

V.M.G. RAJASEKARAN - RAMANI SRI SARADA SAKTHI MAT. HR. SEC. SCHOOL

STD: XII - A

Mathematics

BOOK BAC	CK ONEWORDS V	OLUME - 1			
CHOOSE THE CORRECT ANSW	ER:				
1. If $\left z - \frac{3}{z}\right = 2$, then the least value	of $ z $ is				
a. 1 b. 2	c. 3	d. 5			
2. A polynomial equation in x of degr	ree n always has				
a. n distinct roots	b. n real roots				
c. n imaginary roots	d. at most o	ne root			
3. If $(1 + i)(1 + 2i)(1 + 3i)(1 + ni)$	= x + iy, then 2.5.1	$0(1+n^2)$ is			
a. 1 b. i	$c. x^2 + y^2$	d. $1 + n^2$			
4. $\sin^{-1}[\tan \frac{\pi}{4}] - \sin^{-1}[\frac{\sqrt{3}}{x}] = \frac{\pi}{6}$. Then x	is a root of the equa	ation			
a. $x^2 - x - 6 = 0$	b. $x^2 - x - 12 = 0$				
c. $x^2 + x - 12 = 0$	d. $x^2 + x - 6 = 0$				
5. The ellipse $E_1: \frac{x^2}{9} + \frac{y^2}{4} = 1$ is inse	cribed in a rectangle	e R whose sides are parallel to the			
coordinate axes. Another ellipse E ₂ pa	assing through the p	point (0, 4) circumscribes the			
rectangle R. The eccentricity of the el	llipse is				
a) $\frac{\sqrt{2}}{2}$ b) $\frac{\sqrt{3}}{2}$	$c)\frac{1}{2}$	d) $\frac{3}{4}$			
6. If \vec{a} , \vec{b} , \vec{c} are non-coplanar, non-ze	ro vectors such that	$[\vec{a}, \vec{b}, \vec{c}] = 3$, then			
$\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is equal to		-			
a) 81 b) 9	c) 27	d) 18			
7. $\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{5}{3} - \csc^{-1}\frac{13}{12}$	is				
a. 2π b. π	c. 0	d. $\tan^{-1}\frac{12}{65}$			
8. The circle $x^2 + y^2 = 4x + 8y + 5$	5 intersects the line	3x - 4y = m at two distinct points if			
a) 15 < m < 65 b) 35 < m <					
9. If A, B and C are invertible matrice					
true?					
a. adj $A = A A^{-1}$	b. $adj(AB) = (adj$	A)(adj B)			
c. $\det A^{-1} = (\det A)^{-1}$	d. $(ABC)^{-1} = C^{-1}B$	$^{-1}A^{-1}$			
10. The value of $\sin^{-1}(\cos x)$, $0 \le x \le \pi$ is					
a. $\pi - x$ b. $x - \frac{\pi}{2}$	$c. \frac{\pi}{2} - X$	d. $x - \pi$			
11. The eccentricity of the hyperbola	whose latus rectum	is 8 and conjugate axis is equal to			

c) $\frac{2}{\sqrt{3}}$

half the distance between the foci is

b) $\frac{4}{\sqrt{3}}$

a) $\frac{4}{3}$

12. If $\vec{a} = 2\hat{i} + 3\hat{j} - \hat{k}$, $\vec{b} = \hat{i} + 2\hat{j} - 5\hat{k}$, $\vec{c} = 3\hat{i} + 5\hat{j} - \hat{k}$, then a vector perpendicular to \vec{a} lies in the plane containing \hat{b} and \hat{c} is a) - $17\hat{i} + 21\hat{j} - 97\hat{k}$ b) $17\hat{i} + 21\hat{j} - 123\hat{k}$ $c) - 17\hat{\iota} - 21\hat{\jmath} + 97\hat{k}$ d) - $17\hat{i} - 21\hat{j} - 97\hat{k}$ 13. The area of the triangle formed by the complex numbers z, iz and z + iz in the Argand's diagram is

b. $|z|^2$ c. $\frac{3}{2}|z|^2$ d. $2|z|^2$

a. $\frac{1}{2}|z|^2$

14. The polynomial $x^3 - kx^2 + 9x$ has three real zeros if and only if, k satisfies

a. $|k| \le 6$ b. k = 0 c. |k| > 0 d. $k \ge 6$ 15. If $\omega \ne 1$ is a cubic root of unit and $\begin{vmatrix} 1 & 1 & 1 \\ 1 & -\omega^2 - 1 & \omega^2 \\ 1 & \omega^2 & \omega^7 \end{vmatrix} = 3k$, then k is equal to

a. 1

16. The vector equation $\vec{r} = (\hat{\imath} - 2\hat{\jmath} - \hat{k}) + t(2\hat{\imath} - \hat{k})$ represents a straight line passing through the points

a) (0, 6, -1) and (1, -2, -1)

b) (0, 6, -1) and (-1, -4, -2)

c) (1, -2, -1) and (1, 4, -2)

d) (1, -2, -1) and (0, -6, 1)

17. The area of quadrilateral formed with foci of the hyperbolas $\frac{x^2}{a^2} - \frac{y^2}{h^2} = 1$ and $\frac{x^2}{a^2} - \frac{y^2}{h^2} = -1$ is

a) $4(a^2 + b^2)$ b) $2(a^2 + b^2)$ c) $(a^2 + b^2)$ d) $\frac{1}{2}(a^2 + b^2)$

18. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is _____.

a. 1

d. 3

19. An ellipse has OB as semi minor axes, F and F' its foci and the angle FBF' is a right angle. Then the eccentricity of the ellipse is

20. If z = x + iy is a complex number such that |z + 2| = |z - 2|, then the locus of z is

b. imaginary axis c. ellipse

21. The value of $\left(\frac{1+i\sqrt{3}}{1-i\sqrt{3}}\right)^{10}$ is

a. cis $\frac{2\pi}{3}$ b. cis $\frac{4\pi}{3}$ c. -cis $\frac{2\pi}{3}$ d. -cis $\frac{4\pi}{3}$

22. The equation $\tan^{-1}x - \cot^{-1}x = \tan^{-1}(\frac{1}{\sqrt{3}})$ has

a. no solution

b. unique solution

c. two solutions

d. infinite number of solutions

23. The locus of a point whose distance from (-2, 0) is 2/3 times its distance from the line $x = -\frac{9}{2}$ is

a) a parabola

b) a hyperbola c) an ellipse d) a circle

b. 12 c. 14 a. 15 d. 11 64. If $\sin^{-1}x = 2\sin^{-1}\alpha$ has a solution, then a. $|\alpha| \le \frac{1}{\sqrt{2}}$ b. $|\alpha| \ge \frac{1}{\sqrt{2}}$ c. $|\alpha| < \frac{1}{\sqrt{2}}$ d. $|\alpha| > \frac{1}{\sqrt{2}}$ 65. The volume of the parallelepiped with its edges represented by the vectors $\hat{i} + \hat{j}$, $\hat{i} + 2\hat{j}$, $\hat{\iota} + \hat{j} + \pi \hat{k}$ is a. $\frac{\pi}{2}$ a. $\frac{\pi}{2}$ b) $\frac{\pi}{3}$ c) π d) $\frac{\pi}{4}$ 66. If $\sin^{-1}x + \sin^{-1}y + \sin^{-1}z = \frac{3\pi}{2}$; the value of $x^{2017} + y^{2018} + z^{2019} - \frac{9}{x^{101} + y^{101} + z^{101}}$ is a. 0 67. According to the rational root theorem, which number is not possible rational zero of $4x^7 + 2x^4 - 10x^3 - 5$? d. 5 a. -1 68. The circle passing through (1, -2) and touching the axis of x at (3, 0) passing through the point a) (-5, 2) 69. Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -1 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A, then the value of x is ______b. 4 c. 3 70. $\tan^{-1}(\frac{1}{4}) + \tan^{-1}(\frac{2}{9})$ is equal to a. $\frac{1}{2}\cos^{-1}(\frac{3}{5})$ b. $\frac{1}{2}\sin^{-1}(\frac{3}{5})$ c. $\frac{1}{2}\tan^{-1}(\frac{3}{5})$ d. $\tan^{-1}(\frac{1}{2})$ 71. Distance from the origin to the plane 3x - 6y + 2z + 7 = 0 is b) 1 c) 2 a) 0 72. Consider an ellipse whose centre is of the origin and its major axis is along x-axis. If its eccentricty is $\frac{3}{5}$ and the distance between its foci is 6, then the area of the quadrilateral inscribed in the ellipse with diagonals as major and minor axis of the ellipse is 74. $\sin^{-1}(2\cos^2 x - 1) + \cos^{-1}(1 - 2\sin^2 x) =$ 75. If $\cot^{-1}(\sqrt{\sin \alpha}) + \tan^{-1}(\sqrt{\sin \alpha}) = u$, then $\cos 2u$ is equal to

76. If $|x| \le 1$, then $2\tan^{-1}x - \sin^{-1}\frac{2x}{1-x^2}$ is equal to a. $\tan^{-1}x$ b. $\sin^{-1}x$ c. 0

b. 0

a. $tan^2\alpha$

77. If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta) y - (\cos \theta) z = 0$,

d. tan 2α

 $(\cos \theta)x - y + z = 0$, $(\sin \theta)x + y - z = 0$ has a non-trivial solution then θ is ______. 78. If $\sin^{-1}x + \cot^{-1}(\frac{1}{2}) = \frac{\pi}{2}$, then x is equal to b. $\frac{1}{\sqrt{5}}$ c. $\frac{2}{\sqrt{5}}$ d. $\frac{\sqrt{3}}{2}$ a. $\frac{1}{2}$ 79. If $|z_1| = 1$, $|z_2| = 2$, $|z_3| = 9$ and $|9 z_1 z_2 + 4 z_1 z_3 + z_3 z_2| = 12$, then the value of $|z_1 + z_2 + z_3|$ is a. 1 d. 4 80. If $z = \frac{(\sqrt{3}+i)^3 (3i+4)^2}{(8+6i)^2}$, then |z| is equal to a. 0 d. 3 81. The equation of the circle passing through (1, 5) and (4, 1) and touching y-axis is $x^{2} + y^{2} - 5x - 6y + 9 + \lambda(4x + 3y - 19) = 0$ where λ is equal to b) 0 a) 0, $-\frac{40}{9}$ 82. If $A^{T}A^{-1}$ is symmetric, then $A^{2} =$ _____. a. A^{-1} b. $(A^{T})^{2}$ c. A^{T} a. A⁻¹ b. $(A^{T})^{2}$ c. A^{T} d. $(A^{-1})^{2}$ 83. If $A = \begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is ______. 84. If $|z - 2 + i| \le 2$, then the greatest value of |z| is c. $\sqrt{5} - 2$ d. $\sqrt{5} + 2$ b. $\sqrt{3} + 2$ 85. The polynomial $x^3 + 2x + 3$ has a. one negative and two imaginary roots b. one positive and two imaginary roots c. three real roots d. no zeros 86. The centre of the circle inscribed in a square formed by the lines $x^2 - 8x - 12 = 0$ and $y^2 - 14y + 15 = 0$ is b) (7, 4) a) (4, 7)c) (9, 4) 87. The angle between the line $\vec{r} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) + t(2\hat{\imath} + \hat{\jmath} - 2\hat{k})$ and the plane $\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - \hat{k}) = 3$ are b) 30° c) 45° d) 90° 88. $\sin^{-1}(\cos x) = \frac{\pi}{2}$ -x is valid for a. $-\pi \le x \le 0$ b. $0 \le x \le \pi$ c. $-\frac{\pi}{2} \le x \le \frac{\pi}{2}$ d. $-\frac{\pi}{4} \le x \le \frac{3\pi}{4}$ 89. The radius of the circle passing through the point (6, 2)two of whose diameter are x + y = 6 and x + 2y = 4 is

Kindly Send me your Answer Keys to email id - Padasalai.net@gmail.com

90. If adj $A = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$ and adj $B = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then adj(AB) is _____.

a.
$$\begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix}$$
 b. $\begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix}$ c. $\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix}$ d. $\begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$
91. If z_1, z_2 and z_3 are complex numbers such that $z_1 + z_2 + z_3$ and $|z_1| = |z_2| = |z_3| = 1$ then $z_1^2 + z_2^2 + z_3^2$ is a. 3 b. 2 c. 1 d. 0
92. If $x + y = k$ is a normal to the parabola $y^2 = 12x$, then the value of k is a) 3 b) -1 c) 1 d) 9
93. If a vector \vec{a} lies in the plane of $\vec{\beta}$ and $\vec{\gamma}$, then a) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ b) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 1$ c) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 0$ d) $[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$
94. If $|z| = 1$, then the value of $\frac{1+z}{1+z}$
a. z b. \vec{z} c. $\frac{1}{z}$ d. 1
95. If \vec{a} and \vec{b} are unit vectors such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}] = \frac{\pi}{4}$, then the angle between \vec{a} and \vec{b} is a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c. $\frac{\pi}{3}$ d. $\frac{\pi}{2}$
96. The distance between the planes $x + 2y + 3z + 7 = 0$ and $2x + 4y + 6z + 7 = 0$ is a) $\frac{\pi}{2\sqrt{2}}$ b) $\frac{7}{2}$ c. $\frac{\sqrt{7}}{2}$ d) $\frac{7}{2\sqrt{2}}$
97. If cot '2 and cot '3 are two angles of a triangle, then the third angle is a. $\frac{\pi}{4}$ b. $\frac{3\pi}{4}$ c. $\frac{\pi}{6}$ d. $\frac{\pi}{3}$ 3
98. Area of the greatest rectangle inscribed in the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is a) $2ab$ b) ab c. \sqrt{ab} d) $\frac{a}{b}$ b. $\log(\Delta_2/\Delta_1)$, $e(\Delta_3/\Delta_1)$ c. $\log(\Delta_2/\Delta_1)$, $e(\Delta_3/\Delta_1)$ b. $\log(\Delta_2/\Delta_3)$, $\log(\Delta_2/\Delta_3)$ c. $\log(\Delta_2/\Delta_1)$, $\log(\Delta_3/\Delta_1)$ d. $e^{(\Delta_1/\Delta_3)}$, $e^{(\Delta_2/\Delta_3)}$

Kindly Send me your Answer Keys to email id - Padasalai.net@gmail.com

a.
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$

a.
$$\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$$
 b. $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ c. $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ d. $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$

c.
$$\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$$

d.
$$\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$$

a)
$$\frac{\pi}{6}$$

b)
$$\frac{\pi}{4}$$

c)
$$\frac{\pi}{3}$$

d)
$$\frac{\pi}{2}$$

120. The angle between the lines $\frac{x-2}{3} = \frac{y+1}{-2}$, z = 2 and $\frac{x-1}{1} = \frac{2y+3}{3} = \frac{z+5}{2}$ is a) $\frac{\pi}{6}$ b) $\frac{\pi}{4}$ c) $\frac{\pi}{3}$ d) $\frac{\pi}{2}$ 121. If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$ lies in the plane $x + 3y - \alpha z + \beta = 0$, then (α, β) is a) (-5, 5) b) (-6, 7) c) (5, -5) d) (6, -7)

a) (- 5, 5) b) (- 6, 7) 122. The value of $\sum_{i=1}^{13} i^n + i^{n-1}$

123. The coordinates of the point where the line $\vec{r} = (6\hat{\imath} - \hat{\jmath} - 3\hat{k}) + t(-\hat{\imath} + 4\hat{k})$ meets the plane $\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - \hat{k}) = 3$ are

124. If $\omega = \operatorname{cis} \frac{2\pi}{3}$, then the number of distinct roots of

$$\begin{vmatrix} z+1 & \omega & \omega^2 \\ \omega & z+\omega^2 & 1\\ \omega^2 & 1 & z+\omega \end{vmatrix} = 0 \text{ is}$$
a. 1 b. 2

125. Let C be the circle with centre at (1, 1) and radius = 1. If T is the circle centered at (0, y)passing through the origin and touching the circle C externally, then the radius of T is equal to

a)
$$\frac{\sqrt{3}}{\sqrt{2}}$$

b)
$$\frac{\sqrt{3}}{2}$$

c)
$$\frac{1}{2}$$

d)
$$\frac{1}{4}$$

126. If the direction cosines of a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$ then

a)
$$c = \pm 3$$

b)
$$c = \pm \sqrt{3}$$
 $c) c > 0$

c)
$$c > 0$$

d)
$$0 < c < 1$$

127. If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is _____.

d. 21

128. If the distance of the point (1,1,1) from the origin is half of its distance from the plane x + y + z + k = 0, then the values of k are

a)
$$\pm 3$$

b)
$$\pm 6$$

d) 1

129. If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, then the value of λ is

a)
$$2\sqrt{3}$$
 b) $3\sqrt{2}$ c) 0
130. If $A = \begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$, then adj(adj A) is _____.

a.
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$

b.
$$\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$$

a.
$$\begin{bmatrix} 3 & -3 & 4 \\ 2 & -3 & 4 \\ 0 & -1 & 1 \end{bmatrix}$$
 b.
$$\begin{bmatrix} 6 & -6 & 8 \\ 4 & -6 & 8 \\ 0 & -2 & 2 \end{bmatrix}$$
 c.
$$\begin{bmatrix} -3 & 3 & -4 \\ -2 & 3 & -4 \\ 0 & 1 & -1 \end{bmatrix}$$
 d.
$$\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

d.
$$\begin{bmatrix} 3 & -3 & 4 \\ 0 & -1 & 1 \\ 2 & -3 & 4 \end{bmatrix}$$

V.M.G. RAJASEKARAN – RAMANI SRI SARADA SAKTHI MAT. HR. SEC. SCHOOL

STD: XII - A

Mathematics

DOOK BACK ONEWORDS VOLUME - 2					
CHOOSE THE CORE	RECT ANSWER:				
1. The differential equal B are parameters, is	tion representing the	e family of curves y	$y = A \cos(x + B)$, where A and		
$a) \frac{d^2 y}{dx^2} - y = 0$	$b)\frac{d^2y}{dx^2} + y = 0$	$c)\frac{d^2y}{dx^2} = 0$	$d)\frac{d^2x}{dy^2} = 0$		
2. The value of $\int_0^1 x(1-x)^2 dx$	$-x)^{99}dx$ is				
a) $\frac{1}{11000}$ 3. The number of arbitra	b) $\frac{1}{10100}$		d) $\frac{1}{10001}$ of a differential equation of		
third order is	1 > 2	\ 1	1) 0		
a) 3	b) 2	c) 1	d) 0		
4. Which one of the foll		the statement itself	£		
(1) Negation of a negati(2) If the last column of					
(3) If the last column of					
(4) If p and q are any tw					
	-	_	t he sells computers to one in		
			probability that he will sell a		
computer to exactly two			1		
a) $\frac{57}{20^3}$	b) $\frac{57}{20^2}$	c) $\frac{19^3}{20^3}$	d) $\frac{57}{20}$		
6. If $\int_0^x f(t)dt = x + \int_0^x f(t)dt = x + \int_0^x f(t)dt$	$\int_{x}^{1} t f(t) dt$, then the	e value of f(1) is			
a) ½	^x b) 2	c) 1	d) ³ ⁄ ₄		
7. Which one of the foll	owing is incorrect?	For any two propo	sitions p and q , we have		
a) $\neg (p \lor q) \equiv \neg p \land \neg c$ c) $\neg (p \lor q) \equiv \neg p \lor \neg c$	q	$\mathbf{b}) \neg (p \land q) \equiv \neg p$	$p \vee \neg q$		
$c) \neg (p \lor q) \equiv \neg p \lor \neg$	q	$\mathbf{d}) \neg (\neg p) \equiv p$			
			ve at a football stadium. The		
buses carry, respectively			•		
			bus carrying the randomly		
		_	ected. Let <i>Y</i> denote the number		
of students on that bus.		- •	1) 41 41		
a) 50, 40		c) 40.75, 40			
	ich follows the relat	P(X=4) = P(X=4)	(=2), then the probability of		
success is	b) 0.25	a) 0 275	d) 0.75		
a)0.125	, , , , , , , , , , , , , , , , , , ,	c) 0.375	d) 0.75 n the number of rows in the		
truth table is	ment mvorves 3 sm	ipie statements, the	if the number of lows in the		
a) 9	b) 8	c) 6	d) 3		
11. If $u(x, y) = x^2 + 3xy$	$+$ y $-$ 2019, then $\frac{1}{\partial x}$	- 1(4, - 5) 18 Equal 10	d) 13		
31 - 4	D1 - 1	C.1 - I	(1) [3		

x	-2	-1	0	1	2
f(x)	k	2k	3 <i>k</i>	4 <i>k</i>	5 <i>k</i>

Then E(X) is equal to:

21. The order and degree of the differential equation $\frac{d^2y}{dx^2} + (\frac{dy}{dx})^{1/3} + x^{1/4} = 0$ are respectively

a) 2, 3

b) 3, 3

c) 2, 6

d) 2, 4

22. Let X represent the difference between the number of heads and the number of tails obtained when a coin is tossed n times. Then the possible values of X are

a)
$$i + 2n$$
, $i = 0,1,2...n$

b)
$$2i - n$$
, $i = 0,1,2...n$

c) $n - i$, $i = 0,1,2n$		d) $2i + 2n$, $i = 0,1,$				
23. On a multiple-choice exam with 3 possible destructives for each of the 5 questions, the probability that a student will get 4 or more correct answers just by guessing is						
	_					
a) $\frac{11}{243}$	b) $\frac{3}{8}$	2 10	d) $\frac{5}{243}$			
		ed as follows. Whic	ch one of the following is not			
a binary operation on $\mathbb R$ '	?					
a) $a * b = \min(a . b)$		b) $a * b = \max_{i} (a, b)$	b)			
c) $a*b=a$		d) $a * b = a^b$				
25. The slope of the line	normal to the curve	$ef(x) = 2\cos 4x \text{ at } x$	$c = \frac{\pi}{12}$ is			
a) $-4\sqrt{3}$	b) -4	c) $\frac{\sqrt{3}}{12}$	d) $4\sqrt{3}$			
26. The maximum value squares is 200, is	of the product of tw	vo positive numbers	s, when their sum of the			
a) 100	b) $25\sqrt{7}$	c) 28	d) $24\sqrt{14}$			
27. Let X be random var	iahla with muahahili	try donaity function	$(x) = \int_{-2}^{2} x \ge 1$			
27. Let A be failuoili vai	iable with probabili	ty density function	$(x) - \begin{cases} x^3 \\ 0 \end{cases}$			
Which of the following s	statement is correct?	?	(0 x \ 1			
a) both mean and varian	nce exist	b) mean exists but	variance does not exist			
c) both mean and varian	nce do not exist	d) variance exists	but Mean does not exist			
28. The volume of solid	of revolution of the	region bounded by	$y^2 = x(a - x)$ about x-axis is			
a) πa^3	b) $\frac{\pi a^3}{4}$	c) $\frac{\pi a^3}{5}$	d) $\frac{\pi a^3}{a^3}$			
,	4	3	tre at (h, k) and radius 'a' is			
a) 2	b) 3	c) 4	d) 1			
30. The value of $\int_0^\infty e^{-3}$						
	5	4	1 2			
a) $\frac{7}{27}$	27	c) $\frac{1}{27}$	d) $\frac{2}{27}$			
31. Angle between $y^2 = x$						
a) $\tan^{-1} \frac{3}{4}$	b) $\tan^{-1} \frac{4}{3}$	c) $\frac{\pi}{2}$	d) $\frac{\pi}{4}$			
32. The solution of $\frac{dy}{dx}$ +	p(x)y = 0 is	_	•			
a) $y = c \rho \int p dx$	b) $y = ce^{-\int p dx}$	c) $x = ce^{-\int pdy}$	d) $x = ce^{\int pdy}$			
33. The random variable	Y has the probabili	ty density function	$f(x) = \int ax + b \ 0 < x < 1$			
33. The random variable X has the probability density function $f(x) = \begin{cases} ax + b & 0 < x < 1 \\ 0 & otherwise \end{cases}$						
and $E(X) = \frac{7}{12}$, then a ar	nd b are respectively	y				
	b) ½ and 1		d) 1 and 2			
34. Which of the following) -					
I. The number of cars cro		•				
II. The number of custom	-	•	moment.			
III. The time taken to con			1) ***			
a) I and II	b) II only	c) III only	a) II and III			
35. The value of $\int_0^a (\sqrt{a^2})^a$	$(x^2 - x^2)^3 dx$ is					
a) $\frac{\pi a^3}{16}$	b) $\frac{3\pi a^4}{16}$	c) $\frac{3\pi a^2}{8}$	d) $\frac{3\pi a^4}{8}$			

83. The truth table for $(p \land q) \rightarrow \neg q$ is given below

p	q	$(p \wedge q) \vee (\neg q)$
T	T	(a)
T	F	(b)
F	T	(c)
F	F	(d)

Which one of the following is true?

- (a) (b) (c) (d)
- (1) T T T T
- (2) T F T T
- (3) T T F T
- (4) T F F F

84. The maximum slope of the tangent to the curve $y = e^x \sin x$, $x_{-}[0,2\pi]$ is at

a) $x = \frac{\pi}{4}$ b) $x = \frac{\pi}{2}$ c) $x = \pi$ d) $x = \frac{3\pi}{2}$ 85. A random variable *X* has binomial distribution with n = 25 and p = 0.8 then standard deviation of X is

a) 6

a) 6 b) 4 c) 3 d) 2

86. The value of $\int_0^1 (\sin^{-1}x)^2 dx$ is

a) $\frac{\pi^2}{4} - 1$ b) $\frac{\pi^2}{4} + 2$ c) $\frac{\pi^2}{4} + 1$ d) $\frac{\pi^2}{4} - 2$ 87. If the function $f(x) = \frac{1}{12} a < x < b$ for, represents a probability density function of a continuous random variable X, then which of the following cannot be the value of a and b?

- a) 0 and 12
- b) 5 and 17
- c) 7 and 19
- d) 16 and 24

88. The tangent to the curve $y^2 - xy + 9 = 0$ is vertical when

- b) $y = \pm \sqrt{3}$
- c) $y = \frac{1}{2}$
- d) $y = \pm 3$

89. The position of a particle moving along a horizontal line of any time t is given by $s(t) = 3t^2 - 2t - 8$. The time at which the particle is at rest is

- d) t = 3

a) t = 0 b) $t = \frac{1}{3}$ c) t = 1 d) 90. If P(X = 0) = 1 - P(X = 1). If E(X) = 3Var(X), then P(X = 0) is a) $\frac{2}{3}$ b) $\frac{2}{5}$ c) $\frac{1}{5}$ d)

91. The general solution of the differential equation $\log(\frac{dy}{dx}) = x + y$ is a) $e^x + e^y = C$ b) $e^x + e^{-y} = C$ c) $e^{-x} + e^y = C$ d) $e^{-x} + e^{-y} = C$

- 92. The proposition $p \land (\neg p \lor q)$ is
 - a) a tautology

- b) a contradiction
- d) logically equivalent to $p \vee q$

c) logically equivalent to $p \land q$ d) logic 93. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is

- a) $x + \frac{\pi}{2}$
- b) x + $\frac{\pi}{2}$ c) x $\frac{\pi}{2}$

94. Suppose that *X* takes on one of the values 0, 1, and 2. If for some constant *k*, P(X=i)=k P(X=i-1) for i=1, 2 and P(X=0)=1/7, then the value of k is

a) 1

95. If $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$ then a is

a) 4	b) 1	c) 3	d) 2
96. The dual of \neg ($p \lor q$	$q) \vee [p \vee (p \wedge \neg r)]$	is	
a) $\neg (p \land q) \land [p \lor (p \lor q)]$	$p \wedge \neg r)]$	b) $(p \land q) \land [p \land q]$	$(p \vee \neg r)]$
c) $\neg (p \land q) \land [p \land (p \land q)]$	$p \wedge r)]$	$d) \neg (p \land q) \land [p]$	$\land (p \lor \neg r)]$
97. Two coins are to be	flipped. The first co	in will land on head	ds with probability 0.6, the
second with Probability	0.5. Assume that th	e results of the flips	s are independent, and let X
equal the total number of	of heads that result.	The value of $E(X)$ is	S
a) 0.11	b) 1.1	c)11	d)1
98. The population <i>P</i> in proportional to the popu		nat the rate of increa	ase in the population is
	b) $P = Ce^{-kt}$	c) $P = Ckt$	d) P = C
99. If $f(x) = \frac{x}{x+1}$, then i	ts differential is give	en by	
$a) \frac{-1}{(x+1)^2} dx$			
	$\text{irve } 6y = x^3 + 2 \text{ at w}$	hich y-coordinate c	hanges 8 times as fast as x-
coordinate is			
a) (4,11)	b) (4,–11)	c) (-4,11)	d) (-4,-11)
101. If $g(x, y) = 3x^2 - 5y$			
a) $6e^{2t} + 5\sin t - 4\cos t$	$t \sin t$	b) $6 e^{2t} - 5\sin t + 4$ d) $3 e^{2t} - 5\sin t + 4$	$4\cos t \sin t$
c) $3e^{2t} + 5\sin t + 4\cos t$		d) $3e^{2t} - 5\sin t +$	$4\cos t \sin t$
102. The curve $y = ax^4$		1):	
a) has no horizontal ta	ngent	b) is concave up	C to Classification
c) is concave down	.11ii	d) has no points of	inflection
103. Which one of the fo			d) All the above
	b) Multiplication		
104. The general solution			
a) $xy = k$	b) $y = k \log x$	c) $y = kx$	$d) \log y = kx$
105. The operation * de	fined by $a * b = \frac{ab}{7}$ i		ation on
a) \mathbb{Q}^+	b) \mathbb{Z}	c) R	$\mathrm{d})\mathbb{C}$
106. The value of $\int_{-1}^{2} z ^2$	$x \mid dx$ is	_	-
a) $\frac{1}{2}$	b) $\frac{3}{2}$	c) $\frac{5}{2}$	d) $\frac{7}{2}$
107. The maximum valu	the of the function x^2		_
a) 1/e	b) 1/2e	c) $\frac{1}{e^2}$	$d) \frac{4}{e^4}$
108. Which one of the feath of a) sin x is an even function b) Every square matrix	tion.	has the truth value	T?
b) Every square matrix	•	oniugata ig nuraly	imaginary
c) The product of comp		conjugate is purely	imagmary
d) $\sqrt{5}$ is an irrational nu		1 6 1 6	. 1 01.
109. The number given			
a) 2	b) 2.5	c) 3	d) 3.5
110. The value of the lin) 1S	
a) 0	b) 1	c) 2	$d) \infty$
111. Which one is the in	verse of the stateme	ent $(p \lor q) \to (p \land$	_q) ?

a) (p \land	$(q) \rightarrow ($	$p \vee \underline{q}$)	b) ¬ (<i>j</i> d) (¬ <i>p</i>	$p \lor q) \rightarrow (p)$	$\wedge q)$	
c) (¬p \	1/	` 1					
112. A r	od of le	ength 2	<i>l</i> is broken into t	two pieces at	random. The	probability de	nsity function
of the sh	orter of	f the tw	yo pieces is $f(x)$	$0 = \begin{cases} \overline{\iota} & 0 \\ 0 & \ell \end{cases}$	< x < 1 < x < 2l	The mean and	variance of
the short	er of th	ie two j	pieces are respec	ctively			
a) $\frac{l}{l}$, $\frac{l^2}{l}$	<u>-</u>		b) $\frac{l}{2}$, $\frac{l^2}{6}$	c) l, -	<u>-</u>	d) $\frac{l}{l} \cdot \frac{l^2}{l}$	
				_	· 	´ 2´12	
113. 111	e soluu	ion or t	he differential e	quation $\frac{d}{dx} = 1$	2xy is	•	
-			b) $y = 2x^2 +$	· · · · · · · · · · · · · · · · · · ·			
error in 3	_	tage err	or of fifth root of	31 is approxim	natery now m	any times the pe	rcentage
a) $\frac{1}{31}$	<i>7</i> 1.		b) $\frac{1}{5}$	c) 5		d) 31	
	()		5	•		u) 31	
		$= X^{j}, X^{j}$	> 0 , then $\frac{\partial w}{\partial x}$ is e		- 1	1) 1	
a) x ^y lo 116.	g x		, , .	c) y x ^y	-1	d) x log y	
110.	p	q	$(p \land q) \rightarrow \neg p$				
	T	T	(a)				
	T	F	(b)				
	F	T	(c)				
	F	F	(d)				
Which o	ne of th	ne follo	wing is correct	for the truth v	value of ($p \land$	$q) \rightarrow \neg p$?	
	(c) (d		C		(1	1/ 1	
(1) T T							
(2) F T							
(3) <i>F F</i> (4) <i>T T</i>							
(4) 1 1		(2x)	0 < x < a .	1 1 11.	1		
117. If <i>f</i>	(x) =	$\{0$	$0 \le x \le a$ is a otherwise	a probability of	lensity functi	ion of a random	ı varıable,
then the	value o	of a is					
a) 1			b) 2	c) 3		d) 4 dv	
118. If si	in x is t	he inte	grating factor of	the linear dif	fferential equ	equation $\frac{dy}{dx} + Py$	= Q, then P is
a) logs	in x		b) $\cos x$	c) tan .	x	d) $\cot x$	
119. The	numb	er give	by the Rolle's	_			3] is
a) 1			b) $\sqrt{2}$	c) $\frac{3}{2}$		d) 2	
120. A s	tone is	thrown	up vertically. T	he height it r	eaches at tim	e t seconds is g	iven by

c) 3

d) 3.5

 $x = 80t - 16t^2$. The stone reaches the maximum height in time t seconds is given by

b) 2.5

a) 2