COMMON HALF YEARLY EXAMINATION - 2023

Standard XII
सagN [1] 2 BOTO]

MATHEMATICS

Mares: 0
Time : $\mathbf{3 . 0 0}$ hrs
Part - A
I. Choose the correct answer:

1 if $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}-\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$, tian $B^{-1}=$
a) $\left[\begin{array}{cc}2 & -5 \\ -3 & 3\end{array}\right]$
b) $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
d) $\left[\begin{array}{cc}0 & -5 \\ -3 & 2\end{array}\right]$
2. If $A=\left[\begin{array}{cc}2 & 3 \\ 5 & -2\end{array}\right]$ be such that i $A^{-1}=A$, then i. is
a) 19
b) 14
c) 21
d) 17
3. The product of all the $n^{\text {th }}$ roots of unity is
a) 1
b) 0
c) $(-1)^{x-1}$
d) $\{-1\}$
4. If $\frac{z-1}{z+1}$ is purely imaginary, then $|z|$ is
a) $1 / 2$
b) 1
c) 2
d) 3

5 If α, β and y are the zero of $x^{3}+p x^{2}+q x+c$, then $\sum 1 / a$ is
a) q / r
b) $-p / r$
c) a / r
d) $-7 / p$
6. The period of $y=\sec x$ is
a) π
b) 2π
c) 3π
d) 4π
7. $\tan ^{-1}(1 / 4) \cdot \tan ^{-1}(2 / 9)$ is equal to
a) $\frac{1}{2} \cos ^{-1}\left(\frac{3}{5}\right)$
b) $\frac{1}{2} \sin ^{-1}\left(\frac{3}{5}\right)$
c) $\frac{1}{2} \tan ^{-1}\left(\frac{3}{5}\right)$
J) $\tan ^{-1}\left(\frac{1}{2}\right.$

8 The locus of the point of intersection of perpendicular tangents to the parabola $y^{2}=16 x$ is
a) $x=4$
b) $x=-4$
c) $y=4$
d) $x+y=0$
9. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
a) 1
b) 3
c) $\sqrt{10}$
d) $\sqrt{11}$

10 If a and $\overline{\mathrm{b}}$ are paraliel vectors, then $\left|\frac{j}{\mathrm{j}} \mathrm{c} \mathrm{b}\right|=$
a) 2
b) -1
c) 1
d) 0
11. The coordinates of the point where the line $\hat{r}-|6 \hat{i}-j-3 \hat{k}|-t|-i+4 \dot{k}|$ meets the plane if. $(i+j-\hat{k})=3$ are
a) $(2,1,0)$
b) $(7,-1,-7)$
c) $(1,2,-6)$
d) $(5,-1,1)$
12. If the direction cosines of a line are $\frac{1}{6}, \frac{1}{6}, \frac{1}{6}$, then
D) $c= \pm \sqrt{3}$
b) $\mathrm{c}=+3$
c) $c>0$
d) $0<c<1$
13. The function $\sin ^{4} x+\cos ^{4} x$ is increasing in the interval
a) $\left[\frac{5 \pi}{8}, \frac{3 \pi}{4}\right]$
b) $\left[\frac{\pi}{4}, \frac{\pi}{2}\right]$
c) $\left[\frac{\pi}{2}, \frac{5 \pi}{8}\right]$
d) $\left[0, \frac{\pi}{4}\right]$
14. The point of inflection of the curve $y=(x-1)^{3}$ is
a) $(0,0)$
b) $(0,1)$
c) $(1,0)$
d) $(1,1)$
15. The minimum value of the function $|3-x|+9$ is
a) 0
b) 3
C) 6
d) 9
16. Linear approximation for $g(x)=\cos x$ at $x=\pi / 2$ is
a) $x+\pi / 2$
b) $-x+\pi / 2$
c) $x-\pi / 2$
d) $-x-\pi / 2$
17. The value of $\int_{-\pi / 2}^{\pi / 2} \sin ^{2} x \cos x d x$ is
a) $3 / 2$
b) $1 / 2$
c) 0
d) $2 / 3$
18. The area between $\mathrm{y}^{2}=4 \mathrm{x}$ and its latest rectum is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $5 / 3$
19. The inverse element of $\{3\} \in Z_{5}-\{[0]\}$ under multiplication modulo 5 is
a) [1]
b) [2]
c) [3]
d) $[4]$
20. The operation * defined by $\mathrm{a}^{*} \mathrm{~b}=\frac{\mathrm{ab}}{7}$ is not a binary operation on
a) a^{+}
b) Z
c) R
d) ${ }^{\bullet}$

Part-B

II. Answer any 7 questions. (Q. No. 30 is compulsory)
24. If $|z|=2$, show that $3 \leq|z+3+4 i| \leq 7$
22. Discuss the number of positive and negative real roots of $x^{5}-19 x^{4}+2 x^{3}+5 x^{2}+11=0$
23. Find the value of $\sec ^{-1}\left(\frac{-2 \sqrt{3}}{3}\right)$
24. Examine the position of the point $(-4,-3)$ with respect to the circle $x^{2}+y^{2}-5 x+2 y-5=0$
25. Find the angle between the line $\vec{r}=(2 \hat{i}-\hat{j}+\hat{k})+t(\hat{i}+2 \hat{j}-2 \hat{k})$ and the plane r. $(6 \hat{i}+3 \hat{j}+2 \hat{k})=8$
26. Write the Maclaurin series for $f(x)=e^{x}$
27. If $w(x, y, z)=x^{2} y+y^{2} z+z^{2} x, x, y, z \in R$, find the differential $d w$.

29 Let $A=\left(\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1\end{array}\right), B=\left(\begin{array}{llll}1 & 1 & 0 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 1 & 1 & 1\end{array}\right)$ fird $A=B$
30 Give your com example for a matrue of fanik ' $\mathcal{\prime}$ ' ct exder 3×3
Part-C

1il. Answer any 7 questions. (Q Mo. 40 is compuisory)
31. IA $A\left[\begin{array}{ll}3 & 2 \\ 7 & 5\end{array}\right]$ and $B=\left[\begin{array}{cc}-1 & -3 \\ 5 & 2\end{array}\right]$, verif twat $(A B)^{-1}=E^{-1} A^{-1}$

32 Show that $\mid 3 z=6,12 i=3$ represert a cucle and find is centre and radus
33 Find the condition that the rocts of cutic equation $x^{3}+a x^{2}+b x+c=0 a x e n$ the rase $p: q: f$
34. Prove that $\frac{\pi}{2} \leq \sin x+3 \mathrm{cos} \quad x \leq \frac{5 \pi}{2}$

35 Show that the line $x-y+4=0$ is a tangent to the ellipse $x^{2}+3 y^{2}=12$ Also tind the coordinates of the point of contact.
36 Show that the point of intersection of the lines $\frac{x-1}{2}, \frac{x-2}{3}=\frac{z-3}{4}$ and $\frac{x-4}{5}: \frac{y-1}{5}=2$ lies on the plane $2 x+3 y-z+4=0$
37 Find the fnear approximation for $f(x)=\sqrt{1-x}, x<-1$ at $x_{3}=3$ Use approxination to estinate f(3 2)

33 Evaluate: $\int_{0}^{1} x^{5} / 1-x^{2} \int^{5} d x$
39 Verify whether (p, q) i $-(p \sim q)$ is tautology or contradiction or cortingency
40 Test :he point of infection of the curve $y=x^{4}$
Part - D
IV. Answer all the questions.
41. a) investgate the value of λ, and μ the system of inear equations $2 x+3 y+5 z=9$. $7 x+3 y-5 z=8,2 x+3 y+i z=1$, have
(9) no solution (k) a unique solution (-) an infinte number of solvions
(OR)
b) Solve $z^{3}+27=0$
a) Soive : $6 x^{2}-35 x^{3}+52 x^{2}-35 x+6=0$
(OR)
b) ind the value of $\tan \sin ^{-1}\left(\frac{3}{5}\right) \cdot \cot ^{-1}\left(\frac{3}{2}\right.$
43. a) Identify the type of conic $9 x^{2}-y^{2}-36 x-6 y+18=0$ and find the centre, foci, vertices and also draw a rough sketch.
(OR)
b) If $\dot{a}=2 \hat{i}+3 \dot{j}-\dot{k}, \vec{b}=3 \dot{i}+5 \dot{j}+2 \dot{k}, \vec{c}=-i-2 j+3 \dot{k}$, verify that

$$
\bar{a} \times(\vec{b} \times \bar{c})=(\bar{a} \cdot \bar{c}) \vec{b}-(\bar{a} \cdot \bar{b}) \bar{c}
$$

44 a) Find the non-parametric form of vector equation or parametric form of vector equation and cartesian equation of the plane containing the line $\bar{r}=(\hat{i}-j+3 \hat{k})+t(2 i-j+4 \hat{k})$ and perpendicular to the plane $\vec{r},(\hat{i}+2 \hat{j}+\hat{k})=8$ (OR)
b) A conical water tank with vertex down of 12 meters height has a radius of 5 meters at the top. If water flows into the jank at the rate of $10 \mathrm{cubic} \mathrm{m} / \mathrm{min}$, how fast is the depth of the water increases when the water is 8 meters deep?
45. a) On lighting a rocket cracker it gets projected in a parabolic path and reaches maximum height of 4 m when ft is 6 cm away from the point of projection. Finally it reaches the ground 12 m away from the starting point. Find the angle of projection.
b) Find the area of the region bounded by the parabola $y^{2}=x$ and the line $y=x-2$
46. a) For the function $f(x, y)=\tan ^{-1}\left(\frac{x}{y}\right)$, show that $\frac{\partial^{2} f}{\partial x \partial y}=\frac{\partial^{2} f}{\partial y \partial x}$
(OR)
b) Prove by vector method $\sin (\alpha+\beta)=\sin \alpha \cos \beta+\cos \alpha \sin \beta$
47. a) Prove that the area of the largest rectangle that can be inscribed in a semi circle of radius r is r^{2}
(OR)
b) Show that $-(p \leftrightarrow q) \equiv p \leftrightarrow-q$

