A + B is a symmetric matrix
- [2] AB is a symmetric matrix

 $[3]AB = (BA)^T$

 $41A^TB = AB^T$

8. VECTOR ALGEBRA

1. The value of $\overrightarrow{AB} + \overrightarrow{BC} + \overrightarrow{DA} + \overrightarrow{CD}$

$$[4]-\overrightarrow{AD}$$

2. If $\hat{a} + 2\hat{b}$ and $3\hat{a} + m\hat{b}$ are parallel, then the value of m is

 $[4]^{\frac{1}{2}}$

3. The unit vector parallel to the resultant of the vectors $\hat{i} + \hat{j} - \hat{k}$ and $\hat{i} - 2\hat{j} + \hat{k}$ is

4. a vector \overrightarrow{OP} makes 60° and 45° with the positive direction of the x and y axes respectively. Then the angle between \overrightarrow{OP} and the z-axis is

[1]45°

[3]90°

5. If $\overrightarrow{BA} = 3\hat{\imath} + 2\hat{\jmath} + \hat{k}$ and the position vector of \overrightarrow{B} is $\hat{\imath} + 3\hat{\jmath} - \hat{k}$, then the position vector A is

$$[1]4\hat{\imath} + 2\hat{\jmath} + \hat{k}$$

$$[2]4\hat{i} + 5\hat{j}$$

$$[4]-4\hat{i}$$

www.Padasalai.Net www.CBSEtips.in **XI - MATHEMATICS BOOK BACK ONE MARKS STUDENT NAME:** 6. A vector makes equal angle with the positive direction of the coordinate axes. Then each angle is equal to $[2]\cos^{-1}\left(\frac{2}{3}\right)$ $[3]\cos^{-1}\left(\frac{1}{\sqrt{2}}\right)$ $[4]\cos^{-1}\left(\frac{2}{\sqrt{2}}\right)$ $[1]\cos^{-1}\left(\frac{1}{3}\right)$ 7. The vectors $\vec{a} - \vec{b}$, $\vec{b} - \vec{c}$, $\vec{c} - \vec{a}$ are [1]parallel to each other [2]unit vectors [3]mutually perpendicular vectors [4]coplanar vectors 8. If \overrightarrow{ABCD} is a parallelogram, then $\overrightarrow{AB} + \overrightarrow{AD} + \overrightarrow{CB} + \overrightarrow{CD}$ is equal to [1]2(AB + AD)[2]4*AC* 9. One of the diagonals of parallelogram *ABCD* with *a* and *b* as adjacent sides is $\vec{a} + \vec{b}$. The other diagonal \vec{BD} is $[2]\vec{b} - \vec{a}$ $[1]\vec{a} - \vec{b}$ $[3]\vec{a} + \vec{b}$ 10. If \vec{a} , \vec{b} are the position vectors \vec{A} and \vec{B} , then which one of the following points whose position vector lies on \vec{AB} , is $[3]^{\frac{2\vec{a}+\vec{b}}{3}}$ [4] $\frac{\vec{a}-\vec{b}}{3}$ $[1]\vec{a} + \vec{b}$ 11. If \vec{a} , \vec{b} , \vec{c} are the position vectors of three collinear points, then which of the following is true? $[1]\vec{a} = \vec{b} + \vec{c}$ $[2]2\vec{a} = \vec{b} + \vec{c}$ $[3]\vec{b} = \vec{c} + \vec{a}$ 12. If $\vec{r} = \frac{9\vec{a} + 7\vec{b}}{16}$, then the point *P* whose position vector \vec{r} divides the line joining the points with position vectors *a* and *b* in the [3]9: 7 externally [1]7:9 internally [2]9:7 internally [4]7:9 externally 13. If $\lambda \vec{i} + 2\lambda \vec{j} + 2\lambda \vec{k}$ is a unit vector, then the value of λ is $[2]^{\frac{1}{4}}$ 14. Two vertices of a triangle have position vectors $3\hat{i} + 4\hat{j} - 4\hat{k}$ and $2\hat{i} + 3\hat{j} + 4\hat{k}$. If the position vector of the centroid is $\hat{i} + 2\hat{j} + 4\hat{k}$ $3\hat{k}$, then the position of the third vertex is $[1]-2\hat{i}-\hat{j}+9\hat{k}$ $[2]-2\hat{i}-\hat{j}-6\hat{k}$ $[4]-2\hat{i}+\hat{j}+6\hat{k}$ 15. If $|\vec{a} + \vec{b}| = 60$, $|\vec{a} - \vec{b}| = 40$ and $|\vec{b}| = 46$, then $|\vec{a}|$ is 16. If \vec{a} and \vec{b} having same magnitude and angle between them is 60° and their scalar product is $\frac{1}{2}$ and |a| is 17. the value of $\theta \in (0, \frac{\pi}{2})$ for which the vectors $\vec{a} = (\sin \theta)\hat{i} + (\cos \theta)\hat{j}$ and $\vec{b} = \hat{i} - \sqrt{3}\hat{j} + 2\hat{k}$ are perpendicular, is equal to 18. If |a = 13, |b| = 5 and $a.b = 60^{\circ}$ then $|a \times b|$ is [2]35 19. Vectors \vec{a} and \vec{b} are inclined at an angle $\theta = 120^\circ$. If $|\vec{a}| = 1$, $|\vec{b}| = 2$ then $\left[(\vec{a} + 3\vec{b}) \times (3\vec{a} - \vec{b}) \right]^2$ is equal to 20. If \vec{a} and \vec{b} are two vectors of magnitude 2 and inclined at an angle 60°, then the angle between \vec{a} and $\vec{a} + \vec{b}$ is [4]90° [3]45° 21. If the projection of $5\hat{i} - \hat{j} - 3\hat{k}$ on the vector $\hat{i} + 2\hat{j} + \lambda\hat{k}$ is same as the projection of $\hat{i} + 3\hat{j} + \lambda\hat{k}$ and $5\hat{i} - \hat{j} - 3\hat{k}$, then λ is equal $[3] \pm 5$ 22. If (1,2,4) and $(2,-3\lambda,-3)$ are the initial and terminal points of the vector $\hat{i}+5\hat{j}-7\hat{k}$, then the value of λ is equal to $[4]^{\frac{5}{2}}$ 23. If the points whose position vectors $10\hat{i} + 3\hat{j}$, $12\hat{i} - 5\hat{j}$ and $a\hat{i} + 11\hat{j}$ are collinear then a is equal to 24. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = 2\hat{i} + x\hat{j} + \hat{k}$, $\vec{c} = \hat{i} - \hat{j} + 4\hat{k}$ and $\vec{a} \cdot (\vec{b} \times \vec{c}) = 70$, then x is equal to [4]10 [3]26 25. If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$, $|\vec{b}| = 5$ and the angle between \vec{a} and \vec{b} is $\frac{\pi}{6}$, then the area of the triangle formed by these two vectors as two

9.Differential Calculus - Limits and Continuity

1. $\lim_{x \to \infty} \frac{\sin x}{x}$ [1]1 [2]0 [3]\infty

CONTACT NO: 9361156517 , 9500392310

ECR ROAD - ERVADI - 623515

 $[4]-\infty$

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

XI - MATHEMATICS	BOOK BACK ONE MARKS	STUDENT NAME :	
$\lim_{x \to \pi/2} \frac{2x - \pi}{\cos x}$			
	[2]1	[2] 2	[4]0
$[1]2$ $\lim_{x \to 1-\cos 2x} \sqrt{1-\cos 2x}$	[2]1	[3] <i>–2</i>	[4]0
$\lim_{x \to 0} \frac{\sqrt{1 - \cos 2x}}{x}$			
[1]0	[2]1	$[3]\sqrt{2}$	[4]does not exist
$\lim_{\theta \to 0} \frac{\sin \sqrt{\theta}}{\sqrt{\sin \theta}}$			
	[0] 4	[2]0	F430
[1]1	[2]-1	[3]0	[4]2
$\lim_{x \to \infty} (x^2 + 5x + 3)^x$			
$\lim_{x \to 0} \left(\frac{x^2 + 5x + 3}{x^2 + x + 3} \right)^x \text{ is}$ $[1]e^4$			
$[1]e^4$	$[2]e^2$	$[3]e^3$	[4]1
$\lim_{x \to \infty} \frac{\sqrt{x^2 - 1}}{2x + 1} =$			
	F016	[0] 4	
[1]1	[2]0	[3]-1	[4]2
$\lim_{x \to 0} \frac{a^x - b^x}{x} =$			
$x \to 0$ x [1]log ab	$[2]\log\left(\frac{a}{b}\right)$	[3]log 2	[4]3 log 2
	$\lfloor \frac{2}{b} \rfloor \log \left(\frac{1}{b} \right)$	[3]108 2	[7]31082
$\lim_{x \to 0} \frac{8^{x-4^x-2^x+1^x}}{x^2} =$			
[1]2]ng2	$[2]2 (\log 2)^2$	[3]log 2	[4]3 log 2
If $f(x) = x(-1)^{\lfloor x \rfloor}, x \leq$	0, then the value of $\lim_{x \to 0} f(x)$	is equal to	
[1]-1	[2]0	[3]2	[4]4
[*] *	[-]	آمام	
$\lim_{x \to 3} \lfloor x \rfloor =$			
$x \to 3$	[2]2	[2]down at a six	F410
[1]4	$\begin{bmatrix} 2 \end{bmatrix} $ $\begin{bmatrix} 3x & 0 \end{bmatrix}$	$\leq x \leq 1$.	[4]0
. Let the function f be c	defined by $f(x) = \begin{cases} -3x + 5 & 1 \end{cases}$	$< x \le 2$, then	
$[1] \lim_{x \to 0} f(x) = 1$	[2]3 defined by $f(x) = \begin{cases} 3x & 0 \\ -3x + 5 & 1 \end{cases}$ $[2]_{x \to 1}^{\lim} f(x) = 3$	$\int \lim_{x \to \infty} f(x)$	$ = 2 \qquad [4]_{x \to 1}^{\lim} f(x) \text{ does not e} $
	=		
	by $f(x) = \lfloor x - 3 \rfloor + x - 4 $ for	or $x \in \mathbb{K}$, then $x \to 3^-$	f(x) is equal to
$[1]-2$ $\lim_{x \to x} x = \sin x$	[2]-1	[3]0	[4]1
$\frac{\lim_{x \to 0} \frac{xe^x - \sin x}{x}}{1}$ is			
[1]1	[2]2	[3]3	[4]0
If $\frac{\lim_{x \to 0} \frac{\sin px}{\tan 3x}}{= 4$, the			
$\begin{array}{c} x \to 0 \tan 3 x \\ [1]6 \end{array}$	[2]9	[3]12	[4]4
lim .		[0]+2	r.1.
$\alpha \to \frac{\pi}{4} \frac{\sin \alpha - \cos \alpha}{\alpha - \frac{\pi}{4}} $ is			
$[1]\sqrt{2}$	$[2]^{\frac{1}{2}}$	[3]1	[4]2
lim (1 2 2	n	[0]+	[*]~
$\int_{1}^{1} \frac{1}{n^2} + \frac{2}{n^2} + \frac{3}{n^2} + \frac{3}{n$	$-\cdots + \frac{n}{n^2}$ is		
	[2]0 [3]1		[4]∞
$\lim_{n \to \infty} e^{\sin x} = 1$, ,		
$x \to 0$ $x \to 0$		4	
[1]1	[2] <i>e</i>	$[3]^{\frac{1}{e}}$	[4]0
$\lim_{x \to \infty} \frac{e^{\tan x} - e^x}{e^{-x}} = \frac{1}{2}$,	C	
$x \to 0 \tan x - x$	F0.1	ro.1	F.170
[1]1	[2] <i>e</i>	$[3]^{\frac{1}{2}}$	[4]0
The value of $\lim_{x \to 0} \frac{\sin x}{\sqrt{x^2}}$	r is		
[1]1	[2]_1 [3]0	[4]lim	uit does not exist
The value of lim	$-\lfloor x \rfloor$, where k is an integer is	[1]1111	and another than the second of
$x \rightarrow k^{-x}$	LAJ, WHICHER IS All HILEGEL IS		[4]2
[1]-1	[2]1 [3]0		

BOOK BACK ONE MARKS

STUDENT NAME:

21. At $x = \frac{3}{2}$ the function $f(x) = \frac{|2x-3|}{2x-3}$ is

[3]differentiable

[4]Non-zero

[1]continuous [2]discontinuous [3]difference 22. Let $f: \mathbb{R} \to \mathbb{R}$ be defined by $f(x) = \begin{cases} x & x \text{ is irrational then } f \text{ is } f$

[1] discontinuous at $\frac{1}{2}$

[2] continuous at $x = \frac{1}{2}$

[3] continuous everywhere

[4] discontinuous everywhere

23. The function $f(x) = \begin{cases} \frac{x^2 - 1}{x^3 + 1} & x \neq -1 \\ p & x = -1 \end{cases}$ is not defined for x = -1. The value of f(-1) so that the function extended by this value is

 $[1]^{\frac{2}{3}}$

[4]0

 $[1]\frac{2}{3}$ $[2]-\frac{2}{3}$ [3]1 [4]024. Let f be a continuous function on [2,5]. If f takes only rational values for all x and f(x)=12, then f(4.5) is equal

[2]12

[3]17.5

25. Let a function f be defined by $f(x) = \frac{x - |x|}{x}$ for $x \neq 0$ and f(0) = 2. Then f is

[1]continuous nowhere

[2]continuous everywhere

[3] continuous for all x except x = 1

[4] continuous for all x except x = 0

10. differential calculus - Differentiability and Methods of Differentiation

1. $\frac{d}{dx} \left(\frac{2}{\pi} \sin x^0 \right)$ is

 $[3]\frac{\pi}{90}\cos x^0$

 $[1]\frac{\pi}{180}\cos x^0 \qquad [2]\frac{1}{90}\cos x^0 \qquad [3]$ 2. If $y = f(x^1 + 2)$ and f'(3) = 5, then $\frac{dy}{dx}$ at x = 1 is

[1]5 [2]25 3. If $y = \frac{1}{4}u^4$, $u = \frac{2}{3}x^3 + 5$, then $\frac{dy}{dx}$ is

 $[1]^{\frac{1}{27}}x^2(2x^3+15)^3$

 $[3]^{\frac{2}{27}}x^2(2x^3+15)^3$

4. If $f(x) = x^3 - 3x$, then the points at which f(x) = f'(x) are

[1]both positive integers

[2]both negative integers

[3]both irrational

[4] one rational and another irrational

5. If $y = \frac{1}{a-z}$, then $\frac{dz}{dy}$ is $[1](a-z)^2$

 $[4]-(z+a)^2$

6. If $y = \cos(\sin x^2)$, then $\frac{dy}{dx}$ at x =

[2]2

[4]0

7. If y = mx + c and f(0) = f'(0) = 1, then f(2)

[4]-3

8. If $f(x) = x \tan^{-1} x$, then f'(1) is

 $[3]^{\frac{1}{2}} - \frac{\pi}{4}$

[4]2

[3]3

 $[4]e^{x} - \frac{5}{x}$

[1] $e^x \cdot x^4(x+5)$ [2] $e^x \cdot x(x+5)$ [3] $e^x + \frac{5}{x}$ 10. If the derivative of $(ax-5)e^{3x}$ at x=0 is -13, then the value of a is

 $[3]-\frac{x}{v}$

 $[4]^{\frac{x}{1}}$

12. If $x = a \sin \theta$ and $y = b \cos \theta$, then $\frac{d^2y}{dx^2}$ is

 $[2] - \frac{b}{a} \sec^2 \theta$

 $[4] - \frac{b^2}{a^2} \sec^3 \theta$

13. The differential coefficient of $\log_{10} x$ with respect to $\log_x 10$ is

 $[2]-(\log_{10} x)^2$

 $[3](\log_x 10)^2$

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

BOOK BACK ONE MARKS

STUDENT NAME:

14. If f(x) = x + 2, then f'(f(x)) at x = 4 is

[1]8

[3]4

$$[2] - \frac{2}{r^2} + \frac{2}{r^3}$$

$$[3] - \frac{2}{x^2} - \frac{2}{x^2}$$

$$[4] - \frac{2}{r^3} + \frac{2}{r}$$

15. If $y = \frac{(1-x)^2}{x^2}$, then $\frac{dy}{dx}$ is $[1] \frac{2}{x^2} + \frac{2}{x^3} \qquad [2] - \frac{2}{x^2} + \frac{2}{x^3} \qquad [3] - \frac{2}{x^2} - \frac{2}{x^3} \qquad [4] - \frac{2}{x^3} + \frac{2}{x^2}$ 16. If pv = 81, then $\frac{dp}{dv}$ at v = 9 is

[1]1 [2]-1 [3]2 [4] 17. If $f(x) = \begin{cases} x-5 & \text{if } x \le 1 \\ 4x^2-9 & \text{if } 1 < x < 2 \text{, then the right hand derivative of } f(x) \text{ at } x = 2 \text{ is} \end{cases}$ $(3x+4 \text{ if } x \ge 2$

18. It is given that f'(a) exists, then $\lim_{x \to a} \frac{xf(a) - af(x)}{x - a}$ is [2]f'(a)

[3]-f'(a)

$$[4]f(a) + af'(a)$$

[1]f(a) - af'(a) [2]f19. If $f(x) = \begin{cases} x + 1, & \text{when } x < 2 \\ 2x - 1, & \text{when } x \ge 2 \end{cases}$ the f'(2) is

20. If $g(x) = (x^2 + 2x + 1)f(x)$ and f(0) = 5 and $\lim_{x \to 0} \frac{f(x) - 5}{x} = 4$ then g'(0) is

[1]20

[2]14

[3]18

21. If $f(x) = \begin{cases} x + 2, & -1 < x < 3 \\ 5, & x = 3 \\ 8 - x, & x > 3 \end{cases}$, then at x = 3, f'(x) is

$$x + 2, -1 < x < 3$$

22. The derivative of f(x) = x|x| at x = -3 is

[3]0

[1]6 [2]-6 [3]does not exist [4]0
23. If $f(x) = \begin{cases} 2a - x, & \text{for } -a < x < a \\ 3x - 2a & \text{for } x \ge a \end{cases}$, then which one of the following is true?
[1] f(x) is not differentiable at x = 1

[2]f(x) is discontinuous at x = a

[3] f(x) is continuous for all x in \mathbb{R}

[4] f(x) is differentiable for all $x \ge a$

24. If $f(x) = \begin{cases} ax^2 - b, & -1 < x < 1 \\ \frac{1}{|x|'} & \text{elsewher} \end{cases}$ is differentiable at x = 1, then

 $[1]a = \frac{1}{2}, b = \frac{-3}{2}$

$$[2]a = \frac{-1}{2}, b =$$

[3] $a = -\frac{1}{2}$, $b = -\frac{3}{2}$ [4] $a = \frac{1}{2}$, $b = \frac{3}{2}$

$$[4]a = \frac{1}{2}, b = \frac{3}{2}$$

25. The number of points in \mathbb{R} in which the function

$$f(x) = |x - 1| + |x - 3| + \sin x$$
 is not differentiable, is

[4]4

11.Integral calculus

1. If $\int f(x)dx = g(x) + c$, then f(x)g'(x)dx

$$[1]\int (f(x))^2 dx$$

$$[2] \int f(x)g(x)dx$$

$$[3] \int f'(x)g(x)dx$$

$$[4] \int (g(x))^2 dx$$

2. If $\int \frac{3^{\frac{1}{x}}}{x^2} dx = k \left(3^{\frac{1}{x}}\right) + c$ then the value of k is fillog x [2]— $\log 3$

$$121 - \log 3$$

$$[3] - \frac{1}{\log 3}$$

$$\left[4\right]_{\log 3}^{\frac{1}{2}}$$

$$[2]^{\frac{x^3}{2}} + 3x^2 + 4x +$$

$$[3]x^3 + 4x^2 + 6x$$

$$[2]\frac{x^3}{2} + 3x^2 + 4x + c \qquad [3]x^3 + 4x^2 + 6x + c \qquad [4]\frac{2x^3}{3} - x^2 + x + c$$

4. The gradient (slope) of a curve at any point (x, y) is $\frac{x^2-4}{x^2}$. If the curve passes through he point (2, 7), then the equation of the

$$[1]y = x + \frac{4}{x} + 3$$

$$[2]y = x + \frac{4}{x} + 4$$

$$[3]y = x^2 + 3x +$$

$$[2]y = x + \frac{4}{x} + 4$$
 $[3]y = x^2 + 3x + 4$ $[4]y = x^2 - 3x + 6$

$$[1]\cot(xe^x)+c$$

$$[2]\sec(xe^x)+c$$

$$[3]\tan(xe^x) + c$$

$$[4]\cos(xe^x) + c$$

 $\int \frac{\sqrt{\tan x}}{\sin 2x} dx$ is

$$[1]\sqrt{\tan x} + c$$

$$[2]2\sqrt{\tan x} + c$$

$$[3]^{\frac{1}{2}}\sqrt{\tan x} + c$$

$$[4]^{\frac{1}{4}}\sqrt{\tan x} + c$$

BOOK BACK ONE MARKS

STUDENT NAME:

7.
$$\int \sin^3 x dx$$
 is

$$[1] \frac{-3}{4} \cos x - \frac{\cos 3x}{12} + c$$

$$\int \frac{e^{6 \log x} - e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} dx \text{ is}$$

$$[2]^{\frac{3}{4}}\cos x + \frac{\cos 3x}{12} + c$$

$$[2]_{\frac{3}{4}}\cos x + \frac{\cos 3x}{12} + c$$
 $[3]_{\frac{-3}{4}}\cos x + \frac{\cos 3x}{12} + c$

$$[4]^{\frac{-3}{4}}\sin x - \frac{\sin 3x}{12} + c$$

8.
$$\int \frac{e^{6 \log x} - e^{5 \log x}}{e^{4 \log x} - e^{3 \log x}} dx$$
 is

$$[1]x + c$$

$$[2]^{\frac{x^3}{3}} + c$$

$$[3]\frac{3}{r^3} + c$$

$$[4]\frac{1}{x^2} + c$$

9.
$$\int \frac{\sec x}{\sqrt{\cos 2x}} dx$$
 is

$$[1]\tan^{-1}(\sin x) + c$$

$$[2]2 \sin^{-1}(\tan x) + e^{-1}$$

$$[2]2 \sin^{-1}(\tan x) + c$$
 $[3]\tan^{-1}(\cos x) + c$

$$[4]\sin^{-1}(\tan x) + c$$

10.
$$\int \tan^{-1} \sqrt{\frac{1-\cos 2x}{1+\cos 2x}} \, dx$$
 is

$$[1]x^2 + c$$

$$(212x^2 + c)$$

$$[2]2x^2 + c [3]\frac{x^2}{2} + c$$

$$[4] - \frac{x^2}{x^2} +$$

11.
$$\int 2^{3x+5} dx$$
 is

$$[1] \frac{3(2^{3x+5})}{\log 2} + c$$

$$[2]\frac{2^{3x+5}}{2\log(3x+5)} \qquad [3]\frac{2^{3x+5}}{2\log 3} + c$$

$$[3]_{\frac{2^{3x+5}}{2\log 3}} + \epsilon$$

$$[4]\frac{2^{3x+5}}{3\log 2} + 6$$

12.
$$\int \frac{\sin^3 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx$$
 is

$$[1]^{\frac{1}{2}} \sin 2x + c$$

$$[2] - \frac{1}{2} \sin 2x + c$$

$$[3]^{\frac{1}{2}}\cos 2x + c$$

$$[4] - \frac{1}{2}\cos 2x + c$$

11.
$$\int 2 dx \text{ is}$$

$$[1] \frac{3(2^{3x+5})}{\log 2} + c$$

$$[2] \frac{2^{3x+5}}{2 \log(3x+5)}$$

$$[3] \frac{2^{3x+5}}{2 \log 3} + c$$
12.
$$\int \frac{\sin^3 x - \cos^8 x}{1 - 2\sin^2 x \cos^2 x} dx \text{ is}$$

$$[1] \frac{1}{2} \sin 2x + c$$

$$[2] - \frac{1}{2} \sin 2x + c$$

$$[3] \frac{1}{2} \cos 2x + c$$
13.
$$\int \frac{e^x (x^2 \tan^{-1} x + \tan^{-1} x + 1)}{x^2 + 1} dx \text{ is}$$

$$[1]e^x \tan^{-1}(x+1) + c$$

$$[2]\tan^{-1}(e^x) + c$$

$$[3]e^{x}\frac{(\tan^{-1}x)^2}{2}$$

$$[4]e^x \tan^{-1} x + c$$

14.
$$\int \frac{x^2 + \cos^2 x}{x^2 + 1} \csc^2 x dx$$
 is

$$[1]\cot x + \sin^{-1} x + c$$

$$[2] - \cot x + \tan^{-1} x + c$$

$$[3] - \tan x + \cot^{-1} x + c$$

$$[4]-x^2 \sin x - 2x \cos x + 2 \sin x + c$$

15.
$$\int x^2 \cos x \ dx$$
 is

$$[1]x^2\sin x + 2x\cos x - 2\sin x + c$$

$$[2]x^2 \sin x - 2x \cos x - 2 \sin x + c$$

$$[3]-x^2 \sin x + 2x \cos x + 2 \sin x + c$$

$$[4] - x^2 \sin x - 2x \cos x + 2 \sin x + c$$

16.
$$\int \sqrt{\frac{1-x}{1+x}} dx$$
 is

$$[1]\sqrt{1-x^2} + \sin^{-1}x + c$$

[3]log|
$$x + \sqrt{1 - x^2}$$
| $-\sqrt{1 - x^2}$ +

$$[2]\sin^{-1} x - \sqrt{1 - x^2} +$$

$$[2]\sin^{-1} x - \sqrt{1 - x^2} + c$$

$$[4]\sqrt{1 - x^2} + \log|x + \sqrt{1 - x^2}| + c$$

 $[2]\log|e^x| + \log|e^x - 1| + c$

 $[4]\log|e^x + 1| - \log|e^x| + c$

 $[2]^{\frac{e^{-4x}}{17}}[-4\cos x + \sin x] + c$

 $[4]^{\frac{e^{-4x}}{17}}[-4\cos x - \sin x] + c$

17.
$$\int \frac{dx}{e^x - 1}$$
 is

$$[1]\log|e^x| - \log|e^x - 1| + c$$

$$[3]|e^x - 1| - \log|e^x| + c$$

18.
$$\int e^{-4x} \cos x \, dx$$
 is

$$[1]^{\frac{e^{-4x}}{17}} \left[4\cos x - \sin x \right] + c$$

$$[3]^{\frac{e^{-4}x}{17}}[4\cos x + \sin x] + c$$

$$19.\int_{-\frac{\sec^2 x}{2}}^{\frac{1}{2}} dx$$

$$[1]2\log\left|\frac{1-\tan x}{1+\tan x}\right|+c$$

$$[3]_{2}^{1} \log \left| \frac{\tan x}{1 + \tan x} \right|$$

$$[3]_{2}^{1} \log \left| \frac{\tan x + 1}{\tan x - 1} \right|$$

20.
$$\int e^{-7x} \sin 5x \, dx \text{ is}$$

$$[1]\frac{e^{-7x}}{\frac{74}{74}}[7\sin 5x - 5\cos 5x] + c \qquad [2]\frac{e^{-7x}}{\frac{74}{74}}[7\sin 5x + 5\cos 5x] + c$$

$$[3]\frac{e^{-7x}}{\frac{74}{74}}[7\sin 5x - 5\cos 5x] + c \qquad [4]\frac{e^{-7x}}{\frac{74}{74}}[-7\sin 5x + 5\cos 5x] + c$$

$$[2]\log\left|\frac{1+\tan x}{1-\tan x}\right| + c$$

$$[4]\frac{1}{2}\log\left|\frac{\tan x - 1}{\tan x + 1}\right|$$

$$\frac{1}{2} = \frac{3}{12} \left[\tan x + 1 \right]$$

$$[4]^{\frac{e^{-7x}}{74}} [-7 \sin 5x + 5 \cos 5x] + c$$

BOOK BACK ONE MARKS

STUDENT NAME:

21. $\int x^2 e^{\frac{x}{2}} dx$ is

$$[1]x^{2}e^{\frac{x}{2}} - 4xe^{\frac{x}{2}} - 8e^{\frac{x}{2}} + c$$

$$[2]2x^2e^{\frac{x}{2}}-16e^{\frac{x}{2}}+c$$

$$[3]2x^2e^{\frac{x}{2}} - 8xe^{\frac{x}{2}} + 16e$$

$$[3]2x^{2}e^{\frac{x}{2}} - 8xe^{\frac{x}{2}} + 16e^{\frac{x}{2}} + c \qquad [4]x^{2}e^{\frac{x}{2}} - \frac{xe^{\frac{x}{2}}}{4} + \frac{e^{\frac{x}{2}}}{8} + c$$

 $22. \int \frac{x+2}{\sqrt{x^2-1}} dx$

$$[1]\sqrt{x^2 - 1} - 2\log|x + \sqrt{x^2 - 1}| + \epsilon$$

$$\begin{aligned}
& [1]\sqrt{x^2 - 1} - 2\log|x + \sqrt{x^2 - 1}| + c \\
& [3]2\log|x + \sqrt{x^2 - 1}| - \sin^{-1}x + c
\end{aligned} \qquad [2]\sin^{-1}x - 2\log|x + \sqrt{x^2 - 1}| + c \\
& [4]\sqrt{x^2 - 1} + 2\log|x + \sqrt{x^2 - 1}| + c
\end{aligned}$$

23. $\int \frac{1}{x\sqrt{(\log x)^2-5}} \, dx$ is

$$\int \frac{1}{x\sqrt{(\log x)^2-5}} dx$$
 is

$$[1]\log|x + \sqrt{x^2 - 5}| + c$$

$$[2]\log|\log x + \sqrt{\log x - 5}| + c$$

$$[3]\log|\log x + \sqrt{(\log x)^2 - 5}| + c$$

$$[4]\log|\log x - \sqrt{(\log x)^2 - 5} + c$$

 $\lceil 1 \rceil \log |x + \sqrt{x^2 - 5}| + c$

[3]log | log x +
$$\sqrt{(\log x)^2 - 5}$$
 | + c

$$\lfloor 4 \rfloor \log |\log x - \sqrt{(\log x)^2 - 5}$$

24. $\int \sin \sqrt{x} \, dx$ is

$$[1]2\left(-\sqrt{x}\cos\sqrt{x} + \sin\sqrt{x}\right) + c$$

$$[1]2\left(-\sqrt{x}\cos\sqrt{x} + \sin\sqrt{x}\right) + c$$

$$[2]2\left(-\sqrt{x}\cos\sqrt{x} - \sin\sqrt{x}\right) + c$$

$$[3]2\left(-\sqrt{x}\sin\sqrt{x} - \cos\sqrt{x}\right) + c$$

$$[4]2\left(-\sqrt{x}\sin\sqrt{x} + \cos\sqrt{x}\right) + c$$

25. $\int e^{\sqrt{x}} dx$ is

$$[1]2\sqrt{x}\left(1-e^{\sqrt{x}}\right)+c$$

[2]
$$2\sqrt{x}(e^{\sqrt{x}}-1)+c$$

[4] $2e^{\sqrt{x}}(\sqrt{x}-1)+c$

$[3]2e^{\sqrt{x}}(1-\sqrt{x})+c$

$$[4]2e^{\sqrt{x}}\left(\sqrt{x}-1\right)+c$$

12. Introduction to Probability Theory

1. Four persons are selected at random from a group of 3 men, 2 women and 4 children, the probability that exactly two of them are children is

$$[2]^{\frac{10}{23}}$$

$$[3]^{\frac{1}{2}}$$

$$[4]^{\frac{10}{21}}$$

2. A number is selected from the set {1,2,3,...,20}. The probability that the selected number is divisible by 3 or 4 is

 $[1]^{\frac{2}{5}}$

$$[2]\frac{1}{8}$$

$$[3]^{\frac{1}{a}}$$

$$[4]^{\frac{2}{3}}$$

3. A, B and C try to hit a target simultaneously but independently. Their respective probabilities of hitting the target are $\frac{3}{4}$, $\frac{1}{2}$, $\frac{5}{8}$. The probability that the target is hit by A or B but not by C is

$$[2]^{\frac{7}{7}}$$

$$[3]^{\frac{9}{64}}$$

$$[4]^{\frac{7}{6}}$$

4. If A and B are any two events, then the probability that exactly one of them occur is

$$[1]P(A \cup \bar{B}) + P(\bar{A} \cup B)$$

$$[2]P(A \cap \overline{B}) + P(\overline{A} \cap B)$$

$$[3]P(A) + P(B) - P(A \cap B)$$

$$[4]P(A) + P(B) + 2P(A \cap B)$$

5. Let A and B be two events such that $P(\overline{A \cup B}) = \frac{1}{6}$, $P(A \cap B) = \frac{1}{4}$ and $P(\overline{A}) = \frac{1}{4}$. Then the events A and B are

[1]Equally likely but not independent

- [2]Independent but not equally likely
- [3]Independent and equally likely
- [4] Mutualy inclusive and dependent

6. Two items are chosen from a lot containing twelve items of which four are defective, then the probability that at least one of the item is defective

$$[2]^{\frac{1}{2}}$$

$$[3]_{\frac{23}{23}}$$

$$[4]^{\frac{13}{33}}$$

7. A man has 3 fifty rupee notes, 4 hundred rupees notes and 6 five hundred rupees notes in his pocket. If 2 notes are taken at random, what are the odds in favour of both notes being of hundred rupee denomination?

8. A letter is taken at random from the letters of the word 'ASSISTANT' and another letter is taken at random from the letters of the word 'STATISTICS'. The probability that the selected letters are the same is

$$[2]^{\frac{1}{2}}$$

$$[3]^{\frac{29}{9}}$$

$$[4]^{\frac{19}{9}}$$

9. A matrix is chosen at random from a set of all matrices of order 2, with elements 0 or 1 only. The probability that the determinant of the matrix chosen is non zero will be

 $[1]^{\frac{3}{16}}$

$$[2]^{\frac{3}{6}}$$

$$[3]^{\frac{1}{2}}$$

$$[4]^{\frac{3}{8}}$$

10. A bag contains 5 white and 3 black balls. Five balls are drawn successively without replacement. The probability that they are alternately of different colours is

 $[1]^{\frac{3}{14}}$

$$[2]^{\frac{3}{6}}$$

$$[3]^{\frac{1}{4}}$$

$$[4]^{\frac{5}{6}}$$

CONTACT NO: 9361156517 , 9500392310

D. PALANI MURUGAN PG ASSISTANT MATHEMATICS

BOOK BACK ONE MARKS

STUDENT NAME:

11. If A and B are two events such that $A \subseteq B$ and $P(B) \neq 0$, then which of the following is correct?

[1]
$$P(A/B) = \frac{P(A)}{P(B)}$$

$$[2]P(A/B) < P(A)$$

$$[3]P(A/B) \ge P(A)$$

12. A bag contains 6 green, 2 white, and 7 black balls. If two balls are drawn simultaneously, then the probability that both are different colours is

$$[1]^{\frac{68}{105}}$$

$$[2]\frac{71}{100}$$

$$[3]^{\frac{64}{10!}}$$

[1] $\frac{68}{105}$ [2] $\frac{71}{105}$ [3] $\frac{64}{105}$ [4] $\frac{73}{105}$ 13. If X and Y be two events such that $P\left(\frac{X}{Y}\right) = \frac{1}{2}$, $P\left(\frac{Y}{X}\right) = \frac{1}{3}$ and $P(X \cap Y) = \frac{1}{6}$, then $P(X \cup Y)$ is [1] $\frac{1}{3}$ [2] $\frac{1}{2}$ [3] $\frac{7}{12}$ [4] $\frac{1}{4}$

$$[1]^{\frac{1}{3}}$$

$$[2]^{\frac{1}{2}}$$

$$[3]^{\frac{7}{12}}$$

$$[4]^{\frac{1}{4}}$$

14. An urn contains 5 red and 5 black balls. A ball is drawn at random, its colour is noted and is returned to the urn. Moreover, additional balls of the colour drawn are put in the urn and then a ball is drawn at random. The probability that the second ball drawn is red will be

 $[1]^{\frac{5}{12}}$

$$[2]^{\frac{1}{2}}$$

$$[3]^{\frac{4}{3}}$$

$$[4]^{\frac{1}{4}}$$

 $[1]\frac{5}{12}$ $[2]\frac{1}{2}$ $[3]\frac{4}{12}$ $[4]\frac{1}{4}$ 15. A number x is chosen at random from the first 100 natural numbers. Let A be the event of numbers which satisfies $\frac{(x-10)(x-50)}{2} \ge 0$, then P(A) is

$$\frac{x-10)(x-30)}{x-30} \ge$$

16. If two events A and B are independent such that P(A) = 0.35 and $P(A \cup B) = 0.6$ then P(B) is

$$[1]^{\frac{5}{13}}$$

$$[2]^{\frac{1}{12}}$$

$$[3]^{\frac{4}{13}}$$

$$[4]_{1}^{7}$$

17. It two events A and B are such that $P(\bar{A}) = \frac{3}{10}$ and $P(A \cap \bar{B}) = \frac{1}{2}$, then $P(A \cap \bar{B})$

$$[2]^{\frac{1}{2}}$$

$$[3]^{\frac{1}{4}}$$

$$[4]^{\frac{1}{2}}$$

18. If A and B are two events such that P(A) = 0.4, P(B) = 0.8 and P(B/A) = 0.6 then $P(A \cap B)$ is

19. There are three events A, B and C of which one and only one can happen. If the odds are 7 to 4 against A and 5 to 3 against B, then odds against C is

20. If a and b are chosen randomly from the set $\{1,2,3,4\}$ with replacement, then the probability of the real roots of the equation $x^2 + ax + b = 0$ is

$$[2]^{\frac{5}{16}}$$

$$[3]^{\frac{7}{1}}$$

$$[4]^{\frac{11}{16}}$$

21. It is given that the events A and B such that $P(A) = \frac{1}{4}$, $P(A/B) = \frac{1}{2}$ and $(B/A) = \frac{2}{3}$. Then P(B) is

 $[1]^{\frac{1}{6}}$

$$[2]^{\frac{1}{2}}$$

$$[3]^{\frac{1}{2}}$$

$$[4]^{\frac{1}{2}}$$

22. In a certain college 4% of the boys and 1% of the girls are taller than 1.8 meter. Further 60% of the students are girls. If a student is selected at random and is taller than 1.8 meters, then the probability that the student is a girl is

$$[2]\frac{3}{11}$$

$$[3]_{11}^{5}$$

$$[4]^{\frac{7}{11}}$$

23. Ten coins are tossed. The probability of getting at least 8 heads is

$$[2]\frac{7}{32}$$

$$[3]\frac{7}{16}$$

$$[4]\frac{7}{128}$$

24. The probability of two events A and B are 0.3 and 0.6 respectively. The probability that both A and B occur simultaneously is 0.18. The probability that neither A nor B occurs is

25. If m is a number such that $m \le 5$, then the probability that quadratic equation $2x^2 + 2mx + m + 1 = 0$ has real roots is

$$[2]^{\frac{2}{5}}$$

$$[3]^{\frac{3}{5}}$$

$$[4]^{\frac{4}{5}}$$