2200-2023. standard 12

Time: 3.00 Hours

PHYSICS
 Part - A

Marks: 70

Answer all the questions:

1) Two points A and B are maintained at a potential of $7 V$ and $-4 V$ respectively. The workdone in moving 50 electrons from A to B.
a) $8.80 \times 10^{-17} \mathrm{~J}$
b) $-8.80 \times 10^{-17} \mathrm{~J}$
c) $4.40 \times 10^{-17} \mathrm{~J}$
d) $5.80 \times 10^{-17} \mathrm{~J}$
2) A parallel plate capacitor stones a change Q at a Voltage V. Suppose the area of the parallel plate capacitor and the distance between the plates are each doubled then which is the quantity that will change?
a) capacitance
b) change
c) Voltage
d) Energy density
3) If the charge $+q$ is placed in three corners of a equilateral triangle. Then electric field at the center of the triangle.
a) $\frac{q}{4 \pi \varepsilon_{0} r}$
b) $\frac{\mathrm{q}}{4 \pi \varepsilon_{0} \mathrm{r}^{2}}$
c) $\frac{3 q}{4 \pi \varepsilon_{0} r^{2}}$
d) zero

4) The specific resistance of a thin and thick copper wire is $\rho_{1} \Omega \mathrm{~m}$ and $\rho_{2} \Omega \mathrm{~m}$ respectively then.
a) $\rho_{1}>\rho_{2}$
b) $\rho_{2}>\rho_{1}$
c) $\rho_{1}=\rho_{2}$
d) $\frac{\rho_{2}}{\rho_{1}}=\infty$
5) A wire of resistance 2Ω per meter is bent to form a cricle of radius 1 m . The equivalent resistance between its two diametrically opposite points. A and B as shown in fig.

a) $\pi \Omega$
b) $\frac{\pi}{2} \Omega$
c) $2 \pi \Omega$
d) $\frac{\pi}{4} \Omega$
6) A particle having mass m and change q accelerated through a potential difference V. Find the force experienced when it is kept under perpendicular magnetic field \vec{B}
a) $\sqrt{\frac{2 q^{3} B V}{m}}$
b) $\sqrt{\frac{q^{3} B^{2} V}{2 m}}$
c) $\sqrt{\frac{2 q^{3} B^{2} V}{m}}$
d) $\sqrt{\frac{2 q^{3} B V}{m^{3}}}$
7) A non - conducting changed ring earing a change of q_{1} mass m and radius r is rotated about its axis with constant angular speed W . Find the ratio of its magnetic moment with angular momentum is
a) $\frac{q}{m}$
b) $\frac{2 q}{m}$
C) $\frac{q}{2 m}$
d) $\frac{q}{4 m}$
8) Magnetic field at a point at a distance 1 m from the current carrying conduction of current 2A.
a) $1 \times 10^{-7} \mathrm{~T}$
b) $2 \times 10^{-7} \mathrm{~T}$
c) $3 \times 10^{-7} \mathrm{~T}$
d) $4 \times 10^{-7} \mathrm{~T}$

Kindly send me your study materials to padasalai.net@gmail.com
9) When the current changes from $+2 A$ to $-2 A$ in $0.5 s$ an emf of $8 V$ is induced in a coil. The Co-efficient of self-- induction of the coil is
a) 0.2 H
b) 1 H
c) 0.8 H
d) 0.1 H
10) In a transformer the number of turns in the primary and the secondary are 410 and 1230 respectively, If the current is primary is 6 A . Then that is the secondary coil is.
a) 2 A
b) 18 A
C) 12 A
d) 1 A
11) The dimention of $\frac{1}{\mu_{0} \varepsilon_{0}}$
a) $\left[\mathrm{LT}^{-1}\right]$
b) $\left[L^{2} \mathrm{~T}^{-2}\right]$
c) $\left[\mathrm{L}^{-1} \mathrm{~T}\right]$
d) $\left[\mathrm{L}^{-2} \mathrm{~T}^{2}\right]$
12) Franhofer lines are an example of \qquad spectrum
a) line emission
b) line obsorption
c) band emission
d) band absorption
13) The light falls from air medium on a glass prism having refractive index 2 . Then maximum refracted angle is
a) 30°
b) 45°
c) 60°
d) 90°
14) A yellow light which falls on the prism at minimum deviation position having angle of incidence i_{1} and angle of emergence i_{2}.
a) $i_{1}=i_{2}$
b) $i_{1}>i_{2}$
c) $i_{1}<i_{2}$
d) $i_{1}+i_{2}=90$
15) $\frac{20}{\pi^{2}} H$ induction is connected to a capacitor of capacitance C. The value of C in order to impart maximum power at 50 Hz is
a) $50 \mu \mathrm{~F}$
b) $0.5 \mu \mathrm{~F}$
c) $500 \mu \mathrm{~F}$
d) $5 \mu \mathrm{~F}$

Part - B

$6 \times 2=12$

Answer any six questions: Q.No: $\mathbf{2 4}$ is compulsory:

16) Compare Gravitational force and coulumb force.
17) Why two electric field lines cannot intersect.
18) Define Specific Resistance
19) Find the current in the following circuit.

20) Give the Amphere's circuital law.
21) Write the methods to increase the current sensitivty of a Galvonometer.
22) Give the generator rule.
23) Why the sky appears redish in contour at the time of sun rise and sunset.
24) Where the object to be placed to form image as 4 times of the object for the convex lense having focal length 20 cm .

Answer any six questions: \mathbf{Q}.No: $\mathbf{3 3}$ is compulsory:

25) Obtain the expression for the energy stoned in a capacitor.
26) Find the expression for the effective resistance of the Resistors connected in series.
27) Give the properties of dia magnetic meterials.
28) Explain the energy losses in transformer.
29) Give the integral forms of maxwel equns.
30) What is displacement current and Fraunhofer lines.
31) Derive the relation between f and R of spherical mirrors.
32) Explain - How will the galvonometer can be convented into ammeter?
33) The magnetic fluse passing through a coil perpendicular to its plane is a function of time and its given by $\varphi_{B}=\left(2 t^{3}+4 t^{2}+8 t+8\right) w b$. If the resistance of the cell is 5Ω, determine the induced current through the coil at a time t $=3$ second.

Part - D

$5 \times 5=25$

Answer all the questions:

34) Explain the Fizeau's method to determine the speed of light.
(OR)
What is emmisson spectra? explain its types.
35) Explain the construction and function of transformetic.
(OR)
How will you find in internal resistance of the cell using voltmeter.
36) Describe the microscopic model of current and obtain general form of Ohm's law (OR)
Derive the expression for the force between two parallel, current carrying conductors.
37) Calculate the electricfield due to a dipole on its axial line
(OR)
Show mathematically that the rotation of a coil is a magnetic field over one rotation induces an alternating emf of on cycle.
38) Obtain lens maker's formula and mention its significance.
(OR)
Calculate the magnetic field inside and outside of the long solenoid using Amphere's circuital law.
SIVAKUMAR, M, SiRen Iatric HSS,
Vallam-b22809, Tenkasidist.

Kindly send me your study materials to padasalai.net@gmail.com

