www.CBSEtips.in

Virudhunagar District Common Examinations

Common Quarterly Examination - 2023

Time: 3.00 Hours

MATHEMATICS PART - I

Marks: 90 $20 \times 1 = 20$

Choose the correct Answer

1) If
$$(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$$
 and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$

- a) $\begin{bmatrix} 2 & -3 \\ -3 & 8 \end{bmatrix}$ b) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ c) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$
- d) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$

d) A

d) $\sqrt{5} + 2$

- 2) If $\rho(A) = \rho([A,B])$, then the system AX=B of linear equations is
 - a) Consistent and has a unique solution b) Consistent
 - c) Consistent and has infinitely many solution
 - d) inconsistent
- 3) If A is a square matrix of order n, then |adj A| is
 - b) |A|ⁿ
 - 4) If $|z-2+i| \le 2$, then the greatest value of |z| is
- b) $\sqrt{3} + 2$ 5) The product of all four values of $\left(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3}\right)^{3/4}$ is
- d) 2 a) -2
- 6) If W is a cube root of unity then the value of $(1 W + W^2)^4 + (1 + W W^2)^4$ is d) -32c) - 16
- a) 0 7) The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if, k satisfies
 - b) k = 0a) |k| ≤ 6
- d) $|\mathbf{k}| \ge 6$ c) |k| > 6
- 8) The polynomial $x^3 + 2x + 3$ has a) One negative and two imaginary zeros
 - b) One positive and two imaginary zeros

 - c) three real zeros

d) no zeros

- 9) If α , β and γ are the roots of $x^3 + px^2 + qx + r$, then $\sum_{\alpha=0}^{\infty} is$
 - b) = p a) $\frac{-q}{z}$
- c) $\frac{q}{r}$ d) $\frac{-q}{r}$
- 10) The value of $\sin^{-1}(\cos x)$, $0 \le x \le \pi$ is
- b) $x \frac{\pi}{2}$ c) $\frac{\pi}{2} x$
- 11) The domain of the function defined by $f(x) = \sin^{-1} \sqrt{x-1}$ is

Kindly send me your study materials to padasalai.net@gmail.com $^{(1, 1)}$ [-1, 0]

www.CBSEtips.in

12) The value of $\cos^{-1}(-1) + \tan^{-1}(\infty) + \sin^{-1}(1)$ is

b)
$$\frac{3\pi}{2}$$

c)
$$\frac{\pi}{6}$$

d) 2π

13) The equation of the normal to the circle $x^2+y^2-2x-2y+1=0$ which is parallel to the line 2x + 4y = 3 is b) x + 2y + 3 = 0

a) x + 2y = 3

c) 2x + 4y + 3 = 0

- d) x 2y + 3 = 0
- 14) The radius of the circle $3x^2 + by^2 + 4bx 6by + b^2 = 0$ is
 - a) 1

= 0 is

a) 0

- b) 3
- c) $\sqrt{10}$

d) $\sqrt{11}$

15) Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{h^2} = 1$ is

- c) √ab a) 2ab c) ab

16) The eccentricity of the ellipse $9x^2 + 4y^2 = 36$ is b) $\sqrt{\frac{3}{5}}$

17) If
$$\bar{a}$$
, \bar{b} , \bar{c} are three unit vectors such that \bar{a} is perpendicular to \bar{b} , and is

c) $\frac{\sqrt{3}}{5}$

parallel to \bar{c} , then $\bar{a} \times (\bar{b} \times \bar{c})$ is equal to

- 18) The distance between the planes x + 2y + 3z + 7 = 0 and 2x + 4y + 6z + 7

 $d)\bar{0}$

d) $\frac{7}{2\sqrt{2}}$

- 19) The value of $[\vec{i} \vec{j}, \vec{j} \vec{k}, \vec{k} \vec{i}]$ is
- c) $\frac{\sqrt{7}}{2}$
- d) 3

7x2 = 14

20) The area of the parallelogram having a diagonal $3\vec{i} + \vec{j} - \vec{k}$ and a side $\vec{i} - 3\vec{j} + 4\vec{k}$ is

c) 2

b) $6\sqrt{30}$

c) $\frac{3}{2}\sqrt{30}$ d) $3\sqrt{30}$

PART - II

Answer any 7 questions. (30 is compulsory

 $\left(\mathbf{A}^{\mathsf{T}}\right)^{-1} = \left(\mathbf{A}^{-1}\right)^{\mathsf{T}} \text{ with } \mathbf{A} = \begin{bmatrix} 2 & 9 \\ 1 & 7 \end{bmatrix}$

21) Verify the property

$$A = \begin{bmatrix} 2 & 3 \\ 1 & 7 \end{bmatrix}$$

22) A chemist has one solution which is 50% acid and another solution which is 25% acid. How much each should be mixed to make 10 litres of a 40% acid solution? (Use Cramer's rule)

- 23) Find the square root of -5 12i 24) Construct a cubic equation with roots 1, 1 and -2.
- 25) Findthelyabranhe your study materials to padasalai.net@gmail.com

7x3 = 21

- 26) Examine the position of the point (2, 3) with respect to the circle $v^2 + v^2 6v = 0$ **V12M**
 - $x^2 + y^2 6x 8y + 12 = 0$. 27) The parabolic communication antenna has a focus at 2m distance from the
 - vertex of the antenna. Find the width of the antenna 3m from the vertex.
 - 28) For any vector \vec{a} , prove that $\vec{i} \times (\vec{a} \times \vec{i}) + \vec{j} \times (\vec{a} \times \vec{j}) + \vec{k} \times (\vec{a} \times \vec{k}) = 2\vec{a}$
 - 29) Find the length of the perpendicular from the point (1, -2, 3) to the plane x y + z = 5x - y + z = 5.
 - 30) Find the least positive integer n such that $\left(\frac{1+i}{1-1}\right)^{n} = 1$

PART-III

Answer any 7 of the following. (40 is compulsory) 31) Find the condition on a, b and c so that the following system of linear

equations has one parameter family of solutions:

$$x + y + z = a$$
, $x + 2y + 3z = b$, $3x + 5y + 7z = C$.

32) Find the rank of the matrix by row reduction method. 33) Obtain the cartesian form of the locus of z for |z| = |z - i|

34) Solve the equation
$$x^4 - 9x^2 + 20 = 0$$

35) Find the domain of
$$\cos^{-1}\left(\frac{2+\sin x}{3}\right)$$

36) Prove that
$$\tan^{-1}\frac{2}{\pi} + \tan^{-1}\frac{7}{24} = \tan^{-1}\frac{1}{2}$$

36) Prove that
$$\tan \frac{24}{\pi}$$
 24 2
37) If $y = 2\sqrt{2x} + C$ is a tangent to the circle $x^2 + y^2 = 16$, find the value of C.
38) Find the equations of tangent and normal to the parabola $x^2 + 6x + 4y + 5 = 0$

at
$$(1, -3)$$
.

39) Find the magnitude and direction cosines of the torgue of a force represented by $3\vec{i} + 4\vec{j} - 5\vec{k}$ about the point with position vector $2\vec{i} - 3\vec{j} + 4\vec{k}$ acting through a point whose position vector is $4\vec{i} + 2\vec{j} - 3\vec{k}$.

40) If
$$\vec{a} = 2\vec{i} + 3\vec{j} - 5\vec{k}$$
, $\vec{b} = -\vec{i} + \vec{j} + 2\vec{k}$ and $\vec{c} = 4\vec{i} - 2\vec{j} + 3\vec{k}$, show that $(\vec{a} \times \vec{b}) \times \vec{c} \neq \vec{a} \times (\vec{b} \times \vec{c})$

PART-IV

Answer all the questions.

7x5 = 3541) a) Solve the following system of equations, using matrix inversion method. $2x_1 + 3x_2 + 3x_3 = 5$, $x_1 - 2x_2 + x_3 = -4$, $3x_1 - x_2 - 2x_3 = 3$ (OR)

- Solve the equation $z^3 + 27 = 0$
 - (OR)
 - b) Find all zeros of the polynomial $x^6 3x^5 5x^4 + 22x^3 39x^2 39x + 135$, if it is known that 1 + 2i and $\sqrt{3}$ are two of its zeros.
- 43) a) Solve the following equations.

$$x^4 - 10x^3 + 26x^2 - 10x + 1 = 0$$

b) Solve:
$$\cos \left(\sin^{-1} \left(\frac{x}{\sqrt{1+x^2}} \right) \right) = \sin \left[\cot^{-1} \left(\frac{3}{4} \right) \right]$$

- 4) a) Find the vertex, focus, equation of directrix and length of the latus rectum of the following equation. $y^2 4y 8x + 12 = 0$ (OR)
- b) Find the non parametric form of vector equation and cartesian equation of the plane passing through the point (1, -2, 4) and perpendicular to the plane x + 2y 3z = 11 and parallel to the line $\frac{x+7}{3} = \frac{y+3}{-1} = \frac{z}{1}$
- 45) a) Show that the line x y + 4 = 0 is a tangent to the ellipse x² + 3y² = 12. Also find the coordinates of the point of contact.
 (OR)
 b) If a₁, a₂, a₃, . . ., a_n is an arithmetic progression with common difference d, prove that
 - $\tan \left[\tan^{-1} \left(\frac{d}{1 + a_1 a_2} \right) + \tan^{-1} \left(\frac{d}{1 + a_2 a_1} \right) + \dots + \tan^{-1} \left(\frac{d}{1 + a_n a_{n-1}} \right) \right] = \frac{a_n a_1}{1 + a_1 a_n}$
- $\frac{\tan\left[\tan^{2}\left(\frac{1}{1+a_{1}a_{2}}\right)^{+\tan^{2}\left(\frac{1}{1+a_{2}a_{3}}\right)^{+...+\tan^{2}\left(\frac{1}{1+a_{n}a_{n-1}}\right)\right]^{-}1+a_{1}a_{n}}{1+a_{1}a_{n}}$ 46) a) Two coast guard stations are located 600 km apart at points A(0, 0)
- and B (0, 600). A distress signal from a ship at P is received at slightly different times by two stations. It is determined that the ship is 200 km forther from station A than it is from station B. Determine the equation of hyperbola that passes through the location of the ship.
 - b) By vector method, Prove that $\cos(\alpha + \beta) = \cos \alpha \cos \beta \sin \alpha \sin \beta$
- 47) a) If $ax^2 + bx + c$ is divided by x + 3, x 5 and x 1, the remainders are 21, 61 and 9 respectively. Find a, b and c (Use Gaussian elimination method)

 (OR)
 - b) Show that the lines $\frac{x+3}{-3} = \frac{y-1}{1} = \frac{z-5}{5}$ and $\frac{x+1}{-1} = \frac{y-2}{2} = \frac{z-5}{5}$ are coplanar. Also find the equation of the plane containing these two lines.