Half-Yearly Examination - 2023
 MATHEMATICS

Marks ${ }^{\prime \prime}$

PART - 1

Answer all the queations. Choose the correct answer from the given four alternatives.
$20=1=20$
1 If $\rho(A)=\rho(A, B))$ = number of unknowna then the sysiem $A X=B$ of Inear equations
a) consistert and has unique solution b) consistent, a) consistent and has infinitely many solutions d) Inconsistant
2. If $(A B)^{\prime}=\left(\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right)$ and $A^{-1}=\left(\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right)$ then $\left.B^{-1}=a\right)\left(\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right)$ b) $\left(\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right)$ c) $\left(\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right)$ d) $\left(\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right)$
3. How many roota does the equation $z^{\prime}=\bar{z}$ have? \quad a) 1 b) 2 c) 3 (p) $)^{4}$

4 If a and ρ are the roots of $x^{2}+x+1=0$ then $\alpha^{m 0 s e}+\rho^{\text {mos }}$ (s, $\left.a\right)-1$ b) -2 c) 1 d) 2
5. The polynomial $x^{3}-k x^{2}+8 x$ has three real zeros if and only if k satisfies $\left.\left.a\right)|k| \leq 6 \quad b\right) k=0 \quad$ c) $|k|>6$ (d) $|k| \geq 6$

6 For a $5^{\prime \prime}$ degree polynomial equations with real coefficients, wheih of the following is possible?
a) it can have 1 real root and 4 purely maginary roots b) it can have 2 real roots and 3 purely imaginary roots c) A can have 4 real roots and 1 purely imaginary root d) it can have 5 purely imaginary roots
7. $\sin ^{-1}\left(\tan \frac{\pi}{4}\right)-\sin ^{-1}\left(\sqrt{\frac{3}{x}}\right)=\frac{\pi}{6}$ Then x is a root of the equationa) $\left.\left.\left.x^{2}-x-6=0,0\right) x^{2}-x-12=0 c\right) x^{2}+x-12=0 d\right) x^{2}+x-6=0$
8. If $\sin ^{-1} x+\sin ^{-1} y+\sin ^{-1} z=\frac{3 \pi}{2}$, the value of $x^{2011}+y^{2010}+z^{2010}-\frac{6}{x^{101}+y^{101}+z^{101}}$ is 210 b) 1 c) 2 d) 3
9. The locus of a point whose distance from $(-2,0)$ is $\frac{2}{3}$ times its distance from the line $x=-\frac{9}{2}$ is a) a circle b) a parabola at) an ellipse d) a hyperbola
10. If $P(x, y)$ by any point on $16 x^{2}+25 y^{2}=400$ with foci $F_{1}(3,0)$ and $F_{2}(-3,0)$ then $P F_{1}+P F_{2}$ - is a) 6 b) 8 ef) 40 d) 12
11. The distance between the planes $x+2 y+3 z+7=0$ and $2 x+4 y+6 z+7=0$ is a) $\frac{\sqrt{7}}{2}$ b) $\frac{7}{2}$,e) $\frac{\sqrt{7}}{2 \sqrt{2}}$ d) $\frac{7}{2 \sqrt{2}}$
12. The volume of the parallel piped with its edges represented by the vectors $\hat{i}+\hat{j}, \hat{i}+2 \hat{j}, \hat{i}+\hat{j}+\pi \hat{k} \quad$ a) $\frac{\pi}{2} \quad$ b) $\frac{\pi}{3} \quad$ c) $\frac{\pi}{4}$ a) π
13. The point of inflection of the curve $y=(x-1)^{3}$ is a) $(0,1)$ b) $(1,0)$ c) $(0,0)$ d) $(1,1)$
14. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is a) $\tan ^{-1}\left(\frac{3}{4}\right)$ b) $\tan ^{-1}\left(\frac{4}{3}\right)$ c) $\frac{\pi}{4}$ dd) $\frac{\pi}{2}$
15. If $g(x, y)=3 x^{2}-5 y+2 y^{2}, x(t)=e^{t}$ and $y(t)=$ cost then $\frac{d g}{d t}$ is equal to
a) $6 \mathrm{e}^{x}+5 \sin t-4 \cos t \sin t \quad$ b) $6 \mathrm{e}^{x}-5 \sin t+4 \cos t \sin t \quad$ c) $3 \mathrm{e}^{x}-5 \sin t+4 \cos t \sin t \quad$ d) $3 \mathrm{e}^{x}+5 \sin t+4 \cos t \sin t$
16. If $f(x, y)=e^{\pi y}$, then $\frac{\partial^{2} f}{\partial x \partial y}$ is equal to a) $x y e^{x y}$ b) $(1+x) e^{\text {ry }}$
c) $\left.(1+y) e^{x y} \quad d\right)(1+x y) e^{x y}$
17. The value of $\int_{0}^{\pi} \sin ^{4} x d x$ is a) $\frac{3 \pi}{2}$ b) $\frac{3 \pi}{4}$ c) $\frac{3 \pi}{6}$ d) $\frac{3 \pi}{8}$
18. If $\int_{0}^{\frac{1}{4}} \frac{1}{4+x^{2}} d x=\frac{\pi}{8}$ then $a-$ is a) 1 (6) 2 c) 3 d) 4
19. The slope at any point of a curve $y=f(x)$ is given by $\frac{d y}{d x}=3 x^{2}$ and it passes through $(-1,1)$. Then the equation of the curve is a) $y=x^{3}+2$ b) $y=x^{3}+5$ c) $y=3 x^{2}+4$ d) $y=3 x^{3}+4$
20. If $\cos x$ is the integrating factor of the linear differential equation $\frac{d y}{d x}+P y=Q$ then P is a) $\tan x$ b) $\left.\cot x \quad c\right)-\cot x$ d)-tanx PART-2
Answer any 7 questions. $30^{\text {in }}$ question must be answered compulsory.
$7 \times 2=14$
21. If $\frac{z+3}{z-5 i}=\frac{1+4 i}{2}$, find the complex number z-in rectangular form.
22. Determine the number of positive and negative roots of the equation $x^{9}-5 x^{4}-14 x^{7}=0$
23. For what value of x, the inequality $\frac{\pi}{2}<\cos ^{-1}(3 x-1)<\pi$ holds?
24. Identify the type of conic section for each of the following equations i) $3 x^{2}+3 y^{2}-4 x+3 y+10=0$ ii) $3 x^{2}+2 y^{2}=14$
25. Find the magnitude and the direction cosines of the torque about the point $(2,0,-1)$ of a force $2 i+j-k$ whose line of action passes through the origin.
26. Evaluate : $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^{2}}\right)$
27. Use the linear approximation to find approximate value of $\sqrt[3]{26}$

Kindly send me your answer keys to us - padasalai.net@gmail.com
28. Evalinte the umit $\int_{\operatorname{tog} 2}^{\text {ayo } 2} e^{-i x} d x$

29 Determina the Order, degree (ffexists) of the following differential equation $\left(\frac{d^{2} y}{d x^{2}}\right)^{2}+\left(\frac{d y}{d x}\right)^{2}=x \sin \left(\frac{d^{2} y}{d x^{2}}\right)$
30. Docrypt the received encoded message (10 1 1) (6) (1) wth encryption matrix $\left(\begin{array}{cc}-1 & 1 \\ 2 & 1\end{array}\right)$ and the decrypilion mation as its inverse. where the systern of codes is described by the numbers $1-26$ to the letters $A-Z$ respectively and the number 0 to a blarik space

PART - 3
Answer any 7 questions. $40^{\text {m }}$ question must be answered compulsory.
31. Solve the following system of equations by Cramer's ruie. $\frac{3}{x}+2 y=12, \frac{2}{x}+3 y=13$
32. Find the value of $\left(\frac{1+\sin \frac{\pi}{10}+i \cos \frac{\pi}{10}}{1+\sin \frac{\pi}{10}-i \cos \frac{\pi}{10}}\right)^{10}$
33. Obtain the condition that the roots of $x^{3}+p x^{2}+q x+y=0$ are in $A P$.
34. Find the domain of $\cos ^{-1}\left(\frac{2+\sin x}{3}\right)$
35. Find the point of intersection of the lines $\frac{x-1}{2}=\frac{y-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}=\frac{y-1}{2}=z$
36. Write the Maclaurin series expansion for the function $f(x)=\tan ^{-1} x,-1 \leq x \leq 1$
37. If $U(x, y, z)=\log \left(x^{3}+y^{3}+z^{3}\right)$, find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$
38. Find the area of the region bounded by the y-axis and the parabola $x=5-4 y-y^{2}$
39. Solve $\left[y[1-x \tan x]+x^{2} \cos x\right] d x-x d y=0$
40. The Earth is revolving around the Sun in eliiptical orbit when Sun is located at one of the focus. If the distance between Sun and the other focus is $575 \times 10^{5} \mathrm{~km}$ and eccentricity is $\frac{1}{2}$ then find the maximum and minimum distance between the earth and sun in earth s orbit.

PART - 4
Answer all the questions.
41. a) Test the consistency of the following system of linear equations and solve it if it is consistent. $x-y+z=-9, \quad 2 x-y+z=4$ $3 x-y+z=6, \quad 4 x-y+2 z=7$ (OR) b) If $z=x+i y$ and arg $\left(\frac{z-i}{z+2}\right)=\frac{\pi}{4}$, show that $x^{2}+y^{2}+3 x-3 y+2=0$
42. a) Identify the type of copic and find centre, foci, vertices and directrices of the following : $9 x^{2}-y^{2}-36 x-6 y+18=0$
b) If $u=\sin ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{1}{2} \tan u$
43. a) Find the local extrema of the function $f(x)=4 x^{4}-6 x^{4}$ (OR) b) Solve : $x^{4}+3 x^{3}-3 x-1=0$
44. a) If $\vec{a}=2 \hat{i}+3 \hat{j}-\hat{k}, \vec{b}=3 \hat{i}+5 \hat{j}+2 \hat{k} \cdot \vec{c}=-\hat{i}-2 \hat{j}+3 \hat{k}$ then find the following

1) $\vec{a} \times(\vec{b} \times \vec{c})$ ii) $[\vec{a} \vec{b} \vec{c}]$
iii) $(\vec{a}, \vec{c}) \vec{b}$
(OR)
b) Evaluate : $\int_{0}^{\pi} \frac{x}{1+\sin x} d x$
45. a) A pot of boiling water at $100^{\circ} \mathrm{C}$ is removed from a stove at time $\mathrm{t}=0$ and left to cool in the kitchen. After 5 minutes. the water temperature has decreased to $80^{\circ} \mathrm{C}$, and another 5 minutes later it has dropped to $65^{\circ} \mathrm{C}$. Determine the temperature of the kitchen. (OR) b) If $a_{1}, a_{2}, a_{3} \ldots$ an is an arithmetic progression with common difference d, prove that
$\tan \left[\tan ^{-1}\left(\frac{d}{1+a_{1} a_{2}}\right)+\tan ^{-1}\left(\frac{d}{1+a_{2} a_{3}}\right)+\ldots \tan ^{-1}\left(\frac{d}{1+a_{n} a_{n-1}}\right)\right]=\frac{a_{n}-a_{1}}{1+a_{1} a_{n}}$
46. a) Find the dimensions of the rectangle with maximum area that can be inscribed in a circle of radius 10 cm . (OR)
b) Solve $\left(1+2 e^{\frac{x}{y}}\right) d x+2 e^{\frac{y}{y}}\left(1-\frac{x}{y}\right) d y=0$

47 a) Parabolic cable of a 60 m portion of the roadbed of a suspension bridge are positioned as shown below. Vertical cabies are to be spaced every 6 m aiong this portion of the roadbed. Calcuiate the iengths of first two of these vertical cabies from the vertex

(OR) b) Find the vector parametric vector non-parametnc and Cartesian form of the equation of the plane passing through the points 1.20) $2.2-1$) and paraliei to the straight line $\frac{x-1}{1}=\frac{2 y+1}{2}=\frac{z+1}{-1}$

12 Mathematics - 2

