COMMON HALF YEARLY EXAMINATION-2023.24

Part - I

Answer ail the Questions

$20 \times 1=20$

1. If $A=\left|\begin{array}{ll}2 & 0 \\ 1 & 5\end{array}\right|$ and $B=\left|\begin{array}{ll}1 & 4 \\ 2 & 0\end{array}\right|$ then $|a d j A B|=$
(1) -40
(2) -80
(3) -60
(4) -20
2. If $x^{a} y^{b}=e^{m}, x^{c} y^{d}=e^{n}, \Delta_{1}=\left|\begin{array}{ll}m & b \\ n & d\end{array}\right|, \Delta_{2}=\left|\begin{array}{ll}a & m \\ c & n\end{array}\right|, \Delta_{3}=\left|\begin{array}{ll}a & b \\ c & d\end{array}\right|$ then the values of x and y are respectively
(1$) e^{\left(\frac{s_{2}}{s_{i}}\right)}, e^{\left(\frac{\Delta_{1}}{s_{1}}\right)}$
(3) $\log \left(\frac{\Delta_{2}}{\Delta_{1}}\right), \log \left(\frac{\Delta_{3}}{\Delta_{1}}\right)$
(2) $\log \left(\frac{\Delta_{1}}{\Delta_{3}}\right), \log \left(\frac{\Delta_{2}}{\Delta_{1}}\right)$
(4) $e^{\left(\frac{\partial_{1}}{s_{2}}\right)}, e^{\left(\frac{\Delta_{2}}{s_{3}}\right)}$
3. If $|z|=1$, then the value of $\frac{1+z}{1+\bar{z}}$ is
(1) \angle
(2) \bar{z}
(3)
(4) 1

4 If z is a complex number such that $z \in \mathbb{C} \mathbb{R}$ and $z+\frac{1}{z} \in \mathbb{R}$ then $|z|$ is
(1) 0
(2) 1
(3) 2
(4) 3
5. A zero of $x^{3}+64 i$ is
(1) 0
(2) 4
(3) $4 i$
(4) -4
6. If $x^{3}+12 x^{2}+10 a x+1999$ definitely has positive zero, if and only if
(1) $\quad a \geq 0$
(2) $\mathrm{a}>0$
(3) $a<0$
(4) $a \leq 0$
7. The domain of the function defined by $f(x)=\sin ^{-1} \sqrt{x-1}$ is
(1) $[1,2]$
(2) $[-1,1]$
(3) $[0,1]$
(4) $[-1,0]$
8. The radius of the circle $3 x^{2}+b y^{2}+4 b x-6 b y+b^{2}=0$ is
(1) 1
(2) 3
(3) $\sqrt{10}$
(4) $\sqrt{11}$
9. The angle between the lines $\frac{x-2}{3}=\frac{y+1}{-2}, z=2$ and $\frac{x-1}{1}=\frac{z y+3}{3}=\frac{z+5}{2}$ is
(1) $\frac{\pi}{6}$
(2) $\frac{\pi}{4}$
(3) $\frac{\pi}{3}$
(4) $\frac{\pi}{2}$
10. Distance from the origin to the plane $3 x-6 y+2 z+7=0$ is
(1) 0
(2) 1
(3) 2
(4) 3
11. Angle between $y^{2}=x$ and $x^{2}=y$ at the origin is
(1) $\tan ^{-1}\left(\frac{3}{4}\right)$
(2) $\tan ^{-1}\left(\frac{4}{3}\right)$
(3) $\frac{\pi}{2}$
(4) $\frac{\pi}{4}$
12. The value of the limit $\lim _{x \rightarrow 0}\left(\cot x-\frac{1}{x}\right)$ is
(1) 0
(2) 1
(3) 2
(4) ∞

13 The percentage error of fifth root of 31 is approwimately how many the percentage error in 31?
(1) $\frac{1}{31}$
(2)
(3) 5
(4) 31
14. The approximate change in the volume V of a cube of side \times metres catered by increasing the side by 1% is
(1) $0.3 x d x \mathrm{~m}^{\prime}$
(2) $0.03 \times \mathrm{m}^{3}$
$\begin{array}{lll}\text { (3) } 0.03 x^{2} \mathrm{~m}^{1} & \text { (4) } 0.03 x-\mathrm{m}\end{array}$
15. The value of $\int_{-1}^{2}|x| d x$ is
(1) $\frac{1}{2}$
(2) $\frac{3}{2}$
(3) $\frac{5}{2}$
(4) $\frac{2}{2}$
16. The differential equation of the family of curves $y=A e^{x}+B e^{-x}$, whers
A and B are arbitary constants is
(1) $\frac{d^{2} y}{d x^{2}}+y=0 \quad$ (2) $\frac{d^{2} y}{d x^{2}}-y=0$ (3) $\quad \frac{d y}{d x}+y=0 \quad$ (4) $\frac{d y}{d x}-y=0$
17. If the function $f(x)=\frac{1}{12}$ for $\mathrm{a}<\mathrm{x}<\mathrm{b}$, represents a probability density function of continuous random variable X, then which of the following cannot be the value of a and b ?
(1) 0 and 1
(2) 5 and 17
(3) 7 and 19
(4) 16 and 24
18. Which one of the following is a binary operation on \mathbb{N} ?
(1)Subtraction
(2)Multiplication
(3)Division (4)All of the above
19. If $\cos x$ is the integrating factor of the linear diferential equation $\frac{d y}{d x}-P y=Q$ then P is
(1) $\log \sin x$
(2) $\cos x$
(3) $\tan x$
(4) $\cot x$
20. The value of $\int_{0}^{\pi} \cos ^{4} x d x$ is
(1) $\frac{3 \pi}{10}$
(2) $\frac{3 \pi}{8}$
(3) $\frac{3 \pi}{4}$
(4) $\frac{3 \pi}{2}$

PART -B

Answer any 7 of the following questions. Question no. 30 is compulsory: $\quad 7 \times 2=14$
21. If $A=\left[\begin{array}{cc}8 & -4 \\ -5 & 3\end{array}\right]$, verify that $A(\operatorname{adj} A)=(\operatorname{adj} A) A=|A| I$.
22. Show that $(2+i \sqrt{3})^{10}-(2-i \sqrt{3})^{10}$ is purely imaginary
23. Find a polynomial equation of minimum degree with rational coefficients, having $2-\sqrt{3}$ as a root.
24. Find the principal value of $\sin ^{-1}(2)$, if it exists.
25. For any vector \vec{a}, prove that $\hat{\imath} \times(\hat{a} \times \hat{\imath})+\hat{j} \times(\vec{a} \times \hat{j})+\hat{k} \times(\vec{a} \times \hat{k})=2 \vec{a}$
26. Evaluate the limit $\lim _{x \rightarrow 0}\left(\frac{\sin x}{x^{2}}\right)$.

2 If $u(x, y)=\frac{x^{2}+y^{2}}{\sqrt{x+y}}$, prove that $x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=\frac{3}{2} u$.
Is Determine the order and degree (if exists) of the differential equation $d y+(x y-\cos x) d x=0$
29. Find the constant C such that the function $f(x)=\left\{\begin{array}{l}C x^{2}, 1<x<4 \\ 0, \text { Otherwise }\end{array}\right.$ is a density function.
30. Solve: $(1+x) \frac{d y}{d x}=1+y$
$\begin{aligned} & \text { PART - C } \\ & \text { Answer any } 7 \text { of the following questions. Question no. } 30 \text { is compulsory: }\end{aligned} \quad 7 \times 3=21$
31. Find the rank of the matrix $\left[\begin{array}{cccc}2 & -2 & 4 & 3 \\ -3 & 4 & -2 & -1 \\ 6 & 2 & -1 & 7\end{array}\right]$ by reducing it to an echelon form.
32. Solve the equation $z^{3}+27=0$.
33. Solve the equation $x^{4}-9 x^{2}+20=0$.
34. Find the value of $\tan ^{-1}(-1)+\cos ^{-1}\left(\frac{1}{2}\right)+\sin ^{-1}\left(-\frac{1}{2}\right)$.
35. Prove that the length of the latus rectum of the hyperbola $\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}=1$ is $\frac{2 b^{2}}{a}$.
36. Find the torque (moment) of the resultant of the three forces represented by $-3 i+6 \hat{j}-3 \hat{k}, 4 \hat{\imath}-10 \hat{j}+12 \hat{k}$ and $4 \hat{\imath}+7 \hat{j}$ acting at the point with position vector $8 \hat{i}-6 \hat{j}-4 \hat{k}$, about the point with position vector $18 \hat{i}+3 \hat{j}-9 \hat{k}$.
37. Prove using mean value theorem that, $|\sin \alpha-\sin \beta| \leq|\alpha-\beta|, \alpha, \beta \in \mathbb{R}$.
38. Find the volume of the solid formed by revolving the region bounded by the ellipse $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1, a>b$ about the major axis.
39. Using truth table check whether the statements $\neg(p \vee q) \vee(\neg p \wedge q)$ and \neg pare logically equivalent.
40. The mean and standard deviation of a binomial variate X are respectively 4 and 1 Find (i) the probability mass function \quad (ii) $P(X=2)$

PART - D

Answer all the questions.:
$7 \times 5=35$
41 (a) A boy is walking along the path $y=a x^{2}+b x+c$ through the points $(-6,8),(-2,-12)$, and $(3,8)$. He wants to meet his friend at $P(7,60)$. Will he meet his friend? (Use Gaussian elimination method.) (OR)
4।(b) If $z=x+i y$ and $\arg \left(\frac{z-i}{z+2}\right)=\frac{\pi}{4}$, show that $x^{2}+y^{2}+3 x-3 y+2=0$.
42 (a) Solve the equation $6 x^{4}-35 x^{3}+62 x^{2}-35 x+6=0(\mathrm{OR})$

$$
\text { ax, } \operatorname{set} \tan \tan ^{-1}\left(\frac{\pi}{2}+2\right)+\tan ^{-1}\left(\frac{x+1}{x+2}\right)=\div
$$

 plase pasing dowegh the puive (2.2.1), (1.2.3) and parnild to the wraght lane pasing through the ponat $(2,1,1)$ and $(-1.2 .9)$
44a) Thuck (bat An $(a+\pi)=\sin a \cos [f+\cos a \sin !$ (OR)
44b) A randon vanable X tas the followas probability mas firm 1 tow

x	1	2	3	4	5
$f(x)$	k^{2}	$2 k^{2}$	$3 h^{2}$	$2 k$	$3 k$

Fod (1) the value of t (10) $P(2 \leq x<5)(+4) P(3<x)$
 polled awdy fown the wall ad a fate of 5 me. Whan the bese of the fabler is is thetren tron the wall. (1)How fant bat the af the la har movias doan the wall? (ib) At what rate, the anct of the thangle formad by ilse hatet, wall, and the frow, is chataing (0R) 45(b) $11 u=\sin ^{-1}\left(\frac{\cdots v}{1+v}\right)$, Stow that $x \frac{d u}{x i}+y \frac{\partial u}{y}=\frac{1}{2} \tan u$
4s(a) Prove that $\int_{0}^{T} \log (1+\epsilon \cdot \mathrm{tr} \pi) d a=\frac{\pi}{4} \log 2$. (OR)
 mast cestait $\mathrm{I}, 80,609 \mathrm{sq}$ fats in order ta provide enough grase fot lierds. No fewoing is needs along the fiver What is the length of the minimam necded feocing matcrial?
47(a) The curve $y=(x-2)^{2}+1$ has a minimum point at $P . A$ point Q on the sunve is such that the slope of PO is 2 . Fud the area tounded by the cunc and the chord $r Q$.
(Ot)
47h) Aswane that the rate at whech ratioactive nuclei decay is proportional ta the themter of soch nucter that are preseat an agiven satapte. la a certain sample io percettige of the arigusl sumber of radioactive nuctei have undergone disintegration it a period of 100 yeats. What ratioactive auclai will frmain after 1000 ytars? (Take the initial amount as A_{0})

