$\begin{array}{r}\text { COMMON HALFYEARLY EXAMINATION - } 2023 \\ \text { XIT - MATHEM. No. } \\ \hline\end{array}$

Time Allowed: 3.00 Hrs .
Maximum Marks: 90

Part - I

I. Choose the correct answer:

$20 \times 1=20$

1. If $(A B)^{-1}=\left[\begin{array}{cc}12 & -17 \\ -19 & 27\end{array}\right]$ and $A^{-1}=\left[\begin{array}{cc}1 & -1 \\ -2 & 3\end{array}\right]$, then B^{-1}
a) $\left[\begin{array}{cc}2 & -5 \\ -3 & 8\end{array}\right]$
b) $\left[\begin{array}{ll}8 & 5 \\ 3 & 2\end{array}\right]$
c) $\left[\begin{array}{ll}3 & 1 \\ 2 & 1\end{array}\right]$
d) $\left[\begin{array}{cc}8 & -5 \\ -3 & 2\end{array}\right]$
2. If $\omega \neq 1$ is a cubic root of unity and $\left|\begin{array}{ccc}1 & 1 & 1 \\ 1 & -\omega^{2}-1 & \omega^{2} \\ 1 & \omega^{2} & \omega^{7}\end{array}\right|=3 k$, then $k=$
a) 1
b) -1
c) $\sqrt{3} i$
d) $-\sqrt{3} i$
3. If $x^{3}+12 x^{2}+10 a x+1999$ definitely has a positive zero, if and only if
a) $a \geq 0$
b) a >0
c) a <0
d) $\mathrm{a} \leq 0$
4. The value of $\cos ^{-1}(\cos x), 0 \leq x \leq \pi$ is
a) $-x$
b) $x-\pi / 2$
c) x
d) π
5. If $x+y=k$ is a normal to the parabola $y^{2}=12 x$, then the value of k is
a) 3
b) -1
c) 1
d) 9
6. If the planes $\vec{r} \cdot(2 \hat{i}-\lambda \hat{j}+\hat{k})=3$ and $\vec{r} \cdot(4 \hat{i}+\hat{j}-\mu \hat{k})=5$ are parallel, then the value of λ and μ are
a) $1 / 2,-2$
b) $-1 / 2,2$
c) $-1 / 2,-2$
d) $1 / 2,2$
7. The minimum value of the function $|3-x|+9$ is
a) 0
b) 3
c) 6
d) 9
8. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31 ?
a) $1 / 31$
b) $1 / 5$
c) 5
d) 31
9. The value of $\int_{-1}^{2}|x| d x$ is
a) $1 / 2$
b) $3 / 2$
c) $5 / 2$
d) $7 / 2$
10. If $P(X=0)=1-P(X=1)$. If $E[X]=3 \operatorname{Var}(X)$, then $P(X=0)$ is
a) $2 / 3$
b) $2 / 5$
c) $1 / 5$
d) $1 / 3$
11. The order and degree of the differential eqn $\frac{d^{2} y}{d x^{2}}+\left(\frac{d y}{d x}\right)^{1 / 3}+x^{1 / 4}=0$ are respectively
a) 2,3
b) 3,3
c) 2,6
d) 2,4
12. In the last column of the truth table for $\neg(p \vee \neg q)$ the number of final outcomes of the
truth value ' F ' are
a) 1
b) 2
c) 3
d) 4
13. If $A=\left[\begin{array}{cc}\cos \theta & \sin \theta \\ -\sin \theta & \cos \theta\end{array}\right]$ and $A(\operatorname{adj} A)=\left[\begin{array}{ll}k & 0 \\ 0 & k\end{array}\right]$, then $k=$
a) 0
b) $\sin \theta$
b) $\cos \theta$
d) 1
14. Area between the parabola $y^{2}=4 x$ and its latus rectum is
a) $2 / 3$
b) $4 / 3$
c) $8 / 3$
d) $5 / 3$
15. A is a order of non singular matrix then $|\operatorname{adj} A|=$
a) A
b) $|A|^{n-2}$
c) $|A|^{n-1}$
d) $|A|^{(n-1)^{2}}$
16. If $x^{2}+1=0$ then $x=$?
a) ± 1
b) $\pm i$
c) 0
d) ± 2
17. A zero of $x^{3}+216$ is
a) 0
b) 6
c) $6 i$
d) -6
18. If $2 \hat{i}-\hat{j}+3 \hat{k}, 3 \hat{i}+2 \hat{j}+\hat{k}, \hat{i}+m \hat{j}+4 \hat{k}$ are coplanar, find the value of m.
a) 3
b) -3
c) 2
d) -2
19. $\int_{-\pi / 2}^{\pi / 2} \tan x d x=$
a) 1
b) -1
c) $\pi / 2$
d) 0
20. * is a binary operation then define $a^{*} b=\frac{a b}{7} \quad a, b \in Q$ if $a=7, b=12$, find $a^{*} b=$?
a) 10
b) 12
C) 7
d) -12

Part - II

II. Answer any 7 questions. (Q.No. 30 is compulsory)

21. Solve by matrix inversion method $2 x-y=8,3 x+2 y=-2$
22. Find the square root of $-5-12 i$
23. Discuss the maximum possible number of positive and negative roots of the polynomial equation $9 x^{9}-4 x^{8}+4 x^{7}-3 x^{6}+2 x^{5}+x^{3}+7 x^{2}+7 x+2=0$
24. Find the value of $2 \cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(\frac{1}{2}\right)$
25. If $y=4 x+c$ isa tangent to the circle $x^{2}+y^{2}=9$, find c.
26. Find the angle between the line $\vec{r}=(2 \hat{i}-\hat{j}+\hat{k})+t(\hat{i}+2 \hat{j}-2 \hat{k})$ and the plane $\vec{r} \cdot(6 \hat{i}+3 \hat{j}+2 \hat{\mathbf{k}})=8$
27. Evaluate the limit $\operatorname{Lim}_{x \rightarrow 0}\left(\frac{\sin 5 x}{x}\right)$
28. Prove that $\int_{0}^{\infty} e^{-x} x^{n} d x=n!$, where n is a positive integer.
29. Let $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 1\end{array}\right], B=\left[\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right]$ be any two Boolean matrices of the same type. Find $A \vee B$ and $A \wedge B$.
30. If $u(x, y, z)=\log \left(e^{2 x}+e^{2 y}+e^{2 z}\right)$, find $\frac{\partial u}{\partial x}+\frac{\partial u}{\partial y}+\frac{\partial u}{\partial z}$
III. Answer any 7 questions. (Q.No. 40 is compulsory)
31. Find the value of $\left(\frac{1+\sin \frac{\pi}{10}+i \cos \frac{\pi}{10}}{1+\sin \frac{\pi}{10}-i \cos \frac{\pi}{10}}\right)^{10}$
32. If the equations $x^{2}+p x+q=0$ and $x^{2}+p^{\prime} x+q^{\prime}=0$ have a common root, show that it must be equal to $\frac{p q^{\prime}-p^{\prime} q}{q-q^{\prime}}$ or $\frac{q-q^{\prime}}{p^{\prime}-p}$
33. Solve: $\sin ^{-1} x>\cos ^{-1} x$
34. If $\vec{a}=\hat{i}+2 \hat{j}+3 \hat{k}, \vec{b}=2 \hat{i}-\hat{j}+\hat{k}, \vec{c}=3 \hat{i}+2 \hat{j}+\hat{k}$ and $\vec{a} \times(\vec{b} \times \vec{c})=l \vec{a}+m \vec{b}+n \vec{c}$, find the values of I, m, n.
35. Find the rank of matrix: $\left[\begin{array}{cccc}4 & 3 & 1 & -2 \\ -3 & -1 & -2 & 4 \\ 6 & 7 & -1 & 2\end{array}\right]$
36. Show that $\neg(p \rightarrow q) \equiv p \Delta \neg q$
37. Show that the percentage error in the $n^{t h}$ root of a number is approximately $1 / n$ times the percentage error in the number.
38. Evaluate: $\int_{0}^{\pi / 2}\left|\begin{array}{lll}\cos ^{4} & x & 7 \\ \sin ^{5} & x & 3\end{array}\right| d x$
39. Suppose a discrete random variable can only take the values 0,1 and 2. The probability mass function is defined by
$f(x)=\left\{\begin{array}{ll}\frac{x^{2}+1}{k}, & \text { for } x=0,1,2 \\ 0, & \text { otherwise }\end{array}\right.$, then find the value of $k ?$
40. Write the Maclaurin series expansion of the following functions:
$\tan ^{-1}(\mathrm{x}) ;-1 \leq \mathrm{x} \leq 1$
Part - IV
IV. Answer all the questions.
41. a) If $A=\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]$ and $B=\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$, find the products $A B$ and $B A$ and hence solve the system of equations

$$
\begin{equation*}
x-y+z=4, \quad x-2 y-2 z=9,2 x+y+3 z=1 \tag{OR}
\end{equation*}
$$

b) A conical water tank with vertex down of 12 metres height has a radus of 5 metres at the top. If water flows into the tank at a rate 10 cuble $\mathrm{m} / \mathrm{min}$, how fast is the depth of the water increases when the water is 8 metres deep?
42. a) If $z=x+i y$ and $\arg \left(\frac{z-1}{z+1}\right)=\frac{\pi}{2}$, show that $x^{2}+y^{2}=1$
b) Find the area of the region common to the circle $x^{2}+y^{2}=16$ and the parabola $y^{2}=6 x$.
43. a) A commuter train arrives punctually at a station every half an hour. Everyday in the morning, a student leaves his house to the train station. Let X denote the amount of time, in minutes, that the student waits for the train from the time he reaches the train station. Its known that the pdf of X is
$f(x)=\left\{\begin{array}{ll}\frac{1}{30}, & 0<x<30 \\ 0, & \text { elsewhere }\end{array}\right.$. Obtain and interpret the expected value of the random variable X.

(OR)

b) If $\dot{u}=\cos ^{-1}\left(\frac{x+y}{\sqrt{x}+\sqrt{y}}\right)$, show that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}+\frac{1}{2} \cot u=0$
44. a) Find parametric form of vector equation and Cartesian equations of the plane passing through the points $(2,2,1),(1,-2,3)$ and parallel to the straight line passing through the points $(2,1,-3)$ and $(-1,5,-8)$.
(OR)
b) Let $M=\left\{\left(\begin{array}{ll}x & x \\ x & x\end{array}\right): x \in R-\{0\}\right\}$ and let * be the matrix multiplication. Determine whether M is closed under*. If so, examine the closure, commutative, associative, existence of identity and inverse properties.
45. a) Prove that $\tan ^{-1} x+\tan ^{-1} y+\tan ^{-1} z=\tan ^{-1}\left[\frac{x+y+z-x y z}{1-x y-y z-z x}\right]$
(OR)
b) Prove that $\int_{0}^{\pi / 4} \log (1+\tan x) d x=\frac{\pi}{8} \log 2$
46. a) A tunnel through a mountain for a four lane highway is to have a elliptical opening. The total width of the highway (not the opening) is to be 16 m , and the height at the edge of the road must be sufficient for a truck 4 m high to clear if the highest point of opening is to be 5 m approximately. How wide must the opening be?
(OR)
b) Find the dimensions of the largest rectangle that can be inscribed in a semi circle of radius rcm .
47. a) By vector method, prove that $\cos (A+B)=\cos A \cos B-\sin A \sin B$
(OR)
b) The rate of increase in the number of bacteria in a certain bacteria culture is proportional to the number present. Given that the number triples in 5 hours, find how many bacteria will be present after 10 hours?

