$(d) n^m$

ALPHA MATHS ACADAMY

JEE, CBSE AND BOARD EXAMINATION COACHING CENTER **TENKASI**

MOBILE: 9489006077, 8778733955

UNIT TEST – CHAPTER 3

STANDARD 12

TIME: 3.00 HOURS	MATHEMATICS	MARKS: 90		

PART 1

CHOOSE THE CORRECT ANSWER

1. A zero of $x^3 + 64$ is

(a) mn

 $20\times1=20$

	(a) 0	(b) 4	(0	:) 4 <i>l</i>		(a) - 4	
2.	If f and g are polynomials	nials of degrees m and	nd n r	respectively, a	and if $h(x)$	$=(f\circ g)$	(x), then

- the degree of h is
- (b) m + n3. A polynomial equation in x of degree n always has
 - (a) n distinct roots (b) n real roots (c) n complex roots (d) at most one root.

(c) m^n

- 4. If α, β and γ are the zeros of $x^3 + px^2 + qx + r$, then $\sum \frac{1}{\alpha}$ is
 - $(a) \frac{q}{r}$ $(c) \frac{q}{r}$ $(d) -\frac{q}{n}$
- 5. According to the rational root theorem, which number is not possible rational zero of

$$4x^7 + 2x^4 - 10x^3 - 5$$
?

- (c) $\frac{4}{5}$ (d) 5
- 6. The polynomial $x^3 kx^2 + 9x$ has three real zeros if and only if, k satisfies
- (a) $|k| \leq 6$ (b) k = 0(c) |k| > 6(*d*) $|k| \ge 6$
- 7. The number of real numbers in $[0, 2\pi]$ satisfying $\sin^4 x 2\sin^2 x + 1$
- (a) 2(b) 4 (c) 1 $(d) \infty$
- 8. If $x^3 + 12x^2 + 10ax + 1999$ definitely has a positive zero, if and only if
 - $(a) a \geq 0$ (b) a > 0(c) a < 0(d) $a \leq 0$

- 9. The polynomial $x^3 + 2x + 3$ has
 - (a) One negative and two imaginary zeros
- (b) one positive and two imaginary zeros

(c) three real zeros

- (d) no zeros
- 10. The number of positive zeros of the polynomial $\sum_{i=0}^{n} n_{C_r} (-1)^r x^r$ is
 - (a) 0

- (c) < n
- (d) r
- 11. If α , β and γ are the roots of the equation $x^3 + ax^2 + bx + c = 0$. the value of
 - $(1 + \alpha)(1 + \beta)(1 + \gamma)$?
 - (a) (1+b) (a+c) (b) (1+b) + (a-c) (c) (1+b) (a-c)
- (d)(1+b)+(a+c)
- $12.2x^3 x^2 2x + 2 = Q(x)(2x 1) + R(x)$ for all values of x. The value of R(x)?
 - (a) 1

 $(c)^{\frac{1}{2}}$

- 13. Roots of $x^3 + x^2 4x 4 = 0$?
 - (a) 1, -1, 0
- (b) 3, -3, 1

(d) 2, -2, 1

- 14. The value of x that satisfies f(x) = 0 is called the
 - (a) root of an equation f(x) = 0
- (b) root of a equation f(x)

(c) zero of an equation f(x)

- (d) none of the above
- 15. A monic polynomial which crosses the x axis at –4,0 and 2; lies below the x –axis between -4 and; lies above the x -axis between 0 and 2 is
- (a) $x^3 + 2x^2 8x$ (b) $x^3 2x^2 8x$ (c) $-x^3 2x^2 + 8x$ (d) $-x^3 + 2x^2 + 8x$
- 16. A monic polynomial touches the x axis at 0 and crosses the x –axis at 3; lies above the x –axis between 0 and 3.
 - $(a) x^3 3x^2 \qquad (b) x^3 + 3x^2$
- (c) $x^3 3x^2$
- $(d) x^3 + 3x^2$

- 17. The list of all possible rational roots for $x^5 4x^2 + 6x + 5$
 - $(a) \pm 1, \pm 5$
- $(b) \pm 5, \frac{1}{5}$
- $(c) \pm 1, \pm \frac{1}{5}$
- $(d) \pm \frac{1}{4}, \pm \frac{5}{4}, \pm 5$

- 18. The list of all possible rational roots $7x^3 x^2 + 3$

 - (a) $\pm \frac{1}{7}$, $\pm \frac{3}{7}$, ± 1 , ± 3 (b) $\pm \frac{1}{7}$, $\pm \frac{1}{3}$, ± 1 , ± 3 , ± 7 (c) $\pm \frac{1}{7}$, $\pm \frac{3}{7}$, ± 1 , ± 3 , ± 7 (d) $\pm \frac{1}{3}$, $\pm \frac{7}{3}$, ± 1 , ± 7
- 19. Using Descartes Rule of Signs, the possible number of positive and negative real zeros of
 - $p(x) = 6x^5 4x^2 + x + 4$

- (a) 3 or 1 positive zeros, 3 or 1 negative zeros
- (b) 2 or 0 positive zeros, 1 or 0 negative zeros
- (c) 2 or 0 positive zeros, 2 or 0 negative zeros
- (d) 2 or 0 positive zeros, 1 negative zeros
- 20. If x = -1 is a zero with multiplicity 2 of the polynomial $p(x) = x^4 + x^3 + x^2 + kx + k 1$, then the value of k is
 - (a) 3

(b) 2

(c) 1

(d) 0

PART 2

ANSWER ANY 7 OF THE FOLLOWING QUESTIONS $(30^{TH}QUESTION IS COMPULSARY)$ $7 \times 2 = 14$

- 21. Construct a cubic equation with roots 1, 2 and 3.
- 22. Show that the equation $2x^2 6x + 7 = 0$ cannot be satisfied by any real values of x.
- 23. Find a polynomial equation of minimum degree with rational coefficients, having $2 + \sqrt{3}i$ as a root.
- 24. Solve the equation $x^4 9x^2 + 20 = 0$
- 25. Prove that a straight line and parabola cannot intersect at more than two points.
- 26. Determine the number of positive and negative roots of the equation $x^9 5x^8 14x^7 = 0$.
- 27. If α, β and γ are the root of the equation $x^3 + px^2 + qx + r = 0$, find the value of $\sum \frac{1}{\beta \gamma}$ in terms of the coefficients.
- 28. If $x^2 + 2(k + 2)x + 9k = 0$ has equal roots, find k.
- 29. If p and q are the roots of the equation $lx^2 + nx + n = 0$. Show that $\sqrt{\frac{p}{q}} + \sqrt{\frac{q}{p}} + \sqrt{\frac{n}{l}} = 0$.
- 30. Solve the equations $\sin^2 x 5 \sin x + 4 = 0$.

PART 3

ANSWER ANY 7 OF THE FOLLOWING QUESTIONS $(40^{TH}QUESTION IS COMPULSARY)$ $7 \times 3 = 21$

- 31. If the equations $x^2 + px + q = 0$ and $x^2 + p'x + q' = 0$ have a common root, show that it must be equal to $\frac{pq' p'q}{q q'}$ or $\frac{q q'}{p' p}$.
- 32. If α , β and γ are the roots of the cubic equation $x^3 + 2x^2 + 3x + 4 = 0$, form a cubic equation whose roots are $\frac{1}{\alpha}$, $\frac{1}{\beta}$, $\frac{1}{\gamma}$.
- 33. Solve the equation $x^3 3x^2 33x + 35 = 0$
- 34. Find all real numbers satisfying $4^x 3(2^{x+2}) + 2^5 = 0$

- 35. If α , β , γ and δ are the roots of the polynomial equation $2x^4 + 5x^3 7x^2 + 8 = 0$, find a quadratic equation with integer coefficients whose roots are $\alpha + \beta + \gamma + \delta$ and $\alpha\beta\gamma\delta$.
- 36. Find the monic polynomial equation of minimum degree with real coefficients having $2 \sqrt{3}i$ as a root.
- 37. If the sides of a cubic box are increased by 1, 2, 3 units respectively to form a cuboid, then the volume is increased by 52 cubic units. Find the volume of the cuboid.
- 38. Obtain the condition that the roots of $x^3 + p x^2 + qx + r = 0$ are in A.P.
- 39. Form a polynomial equation with integer coefficients with $\sqrt{\frac{\sqrt{2}}{\sqrt{3}}}$ as a root.
- 40. If a complex number z_0 is a root of a polynomial equation with real coefficients, then its complex conjugate \bar{z}_0 is also a root.

PART 4

ANSWER ALL THE FOLLOWING QUESTIONS

 $7 \times 5 = 35$

- **41**. (a) If the roots of $x^3 + px^2 + qx + r = 0$ are in H.P, Prove that $p q r = 2 q^3 + 27 r^2$. Assume $p, q, r \neq 0$ (or)
 - (b) Determine k and solve the equation $2x^3 6x^2 3x + k = 0$ if one of its roots is twice the sum of the other two roots.
- **42**. (a) Solve the equation $2\sqrt{\frac{x}{a}} + 3\sqrt{\frac{a}{x}} = \frac{b}{a} + \frac{6a}{b}$ (or)
 - (b) Find a polynomial equation of minimum degree with rational coefficients, having $\sqrt{5} \sqrt{3}$ as a root.
- **43**. (a) Solve the equation $6x^4 5x^3 38x^2 5x + 6 = 0$ if it is known that $\frac{1}{3}$ is a solution. (or)
 - (b) If 2 + i and $3 \sqrt{2}$ are roots of the equation $x^6 13x^5 + 62x^4 126x^3 + 65x^2 + 127x 140$
- **44**. (a) Solve (2x-1)(x+3)(x-2)(2x+3)+20=0. (or)
 - (b) Discuss the maximum possible number of positive and negative roots of the polynomial equation

$$9x^9 - 4x^8 + 4x^7 - 3x^6 + 2x^5 + x^3 + 7x^2 + 7x + 2 = 0.$$

45. (a) A polynomial equation $a_n x^n + a_{n-1} x^{n-1} + a_{n-2} x^{n-2} + \dots + a_2 x^2 + a_1 x + a_0 =$; $a_n \ne 0$ is a reciprocal equation if, and only if, one of the following two statements is true :

(i)
$$a_n = a_0$$
 , $a_{n-1} = a_1$, $a_{n-2} = a_2$, ...

(ii)
$$a_n = -a_0$$
, $a_{n-1} = -a_1$, $a_{n-2} = -a_2$, ... (or)

- (b) Find the roots of $2x^3 + 3x^2 + 2x + 3 = 0$
- **46.** (a) Solve the cubic equation $2x^3 x^2 18x + 9 = 0$ if sum of two of its roots vanishes. (or)
 - (b) Solve the equation $x^3 9x^2 + 14x + 24 = 0$ if it is given that two of its roots are in the ratio 3:2
- **47**. (a) Solve the equation $6x^4 35x^3 + 62x^2 35x + 6 = 0$ (or)
 - (b) Solve the equation $x^4 10x^3 + 26x^2 10x + 1 = 0$.

****** ALL THE BEST *******

PREPARED BY M.KARTHIGAI GANAPATHY M.Sc., M.Ed., PG ASST. MATHEMATICS TENKASI-627802 CONTACT NUMBER: 9489006077

E.MAIL: kr.aashni@gmail.com

