CHAPTER 1 – APPLICATIONS OF MATRICES AND DETERMINANTS

Choose the correct or the most suitable answer from the given four alternatives:

If $|adj(adjA)| = |A|^9$, then the order of the square matrix A is 1.

- (4)5
- If A is a 3 x 3 non-singular matrix such that $AA^T = A^TA$ and $B = A^{-1}A^T$, then $BB^T =$ 2.

- 3.

- 4.

5.

- 6.

- If A is a 3 x 3 non-singular matrix such that AA^T = A^TA and B = A⁻¹A^T, then BB^T = (1) A (2)B (3)I₃ (4)B^T

 If A = $\begin{bmatrix} 3 & 5 \\ 1 & 2 \end{bmatrix}$, B = adjA and C = 3A, then $\frac{|adjB|}{|c|}$ = $(1)\frac{1}{3}$ (2) $\frac{1}{9}$ (3) $\frac{1}{4}$ (4) 1

 If A $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ = $\begin{bmatrix} 6 & 0 \\ 0 & 6 \end{bmatrix}$, then A = (1) $\begin{bmatrix} 1 & -2 \\ 1 & 4 \end{bmatrix}$ (2) $\begin{bmatrix} 1 & 2 \\ -1 & 4 \end{bmatrix}$ (3) $\begin{bmatrix} 4 & 2 \\ -1 & 1 \end{bmatrix}$ (4) $\begin{bmatrix} 4 & -1 \\ 2 & 1 \end{bmatrix}$ If A = $\begin{bmatrix} 7 & 3 \\ 4 & 2 \end{bmatrix}$, then 9I₂ A = (1) A⁻¹ (2) $\frac{A^{-1}}{2}$ (3) 3A⁻¹ (4) 2A⁻¹

 If A = $\begin{bmatrix} 2 & 0 \\ 1 & 5 \end{bmatrix}$ and B = $\begin{bmatrix} 1 & 4 \\ 2 & 0 \end{bmatrix}$, then |adj(AB)| = (1) -40 (2) -80 (3) -60 (4) -20

 If P = $\begin{bmatrix} 1 & x & 0 \\ 1 & 3 & 0 \\ 2 & 4 & -2 \end{bmatrix}$ is the adjoint of 3 x 3 matrix A and |A| = 4, then x is (1) 15 (2) 12 (3) 14 (4) 11

 If A = $\begin{bmatrix} 3 & 1 & -1 \\ 2 & -2 & 0 \\ 1 & 2 & -1 \end{bmatrix}$ and A⁻¹ = $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$ then the value of a_{23} is (1) 0 (2) -2 (3) -3 (4) -1 7.

10.

- 8.
- (4) -1
- If A, B and C are invertible matrices of some order, then which one of the following is not true? 9.

- 11.

- 12.

- If A, B and C are invertible matrices of some order, then which one of the following is

 (1) $adjA = |A|A^{-1}$ (2) adj(AB) = (adjA)(adjB)(3) $detA^{-1} = (detA)^{-1}$ (4) $(ABC)^{-1} = C^{-1}B^{-1}A^{-1}$ If $(AB)^{-1} = \begin{bmatrix} 12 & -17 \\ -19 & 27 \end{bmatrix}$ and $A^{-1} = \begin{bmatrix} 1 & -1 \\ -2 & 3 \end{bmatrix}$, then $B^{-1} =$ (1) $\begin{bmatrix} 2 & -5 \\ -3 & 8 \end{bmatrix}$ (2) $\begin{bmatrix} 8 & 5 \\ 3 & 2 \end{bmatrix}$ (3) $\begin{bmatrix} 3 & 1 \\ 2 & 1 \end{bmatrix}$ (4) $\begin{bmatrix} 8 & -5 \\ -3 & 2 \end{bmatrix}$ If $A^{T}A^{-1}$ is symmetric, then $A^2 =$ (1) A^{-1} (2) $(A^{T})^2$ (3) A^{T} (4) $(A^{-1})^2$ If A is a non-singular matrix such that $A^{-1} = \begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$, then $(A^{T})^{-1} =$ (1) $\begin{bmatrix} -5 & 3 \\ 2 & 1 \end{bmatrix}$ (2) $\begin{bmatrix} 5 & 3 \\ -2 & -1 \end{bmatrix}$ (3) $\begin{bmatrix} -1 & -3 \\ 2 & 5 \end{bmatrix}$ (4) $\begin{bmatrix} 5 & -2 \\ 3 & -1 \end{bmatrix}$ If $A = \begin{bmatrix} \frac{3}{5} & \frac{4}{5} \\ \frac{3}{5} \end{bmatrix}$ and $A^{T} = A^{-1}$, then the value of x is

 (1) $\frac{-4}{5}$ (2) $\frac{-3}{5}$ (3) $\frac{3}{5}$ (4) $\frac{4}{5}$ If $A = \begin{bmatrix} 1 & tan\frac{\theta}{2} \\ -tan\frac{\theta}{2} & 1 \end{bmatrix}$ and $AB = I_2$, then B =(1) $(cos^2\frac{\theta}{1})A$ (2) $(cos^2\frac{\theta}{1})A^{T}$ (3) $(cos^2\theta)I$ (4) $(sin^2\frac{\theta}{1})A$ 13.

- 14.

- (1) $(\cos^2 \frac{\theta}{2}) A$ (2) $(\cos^2 \frac{\theta}{2}) A^T$ (3) $(\cos^2 \theta) I$ (4) $(\sin^2 \frac{\theta}{2}) A$ If $A = \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$ and $A(\text{adj}A) = \begin{bmatrix} k & 0 \\ 0 & k \end{bmatrix}$, then k is

 (1) 0 (2) $\sin \theta$ (3) $\cos \theta$ (4) 1

 If $A = \begin{bmatrix} 2 & 3 \\ 5 & -2 \end{bmatrix}$ be such that $\lambda A^{-1} = A$, then λ is

 (1) 17 (2) 14 (3) 19 (4) 21 15.

- 16.

www.Padasalai.Net

www.TrbTnpsc.com

17. If
$$adjA = \begin{bmatrix} 2 & 3 \\ 4 & -1 \end{bmatrix}$$
 and $adjB = \begin{bmatrix} 1 & -2 \\ -3 & 1 \end{bmatrix}$ then $adj(AB)$ is
$$(1) \begin{bmatrix} -7 & -1 \\ 7 & -9 \end{bmatrix} \qquad (2) \begin{bmatrix} -6 & 5 \\ -2 & -10 \end{bmatrix} \qquad (3) \begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (4) \begin{bmatrix} -6 & -2 \\ 5 & -10 \end{bmatrix}$$
18. The rank of the matrix $\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$ is
$$(1) 1 \qquad (2) 2 \qquad (3) 4 \qquad (4) 3$$
10. If where a^{m} is a^{m} in a^{m} is a^{m} is a^{m} in a^{m} in a^{m} in a^{m} in a^{m} in a^{m} is a^{m} in a

$$\begin{bmatrix} -7 & 7 \\ -1 & -9 \end{bmatrix} \qquad (4) \begin{bmatrix} -6 & -2 \\ 5 & -1 \end{bmatrix}$$

18. The rank of the matrix
$$\begin{bmatrix} 1 & 2 & 3 & 4 \\ 2 & 4 & 6 & 8 \\ -1 & -2 & -3 & -4 \end{bmatrix}$$
 is

(1) 1 (2) 2 (3) 4 (4) 3 If $x^a y^b = e^m$, $x^c y^d = e^n$, $\Delta_1 = \begin{vmatrix} m & b \\ n & d \end{vmatrix}$, $\Delta_2 = \begin{vmatrix} a & m \\ c & n \end{vmatrix}$, $\Delta_3 = \begin{vmatrix} a & b \\ c & d \end{vmatrix}$ then the values of x and y are 19. respectively,

$$(1) e^{(\Delta_2/\Delta_1)}, e^{(\Delta_3/\Delta_1)}$$

(2)
$$\log(\Delta_1/\Delta_3)$$
, $\log(\Delta_2/\Delta_3)$

(3)
$$\log(\Delta_2/\Delta_1)$$
, $\log(\Delta_3/\Delta_1)$

(4)
$$e^{(\Delta_1/\Delta_3)}$$
, $e^{(\Delta_2/\Delta_3)}$

20. Which of the following is/are correct?

- (i) Adjoint of a symmetric matrix is also a symmetric matrix
- (ii) Adjoint of a diagonal matrix is also a diagonal matrix.
- (iii) If A is a square matrix of order n and λ is a scalar, then $adj(\lambda A) = \lambda^n adj A$.
- (iv) $A(adj A) = (adj A)A = |A|I_n$
- (1) Only (i)
- (2) (ii) and (iii)
- (3) (iii) and (iv)
- (4) (i), (ii) and (iv)

21. If $\rho(A) = \rho([A|B])$, then the system AX=B of linear equations is

- (1) consistent and has a unique solution (2) consistent
- (3) consistent and has infinitely many solution (4) inconsistent

If $0 \le \theta \le \pi$ and the system of equations $x + (\sin \theta)y - (\cos \theta)z = 0$, $(\cos \theta)x - y + z =$ 22. 0, $(\sin \theta)x + y - z = 0$ has a non-trivial solution then θ is

$$(1)^{\frac{2\pi}{3}}$$

$$(2)\frac{3\pi}{4}$$

$$(3)\frac{5\pi}{6}$$

(1) $\frac{2\pi}{3}$ (2) $\frac{3\pi}{4}$ (3) $\frac{5\pi}{6}$ (4) $\frac{\pi}{4}$ The augmented matrix of a system of linear equations is $\begin{bmatrix} 1 & 2 & 7 & 3 \\ 0 & 1 & 4 & 6 \\ 0 & 0 & \lambda - 7 & \mu + 5 \end{bmatrix}$. The system has 23.

infinitely many solutions if

(1)
$$\lambda = 7, \mu \neq -5$$

$$(2) \lambda = -7, \mu = 5$$

(3)
$$\lambda \neq 7$$
, $\mu \neq -5$

(1)
$$\lambda = 7, \mu \neq -5$$
 (2) $\lambda = -7, \mu = 5$ (3) $\lambda \neq 7, \mu \neq -5$ (4) $\lambda = 7, \mu = -5$

Let $A = \begin{bmatrix} 2 & -1 & 1 \\ -1 & 2 & -1 \\ 1 & -1 & 2 \end{bmatrix}$ and $AB = \begin{bmatrix} 3 & 1 & -4 \\ 1 & 3 & x \\ -1 & 1 & 3 \end{bmatrix}$. If B is the inverse of A. then the value of x is 24.

$$\begin{bmatrix}
 3 & -3 & 4 \\
 0 & -1 & 1 \\
 2 & -3 & 4
 \end{bmatrix}$$

CHAPTER 2 - COMPLEX NUMBERS

Choose the correct or the most suitable answer from the given four alternatives:

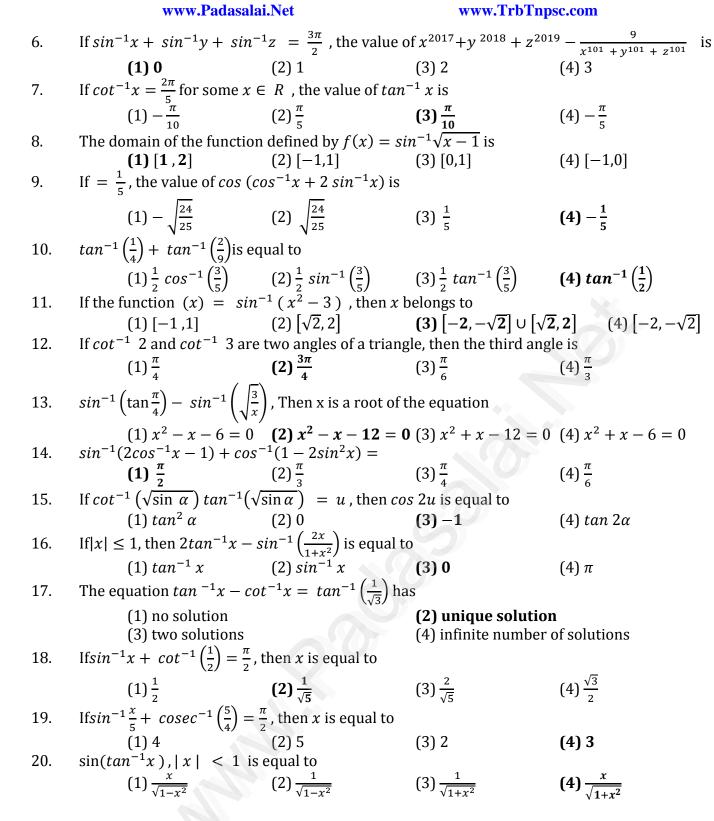
 $i^n + i^{n+1} + i^{n+2} + i^{n+3}$ is 1.

(4)i

The value of $+\sum_{i=1}^{13} (i^n + i^{n-1})$ is

(1) 1 + i (2) i2.

(3) 1


The area of the triangle formed by the complex numbers z, i z and z + i z in the Argand's 3. diagram is

 $(1)^{\frac{1}{2}}|z|^2$

 $(3)^{\frac{3}{2}}|z|^2$ $(4)^2|z|^2$

	www.Fadasalal	i.Net	www.1ro1np	sc.com
4.	The conjugate of a complex	number is $\frac{1}{i-3}$. The	n, the complex numbe	er is
	$(1)\frac{1}{i+2}$	$(2)\frac{-1}{i+2}$	$(3) - \frac{1}{i-2}$	
5.	If $z = \frac{(\sqrt{3}+i)^2(3i+4)^2}{(8+6i)^2}$ then $ z $	is equal to		
6.	(1) 0 If z is a non zero complex n	(2) 1	$\begin{array}{c} \textbf{(3) 2} \\ 2 = \overline{z} \text{ then } z \text{ is} \end{array}$	(4) 3
0.	(1) 1/2	(2) 1	(3) 2	(4) 3
7.	If $ z-2+i \le 2$, then	the greatest value of (2) $\sqrt{3} + 2$	z is	$(4)\sqrt{5}+2$
8.	If $\left Z - \frac{3}{Z} \right = 2$, then the least	value of $ z $ is	(3) $\sqrt{3}$ -2	(4) V 3 T 2
0.	$\begin{array}{ccc} & & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ & \\ & & \\ &$	(2) 2	(3) 3	(4) 5
9.	If $ z = 1$, then the value of	• •		
	(1) z	(2) \bar{z}	$(3)\frac{1}{z}$	(4) 1
10.	The solution of the equation	n z - z = 1 + 2ii	S	
	_	L	$(3)2 - \frac{3}{2}i$	L
11.	If $ z_1 = 1$, $ z_2 = 2$, $ z_3 = (1) 1$	(2) 2	(3) 3	the value $ z_1 + z_2 + z_3 $ is (4) 4
12.	If z is a complex number such	_		
12	(1) 0			(4) 3
13.	z_1 , z_2 and z_3 are complex num $z_1^2 + z_2^2 + z_3^2$ is	ibers such that $z_1 + z_2$	$+ z_3 - 0$ and $ z_1 - z_2 $	$- z_3 -1$ then
	(1) 3	(2) 2	(3) 1	(4) 0
14.	If $\frac{z-1}{z+1}$ is purely imaginary, the	hen $ z $ is		
	· · Z	(2) 1	(3) 2	(4) 3
15.	If $z = x + iy$ is a complex n (1) real axis	umber such that $ z $ + (2) imaginary axis		locus of <i>z</i> is (4) circle
16.	The principal argument of	$\frac{3}{-1+i}$ is		
	$(1)\frac{-5\pi}{6}$	$(2)\frac{-2\pi}{3}$	$(3)\frac{-3\pi}{4}$	$(4)\frac{-\pi}{2}$
17.	The principal argument of ($(\sin 40^{\circ} + i \cos 40^{\circ})^{5}$ i		2
10	$(1) -110^{\circ}$	$(2) -70^{\circ}$	$(3) 70^{\circ}$	(4) 110°
18.	If $(1+i)(1+2i)(1+3i)$	(1+ni) = (x+iy), $(2) i$	(3) $x^2 + y^2$	n^{-}) (4) 1 + n^{2}
19.	If $\omega \neq 1$ is a cubic root of up			
	(1)(1,0)	(2)(-1,1)	(3) (0,1)	(4) (1, 1)
20.	The principal argument of t	the complex number	$\frac{\left(1+i\sqrt{3}\right)^2}{4i\left(1-i\sqrt{3}\right)}$ is	
	$(1)\frac{2\pi}{3}$	$(2)\frac{\pi}{6}$	$(3)\frac{5\pi}{6}$	$(4)\frac{\pi}{2}$
21.	If α and β are the roots of x	$x^2 + x + 1 = 0$, then a	$e^{2020} + \beta^{2020}$ is	2
	(1)-2	(2)-1	(3)1	(4)2
22.	The product of all four valu	$\cos \operatorname{of} \left(\cos \frac{\pi}{3} + i \sin \frac{\pi}{3}\right)$	⁴ is	
	(1)-2	(2)-1	(3)1	(4)2
23.	If $\omega \neq 1$ is a cubic root of un	nity and $\begin{bmatrix} 1 & 1 \\ 1 & -\omega^2 - 1 \end{bmatrix}$	$\left \begin{array}{c} 1\\ \omega^2 \end{array}\right = 3k$, then k is	s equal to
	(1) 1		ω' I (3) $\sqrt{3}i$	(4) $-\sqrt{3}i$

	www.Padasalai.Net		www.TrbTnpsc.com		
24.	The value of $\left(\frac{1+\sqrt{3}i}{1-\sqrt{3}i}\right)^{10}$ is				
	(1) cis $\frac{2\pi}{3}$	(2) cis $\frac{4\pi}{3}$	(3)-cis $\frac{2\pi}{3}$	(4) -cis $\frac{4\pi}{3}$	
25.	The value of $\left(\frac{1-\sqrt{3}i}{1-\sqrt{3}i}\right)^{-1}$ is $\left(1\right) cis \frac{2\pi}{3}$ If $= cis \frac{2\pi}{3}$, then the number $\left(1\right) 1$	of distinct roots of $\begin{vmatrix} z + \omega \\ \omega \end{vmatrix}$	$\begin{vmatrix} 1 & \omega & \omega^2 \\ z + \omega^2 & 1 \end{vmatrix} =$	0.	
	(1) 1	(2) 2	(3) 3	(4) 4	
		TER 3 – THEORY			
Choos	se the correct or the most				
1.	A zero of $x^3 + 64$ is				
_	(1) 0		(3) 4 <i>i</i>		
2.	f f and g are polynomials of degree of h is				
		(2) m + n		$(4) n^m$	
3.	A polynomial equation in x				
				ots (4) at most one root	
4.	If α , β , and γ are the zeros	of $x^3 + px^2 + qx + r$,	then $\sum_{\alpha} \frac{1}{\alpha}$ is		
	$(1)\frac{-q}{r}$	$(2)\frac{-p}{r}$	$(3)\frac{q}{r}$	$(4)-\frac{q}{p}$	
5.	According to the rational re $4x^7 + 2x^4 - 10x^3 - 5$?				
	(1) -1	$(2)\frac{5}{4}$	$(3)\frac{4}{5}$	(4) 5	
6.	The polynomial $x^3 - kx^2 + kx^2 = 0$	-9x has three real zer $(2) k = 0$	cos if and only if, k sat (3) $ k > 6$	isfies $(4) k > 6$	
7.	The number of real numbe				
	(1) 2	(2) 4	(3) 1	(4) ∞	
8.	If $x^3 + 12x^2 + 10ax + 199$				
0		(2) a > 0	(3) $a < 0$	$(4) a \leq 0$	
9.	The polynomial $x^3 + 2x +$	a nas nd two imaginary ze	erns		
	(2) one positive and	l two imaginary zeros			
	(3) three real zeros				
10	(4) no zeros		$\nabla^n \cdot \cdot$		
10.	The number of positive zer		-	(4)	
	(1) 0 CHADTED 4	(2) n INVERSE TRIGO		(4) r	
Chas					
1.	se the correct or the most s . The value of $sin^{-1}(\cos)$, 0		ii tiie giveii iour aite	ernauves.	
1.		$(2) x - \frac{\pi}{2}$	$(3)^{\frac{\pi}{2}} - x$	(4) $x - \pi$	
2.	If $\sin^{-1}x + \sin^{-1}y = \frac{2\pi}{3}$; th	2	4		
	$(1)^{\frac{2\pi}{3}}$	$(2)\frac{\pi}{3}$	$(3)^{\frac{\pi}{6}}$	(4) π	
3.	$\sin^{-1}\frac{3}{5} - \cos^{-1}\frac{12}{13} + \sec^{-1}\frac{12}{13}$	3	U		
	(1) 2π	$(2) \pi$	(3) 0	(4) $tan^{-1}\frac{12}{65}$	
4.	If $sin^{-1}x = 2sin^{-1}\alpha$ has a s	olution, then		05	
	_	(2) $ \alpha \ge \frac{1}{\sqrt{2}}\pi$	(3) $ \alpha < \frac{1}{\sqrt{2}}$	$(4) \alpha > \frac{1}{\sqrt{2}}$	
5.	$\sin^{-1}(\cos x) = \frac{\pi^2}{2} - x \text{ is va}$	alid for	v –	v –	
	<u> </u>	$(2) 0 \leq x \leq \pi$	$(3) - \frac{\pi}{2} \le x \le \frac{\pi}{2}$	$(4) - \frac{\pi}{4} \le x \le \frac{3\pi}{4}$	

CHAPTER 5 - TWO DIMENSIONAL ANALYTICAL GEOMETRY-II

Choose the correct or the most suitable answer from the given four alternatives:

1. The equation of the circle passing through (1,5) and (4,1) and touching y -axis is $x^2 + y^2 - 5x - 6y + 9 + \lambda(4x + 3y - 19) = 0$, where λ is equal to (1) $0, -\frac{40}{9}$ (2) 0 (3) $\frac{40}{9}$ (4) $-\frac{40}{9}$

2. The eccentricity of the hyperbola whose latus rectum is 8 and conjugate axis is equal to half the distance between the foci is

(1) $\frac{4}{3}$ (2) $\frac{4}{\sqrt{3}}$ (3) $\frac{2}{\sqrt{3}}$

3.	The circle $x^2 + y^2 = 4x + 8$ (1) 15 < m < 65 (3) -85 < m < -35		line $3x - 4y = m$ at t (2) $35 < m < 85$ (4) $- 35 < m < 15$	
4.	The length of the diameter through the point $(2,3)$.			
	$(1)\frac{6}{5}$	$(2)\frac{5}{3}$	$(3)\frac{10}{3}$	$(4)\frac{3}{5}$
5.	The radius of the circle $3x^2$	-		
6.	(1) 1 The centre of the circle inso	(2) 3		
0.	$v^2 - 14v + 45 = 0$ is	_	(3) $(9,4)$	
7.	The equation of the normal $2x + 4y = 3$ is	to the circle $x^2 + y^2$	-2x - 2y + 1 = 0 w	which is parallel to the line
	(1) x + 2y = 3		(3) 2x + 4y + 3 = 0	
8.	If $P(x, y)$ be any point on 1	$6x^2 + 25y^2 = 400 \text{ w}$ (2) 6		
9.	(1) 8 The radius of the circle pas		(3) 10 at (6,2) two of whose	
	and $x + 2y = 4$ is			
	1) 10 The area of quadrilateral fo	(2) $2\sqrt{5}$	(3) 6	(4) 4
10.				
			(3) $(a^2 + b^2)$	2
11.	If the normals of the paraboto to the circle $(x-3)^2 + (y-1)^2$		value of r^2 is	atus rectum are tangents (4) 4
12.	If $x + y = k$ is a normal to			
		(2)-1		(4) 9
13.	The ellipse E_1 : $\frac{x^2}{9} + \frac{y^2}{4} = 1$ coordinate axes. Another el R. The eccentricity of the el	lipse E_2 passing through the lipse is	ugh the point(0,4) cir	
	$(1)\frac{\sqrt{2}}{2}$	$(2)\frac{\sqrt{3}}{2}$	$(3)^{\frac{1}{2}}$	$(4)\frac{3}{4}1.$
14.	The equation of the circle to	angents are drawn to	the hyperbola $\frac{x^2}{a} + \frac{y^2}{a}$	- = 1 parallel to the
	straight line $2x - y = 1$. On	e of the points of cont	tact of tangents on the	e hyperbola is
	$(1)\left(\frac{9}{2\sqrt{2}},\frac{-1}{\sqrt{2}}\right)$	$(2)\left(\frac{-9}{2\sqrt{2}},\frac{1}{\sqrt{2}}\right)$	(3) $\left(\frac{9}{2\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$	$(4)\left(3\sqrt{3},-2\sqrt{2}\right)$
15.	The equation of the circle p			
	(0,3) is			
	(1) $x^2 + y^2 - 6y - $ (3) $x^2 + y^2 - 6y - $	7 = 0	(2) $x^2 + y^2 - 6y + 7$ (4) $x^2 + y^2 - 6y + 5$	7 = 0
16.	Let C be the circle with cent			
	through the origin and touc	ching the circleC exten	rnally, then the radius	
	$(1)\frac{\sqrt{3}}{\sqrt{2}}$	$(2)\frac{\sqrt{3}}{2}$	$(3)^{\frac{1}{2}}$	$(4)\frac{3}{4}$
17.	Consider an ellipse whose of			
	eccentricity is $\frac{3}{5}$ and the di	stance between its fo	ci is 6, then the area o	of the quadrilateral
	inscribed in the ellipse with (1) 8	n diagonals as major a (2) 32	and minor axis of the (3) 80	ellipse is (4) 40
18.	Area of the greatest rectang	gle inscribed in the ell	lipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ is	
	(1) 2ab	(2) ab	$(3)\sqrt{ab}^{b^2}$	$(4)\frac{a}{b}$
				v
MURA	LIRAJA,M.Sc.,B.Ed., 978676067	2	SHININ	G FUTURE ACADEMY-DPI 6

19.	An ellipse has OB as semi r the eccentricity of the ellip		s foci and the angle F	BF' is a right angle. Then
		$(2)\frac{1}{2}$	$(3)\frac{1}{4}$	$(4)\frac{1}{\sqrt{3}}$
20.	The eccentricity of the ellip	$\cos((x-3)^2 + (y-4)^2)$	$(2)^2 = \frac{y^2}{9}$ is	
	$(1)\frac{\sqrt{3}}{2}$	$(2)\frac{1}{3}$	$(3)\frac{1}{2\sqrt{2}}$	$(4)\frac{1}{\sqrt{2}}$
21.	If the two tangents drawn locus of P is	from a point P to the	parabola $y^2 = 4x$ are	at right angles then the
22		(2) x = -1		
22.		(2)(2,-5)	(3) (5, 2)	(4)(-2,5)
23.	The locus of a point whose	distance from $(-2,0)$) is $\frac{2}{3}$ times its distand	ce from the line $x = \frac{-9}{2}$ is
		(2) a hyperbola		
24.	The values of m for which		$\sqrt{5}$ touches the hyper	bola are the roots of
	$16x^2 - 9y^2 = 144$, then the	ne value of $(a + b)$ is	(2) 0	(4) 2
25.	(1) 2 If the coordinates at one en	(4) 4 ad of a diamotor of the	(3) 0 $x^2 \pm x^2 - 8x$	$-4y \pm c \text{ are } (11.2) \text{ the}$
23.	coordinates of the other en		e circle $x + y = 6x$	- 4y + c are (11,2), the
		(2) $(2,-5)$	(3)(5,-2)	(4)(-2,5)
		- APPLICATIONS		
Choos	se the correct or the most	suitable answer fro	m the given four alto	ernatives:
1.	If \vec{a} and \vec{b} are parallel vect	ors, then $[\vec{a}, \vec{c}, \vec{b}]$ is e	qual to	
	(1) 2	(2) -1	(3) 1	$(4) \vec{0}$
2.	If a vector $\vec{\alpha}$ lies in the plan	ne of $\vec{\beta}$ and $\vec{\gamma}$, then		
		$(2)\left[\vec{\alpha},\vec{\beta},\vec{\gamma}\right] = -1$		$(4) [[\vec{\alpha}, \vec{\beta}, \vec{\gamma}] = 2$
3.	If $\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{c} = \vec{c} \cdot \vec{a} = 0$, then	the value of $[\vec{a}, \vec{b}, \vec{c}]$ i	S	
	$(1) \ \vec{a} \ \vec{b} \vec{c} $	$(2)\frac{1}{3} \vec{a} \vec{b} \vec{c} $	(3) 1	(4) -1
4.	If \vec{a} , \vec{b} , \vec{c} are three unit vec $\vec{a} \times (\vec{b} \times \vec{c})$ is equal to	ctors such that $ec{a}$ is pe	rpendicular to $ec{b}$, and	l is parallel to \vec{c} then
	(1) \vec{a}	$(2) \vec{b}$	(3) \vec{c}	$(4)\vec{0}$
5.	If $[\vec{a}, \vec{b}, \vec{c}] = 1$ then the value	ue of $\frac{\vec{a} \cdot (\vec{b} \times \vec{c})}{\vec{c} \cdot \vec{c} \cdot \vec{c}} + \frac{\vec{b} \cdot (\vec{c} \times \vec{a})}{\vec{c} \cdot \vec{c} \cdot \vec{c}}$	$+\frac{\vec{c}\cdot(\vec{a}\times\vec{b})}{\vec{c}\cdot\vec{c}\cdot\vec{c}\cdot\vec{c}\cdot\vec{c}\cdot\vec{c}}$ is	
	(1) 1		$(c \times b) \cdot a$	(4) 3
6.	The volume of the parallel			
	$(\hat{i} + \hat{j}, \hat{i} + 2\hat{j}, \hat{i} + \hat{j} + \pi \hat{k})$ is			
	$(1) \frac{\pi}{2}$	$(2)\frac{\pi}{3}$	(3) π	$(4)\frac{\pi}{4}$
7.	If \vec{a} and \vec{b} are unit vectors	such that $[\vec{a}, \vec{b}, \vec{a} \times \vec{b}]$	$=\frac{\pi}{4}$, then the angle	between \vec{a} and \vec{b} is
		$(2)\frac{\pi}{4}$	· · · · · · · · · · · · · · · · · · ·	$(4)\frac{\pi}{2}$
8.	If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{b} = \hat{i} + \hat{j}$, \vec{c}			
0.	(1) 0	(2) 1	(3) 6	(4) 3
9.	If \vec{a} , \vec{b} , \vec{c} are non-coplanar,			
<i>7</i> .	$\{[\vec{a} \times \vec{b}, \vec{b} \times \vec{c}, \vec{c} \times \vec{a}]\}^2$ is			
	(1) 81	(2) 9	(3) 27	(4)18
10.	If \vec{a} , \vec{b} , \vec{c} are three non-cop	lanar vectors such th	at $ec{a}\cdot \left(ec{b} imes ec{c} ight)=rac{b+ec{c}}{\sqrt{2}}$, t	then the angle between \vec{a}
	and \vec{b} is		·-	
	$(1)\frac{\pi}{2}$	$(2)\frac{3\pi}{4}$	$(3)\frac{\pi}{4}$	(4) π
MIIDA	LIRAIA M Sc B Ed 978676067	72	CHIMI	NG FUTURE ACADEMY-DPI

	www.Padasa	lai.Net	www.Tr	Tnpsc.com	
11.	If the volume of the paral units, then the volume of	the parallelepiped w			
		(2) 512 cubic unit		nits (4) 24 cubic unit	
12.	Consider the vectors \vec{a} , \vec{b} ,	\vec{c} , \vec{d} such that $(\vec{a} \times \vec{b})$	$) imes (\vec{c} imes \vec{d}) = \vec{o}$. Let	${\sf et} P_1$ and P_2 be the plane	es
	determined by the pairs is $(1) 0^{\circ}$	(2) 45°	(3) 60°	(4) 90°	
13.	If $\vec{a} \times (\vec{b} \times \vec{c}) = (\vec{a} \times \vec{b})$ then \vec{a} and \vec{c} are	\times \vec{c} where \vec{a} , \vec{b} , \vec{c} are a		$ \text{ich that } \vec{b} \cdot \vec{c} \neq 0 \text{ and } \vec{a} $	$\cdot \vec{b} \neq 0,$
	(1) perpendicular	Т	(2) parallel	π	
	(3) inclined at an a	angle $\frac{n}{3}$	(4) inclined at a	an angle $\frac{n}{6}$	
14.	If $\vec{a} = 2\hat{\imath} + 3\hat{\jmath} - \hat{k}$, $\vec{b} = \hat{\imath}$		$\hat{sj} - \hat{k}$ then a vector	r perpendicular to $ec{a}$ an	d lies in
	the plane containing $ec{b}$ ar	\vec{c} is			
	$(1) -17\hat{\imath} + 21\hat{\jmath} -$	$97\hat{k}$	$(2) -17\hat{i} + 21\hat{j}$	$\hat{k} - 123\hat{k}$	
	$(3) -17\hat{i} + 21\hat{j} +$	97 <i>k</i>	$(4) - 17\hat{i} - 21$.ĵ − 97 <i>k</i>	
15.	The angle between the lin		2, and $\frac{x-1}{1} = \frac{2y+3}{3} =$	$=\frac{z+5}{2}$ is	
	The angle between the line (1) $\frac{\pi}{6}$	$(2)\frac{\pi}{4}$	$(3)\frac{\pi^{2}}{3}$	$(4) \frac{\pi}{2}$	
16.	If the line $\frac{x-2}{3} = \frac{y-1}{-5} = \frac{z+2}{2}$				
	(1) (-5.5)	(2)(-6.7)	(3)(5,-5)	(4)(6,-7)	
17.	The angle between the lin	$\operatorname{ne}\vec{r} = (\hat{\imath} + 2\hat{\jmath} - 3\hat{k}) \cdot $	$+t(2\hat{\imath}+\hat{\jmath}-2\hat{k})$ ar	nd the plane $\vec{r} \cdot (\hat{\imath} + \hat{\jmath}) + \vec{r}$	1 = 0 is
	(1) 0°	(2) 30°	(3) 45°	(4) 90°	
18.	The coordinates of the po	oint where the line $ec{r}$:	$= (6\hat{\imath} - \hat{\jmath} - 3\hat{k}) + i$	$t(-\hat{\imath} + 4\hat{k})$ meets the p	lane
	$\vec{r} \cdot (\hat{\imath} + \hat{\jmath} - \hat{k}) = 3$ are				
	(1) (2,1,0)	(2)(7,-1,-7)	(3)(1,2,-6)	(4)(5,-1,1)	
19.	Distance from the origin			(4) 0	
20.	(1) 0 The distance between the	(2) 1		(4) 3	
20.					
	2 12	$(2)\frac{7}{2}$	<u> </u>	$(4)\frac{7}{2\sqrt{2}}$	
21.	If the direction cosines of	a line are $\frac{1}{c}$, $\frac{1}{c}$, $\frac{1}{c}$ then			
	(1) c = +3	(2) $c = +\sqrt{3}$	(3) $c > 0$	(4) 0 < c < 1	
22.	The vector equation $\vec{r} =$	$(\hat{\imath} - 2\hat{\jmath} - \hat{k}) + t(6\hat{\imath} -$	(\hat{k}) represents a st	raight line passing thro	ugh the
	points				
	(1) (0,6,-1) and		(2) (0,6,-1) as		
00		nd (1, 4, -2)			
23.	If the distance of the point		gin is half of its dis	tance from the plane	
	x + y + z + k = 0, then	the values of <i>k</i> are			

If the planes $\vec{r} \cdot (2\hat{\imath} - \lambda\hat{\jmath} + \hat{k}) = 3$ and $\vec{r} \cdot (4\hat{\imath} + \hat{\jmath} - \mu\hat{k}) = 5$ are parallel, then the value of λ and 24.

(1) $\frac{1}{2}$, -2 (2) $-\frac{1}{2}$, 2 (3) $-\frac{1}{2}$, -2 (4) $\frac{1}{2}$, 2

If the length of the perpendicular from the origin to the plane $2x + 3y + \lambda z = 1$, $\lambda > 0$ is $\frac{1}{5}$, 25. then the value of λ is

(1) $2\sqrt{3}$

(2) $3\sqrt{2}$

(3)0

(4) 1

CHAPTER 7 - APPLICATION OF DIFFERENTIAL CALCULUS

01 11 0 1	.1	c .1 .	c 1
Choose the Correct or	the most suitable answ	ver from the giver	i four alternatives:

1.	The volume of a sphere is its radius when radius is $\frac{1}{2}$	_	It the rate of 3π cm ³ /s	sec. The rate of change of
	(1) 3 cm/s	(2) 2 cm/s	(3) 1 cm/s	$(4)\frac{1}{2}$ cm/s
2.	A balloon rises straight up a balloon left the ground. The second when the balloon is	at 10 m/s. An observe e rate of change of the 30 metres above the	er is 40 m away from to balloon's angle of electory ground.	the spot where the evation in radian per
3.	The position of a particle m s(t) = $3t^2 - 2t - 8$. The time	oving along a horizon at which the particle		3
	(1)t = 0	(2) $t = \frac{1}{3}$	(3)t = 1	(4)t = 3
4.	A stone is thrown up vertic $x = 80t - 16t^2$. The stone (1) 2	reaches the maximum (2) 2.5	m height in time t sec (3) 3	onds is given by (4) 3.5
5.	The point on the curve 6y = is (1) (4,11)	$x^3 + 2$ at which y-coc (2) (4,-11)		
6.	The abscissa of the point or (1) -8	the curve $f(x) = \sqrt{8} - (2) - 4$	$\overline{-2x}$ at which the slop (3) -2	pe of the tangent is -0.25? (4) 0
7.	The slope of the line norma	l to the curve $f(x) = 2$	$\cos 4x$ at $x = \frac{\pi}{2}$ is	
		(2) -4	$(3)\frac{\sqrt{3}}{12}$	$(4)\ 4\sqrt{3}$
8.	The tangent to the curve y ²			
		(2) $y = \pm \sqrt{3}$	(3) $y = \frac{1}{2}$	(4) $y = \pm 3$
9.	Angle between $y^2 = x$ and x^2 (1) $tan^{-1} \frac{3}{x^2}$	2 = y at the origin is (2) $tan^{-1} \frac{4}{3}$	$(3)^{\frac{\pi}{2}}$	$(4)\frac{\pi}{4}$
10.	The value of the limit $\lim_{x\to a}$	3	2	4
10.	(1) 0	(2) 1	(3) 2	(4) ∞
11.	The function $\sin^4 x + \cos^4 x$			(-)
		$(2)\left[\frac{\pi}{2},\frac{5\pi}{8}\right]$	$(3)\left[\frac{\pi}{4},\frac{\pi}{2}\right]$	$(4)\left[0,\frac{\pi}{4}\right]$
12.	The number given by the I			
	(1) 1	$(2)\sqrt{2}$	$(3)\frac{3}{2}$	(4) 2
13.	The number given by the M	ean value theorem fo	or the function $\frac{1}{x}$, $x \in [$	
14.	(1) 2 The minimum value of the	(2) 2.5 function $ 3 - x + 9$ is	(3) 3	(4) 3.5
	(1) 0	(2) 3	(3) 6	(4) 9
15.	The maximum slope of the (1) $x = \frac{\pi}{4}$	_	$y = e^x \sin x, x \in [0, 2\pi]$ $(3) x = \pi$	is at (4) $x = \frac{3\pi}{2}$
16.	The maximum value of the			2
	$(1)^{\frac{1}{a}}$	_	$(3)\frac{1}{a^2}$	$(4)\frac{4}{e^4}$
17.	One of the closest points on	20	E	e
	(1) (2,0)	$(2)(\sqrt{5},1)$		$(4)(\sqrt{13}, -\sqrt{3})$
18.	The maximum value of the 200, is	product of two positi	ve numbers, when the	eir sum of the squares
	(1) 100	(2) $25\sqrt{7}$	(3) 28	$(4) 24\sqrt{14}$

www.TrbTnpsc.com www.Padasalai.Net 19. The curve $y = ax^4 + bx^2$ with ab > 0(1) has no horizontal tangent (2) is concave up (3) is concave down (4) has no points of inflection The point of inflection of the curve $y = (x - 1)^3$ is 20. (1)(0,0)(2)(0,1)(3) (1,0) (4)(1,1)CHAPTER 8 - DIFFERENTIALS AND PARTIAL DERIVATIVES Choose the correct or the most suitable answer from the given four alternatives : A circular template has a radius of 10 cm. The measurement of radius has an approximate 1. error of 0.02 cm. Then the percentage error in calculating area of this template is (1) 0.2%(2) 0.4% (3) 0.04% (4) 0.08% 2. The percentage error of fifth root of 31 is approximately how many times the percentage error in 31? If $U(x,y) = e^{x^2+y^2}$, then $\frac{\partial u}{\partial x}$ is equal to 3. (3) $x^2 u$ If $V(x,y) = \log(e^x + e^y)$, then $\frac{\partial v}{\partial x} + \frac{\partial v}{\partial y}$ is equal to 4. (1) $e^x + e^y$ $(2)\frac{1}{e^{x}+e^{y}}$ If $(x, y) = x^2$, then $\frac{\partial w}{\partial x}$ is equal to 5. (2) y log x(1) $x^y \log x$ (4) x log yIf $f(x,y) = e^{xy}$, then $\frac{\partial^2 f}{\partial x \partial y}$ is equal to 6. (3) $(1 + y) e^{xy}$ (4) $(1 + x) e^{xy}$ (2) $(1 + xy) e^{xy}$ 7. If we measure the side of a cube to be 4 cm with an error of 0.1 cm, then the error in our calculation of the volume is (1) 0.4 cu.cm (2) 0.45 cu.cm (3) 2 cu.cm (4) 4.8 cu.cm The change in the surface area $S = 6x^2$ of a cube when the edge length varies from 8. x_0 to $x_0 + dx$ is (1) $12x_0 + dx$ (2) $12x_0 dx$ (3) $6x_0 dx$ $(4) 6x_0 + dx$ The approximate change in the volume V of a cube of side x metres caused by increasing the 9. side by 1% is (1) $0.3xdxm^3$ (2) $0.03xm^3$ (3) $0.03x^2m^3$ (4) $0.03x^3m^3$ If $g(x,y) = 3x^2 - 5y + 2y^2$, $x(t) = e^t$ and $(t) = \cos t$, then $\frac{dg}{dt}$ is equal to 10. (1) $6e^{2t} + 5\sin t - 4\cos t\sin t$ (2) $6e^{2t} - 5\sin t + 4\cos t\sin t$ (3) $3e^{2t} + 5\sin t + 4\cos t\sin t$ (4) $3e^{2t} - 5\sin t + 4\cos t\sin t$ (4) $3e^{2t} - 5\sin t + 4\cos t\sin t$ (3) $3e^{2t} + 5\sin t + 4\cos t\sin t$ If $f(x) = \frac{x}{x+1}$, then its differential is given by 11. $(1) - \frac{1}{(x+1)^2} dx \qquad (2) \frac{1}{(x+1)^2} dx \qquad (3) \frac{1}{x+1} dx$ $(4) - \frac{1}{x+1} dx$ If $(x,y) = x^2 + 3xy + y - 2019$, then $\frac{\partial u}{\partial x_{(4,-5)}}$ is equal to 12. Linear approximation for $g(x) = \cos x$ at $x = \frac{\pi}{2}$ is 13. (1) $x + \frac{\pi}{2}$ (2) $-x + \frac{\pi}{2}$ (3) $x - \frac{\pi}{2}$

14.

(4)0

(3) y (z + x)

If $W(x, y, z) = x^2(y - z) + y^2(z - x) + z^2(x - y)$, then $\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z}$ is

(1) xy + yz + zx (2) x (y + z)

15. If
$$(x, y, z) = xy + yz + zx$$
, then $f_x - f_z$ is equal to

(1)
$$z - x$$

(2)
$$y - z$$

(3)
$$x - z$$

(4)
$$y - z$$

CHAPTER 9 - APPLICATIONS OF INTEGRATION

Choose the Correct or the most suitable answer from the given four alternatives:

The value of $\int_0^{\frac{2}{3}} \frac{dx}{\sqrt{4-9x^2}}$ is 1.

$$(1)\frac{\pi}{6}$$

$$(2)^{\frac{\pi}{2}}$$

$$(3)\frac{\pi}{4}$$

(4)
$$\pi$$

The value of $\int_{-1}^{2} |x| dx$ is 2.

$$(1)^{\frac{1}{2}}$$

$$(2)^{\frac{3}{2}}$$

$$(3)^{\frac{5}{2}}$$

$$(4)^{\frac{7}{2}}$$

For any value of $n \in \mathbb{Z}$, $\int_0^{\pi} e^{\cos^2 x} \cos^3 [(2x+1)x] dx$ is 3.

$$(1)^{\frac{n}{2}}$$

$$(2) \pi$$

The value of $\int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \sin^2 x \cos x \, dx$ is 4.

$$(1)^{\frac{3}{2}}$$

$$(2)^{\frac{1}{2}}$$

$$(4)^{\frac{2}{3}}$$

The value of $\int_{-4}^{4} \left[tan^{-1} \left(\frac{x^2}{x^4 + 1} \right) + tan^{-1} \left(\frac{x^4 + 1}{x^2} \right) \right] dx$ is 5.

$$(1) \pi$$

(2)
$$2\pi$$

(3)
$$3\pi$$

$$(4) 4\pi$$

The value of $\int_{-\frac{\pi}{4}}^{\frac{\pi}{4}} \left(\frac{2x^7 - 3x^5 + 7x^3 - x + 1}{\cos^2 x} \right) dx$ is 6.

If $f(x) = \int_0^x t \cos t \, dt$, then $\frac{df}{dx}$ is 7.

$$(1)\cos x - x\sin x \qquad (2)\sin x + x\cos x$$

$$(3) x \cos x$$

(4)
$$x \sin x$$

The area between $y^2 = 4x$ and its latus rectum is 8.

$$(1)^{\frac{2}{3}}$$

$$(2)^{\frac{4}{3}}$$

$$(3)\frac{8}{3}$$

$$(4)\frac{5}{3}$$

The value of $\int_{0}^{1} x (1-x)^{99} dx$ is 9.

$$(1)\frac{1}{110}$$

(2)
$$\frac{1}{10100}$$

$$(3) \frac{1}{10010}$$

$$(4)\frac{1}{10001}$$

The value of $\int_0^{\pi} \frac{dx}{1+5^{\cos x}}$ is 10.

(1)
$$\frac{n}{2}$$

$$(2) \pi$$

$$(3)\frac{3\pi}{2}$$

(4)
$$2\pi$$

If $\frac{\Gamma(n+2)}{\Gamma(n)} = 90$, then *n* is 11.

(2)5

(3)8

(4)9

The value of $\int_0^{\frac{\pi}{6}} \cos^3 3x \ dx$ is 12.

$$(1)^{\frac{2}{3}}$$

$$(2)^{\frac{2}{9}}$$

$$(3)^{\frac{1}{9}}$$

$$(4)\frac{1}{3}$$

The value of $\int_0^{\pi} \sin^4 x \, dx$ is 13.

$$(1)^{\frac{3\pi}{10}}$$

$$(2)\frac{3\pi}{9}$$

$$(3)\frac{3\pi}{4}$$

(4)
$$\frac{3\pi}{2}$$

The value of $\int_0^\infty e^{-3x} x^2 dx$ is 14.

$$(1)\frac{7}{27}$$

$$(2)\frac{5}{27}$$

$$(3)\frac{4}{27}$$

$$(4)\frac{2}{27}$$

If $\int_0^a \frac{1}{4+x^2} dx = \frac{\pi}{8}$, then a is 15.

16.	The volume of solid of revo	lution of the region b	ounded by $y^2 = x(a)$	-x) about $x - axis$ is
		$(2)\frac{\pi a^3}{4}$	3	U
17.	If $f(x) = \int_1^x \frac{e^{\sin u}}{u} du, x > 1$ as		a) - f(1)], then one o	f the possible value of a is
	(1) 3	(2) 6	(3) 9	(4) 5
18.	The value of $\int_0^1 (\sin^{-1} x)^2 dx$		_	
	$(1)\frac{\pi^2}{4}-1$	T	$(3)\frac{\pi^2}{4}+1$	$(4)\frac{\pi^2}{4}-2$
19.	The value of $\int_0^a (\sqrt{a^2 - x^2})^3$			
	10	(2) $\frac{3\pi a^4}{16}$	O .	$(4)\frac{3\pi a^4}{8}$
20.	If $\int_0^x f(t) dt = x + \int_x^1 t f(t)$	dt, then the value of	f(1) is	
	=	(2) 2		$(4)\frac{3}{4}$
	CHAPTER 10 -	ORDINARY DIF	FERENTIAL EQU	JATIONS
Choos	se the Correct or the most s			
1.	The order and degree of the	e differential equation	$1\frac{d^2y}{dx^2} + \left(\frac{dy}{dx}\right)^{1/3} + x^{1/4}$	= 0 are respectively
	(1) 2, 3	(2) 3, 3	(3) 2, 6	(4) 2, 4
2.	The differential equation reare parameters is			
	$(1)\frac{d^2y}{dx^2} - y = 0$	$(2)\frac{d^2y}{dx^2}+y=0$	$(3)\frac{d^2y}{dx^2} = 0$	$(4)\frac{d^2x}{dy^2} = 0$
3.	The order and degree of the (1) 1, 2		$\int \frac{1}{\sqrt{\sin x}} (dx + dy) = \sqrt{3}$	
4.	The order of the differentia (1) 2	l equation of all circle	es with centre at (h, k)) and radius 'a' is
5.	The differential equation of	the family of curves	(3) 4 $y = Ae^x + Be^{-x}$ whe	ere A and B are arhitrary
<i>5</i> .	constants is			
		$(2)\frac{d^2y}{dx^2}-y=0$		$(4)\frac{dy}{dx} - y = 0$
6.	The general solution of the	differential equation	$\frac{dy}{dx} = \frac{y}{x}$ is	
_	(1) xy = k	$(2) y = k \log x$	(3) y = kx	(4) log y = kx
7.	The solution of the differen			
0	(1) straight lines $\frac{dy}{dx} = \frac{dy}{dx} = \frac{dy}{dx}$		(3) parabola	(4) ellipse
8.	The solution of $\frac{dy}{dx} + p(x)y$	= U 1S	(a	(d.
		$(2) y = ce^{-\int pdx}$		$(4) x = ce^{\int pay}$
9.	The integrating factor of the	1		
	$(1)\frac{x}{e^{\lambda}}$	A.	(3) λe^x	
10.	The intergrating factor of the	ne differential equation	$\operatorname{on}\frac{dy}{dx} + P(x)y = Q(x)$) is x , then $P(x)$
	(1) x	Z	$(3)\frac{1}{x}$	x-
11.	The degree of the differenti	al equation $y(x) = 1$	$+\frac{dy}{dx} + \frac{1}{1\cdot 2} \left(\frac{dy}{dx}\right)^2 + \frac{1}{1\cdot 2}$	$-\frac{1}{3}\left(\frac{dy}{dx}\right)^3 + \cdots$ is
12	(1) 2 If n and q are the order and	(2) 3	(3) 1	(4) 4
12.	If p and q are the order and $y \frac{dy}{dx} + x^3 \left(\frac{d^2y}{dx^2}\right) + xy = \cos x$		nuai equation	
	(1) p < q		(2) p = q	
	(3) p > q		(4) p exists and q do	es not exists
MURAI	LIRAJA,M.Sc.,B.Ed., 978676067	2	SHINING	FUTURE ACADEMY-DPI 12

The solution of the differential equation $\frac{dy}{dx} + \frac{1}{\sqrt{1-x^2}} = 0$ is 13.

$$(1) y + sin^{-1}x = c$$

(2)
$$x + \sin^{-1} y = 0$$

$$(3) y^2 + 2\sin^{-1} x = c$$

(2)
$$x + sin^{-1}y = 0$$

(4) $x^2 + 2sin^{-1}y = c$

The solution of the differential equation $\frac{dy}{dx} = 2xy$ is 14.

$$(1) v = Ce^{x^2}$$

(2)
$$y = 2x^2 + C$$

(3)
$$v = Ce^{-x^2} + C$$

(4)
$$y = x^2 + C$$

(1) $y = Ce^{x^2}$ (2) $y = 2x^2 + C$ (3) $y = Ce^{-x^2} + C$ (4) $y = x^2 + C$ The general solution of the differential equation $log\left(\frac{dy}{dx}\right) = x + y$ is (1) $e^x + e^y = C$ (2) $e^x + e^{-y} = C$ (3) $e^{-x} + e^y = C$ (4) $e^{-x} + e^{-y} = C$ The solution of $\frac{dy}{dx} = 2^{y-x}$ is 15.

$$(1) e^x + e^y = C$$

(2)
$$e^x + e^{-y} = 0$$

$$(3) e^{-x} + e^y = C$$

$$(4) e^{-x} + e^{-y} = C$$

16.

$$(1) 2^x + 2^y = 0$$

$$(2) \ 2^x - 2^y = C$$

$$(3)\frac{1}{2^x} + \frac{1}{2^y} = 0$$

$$(4) x + y = 0$$

(1) $2^x + 2^y = C$ (2) $2^x - 2^y = C$ (3) $\frac{1}{2^x} + \frac{1}{2^y} = C$ (4) x + y = C The solution of the differential equation $\frac{dy}{dx} = \frac{y}{x} + \frac{\phi(\frac{y}{x})}{\phi'(\frac{y}{x})}$ is 17.

(1)
$$x\phi\left(\frac{y}{x}\right) = k$$

(2)
$$\phi\left(\frac{y}{x}\right) = kx$$

(3)
$$y\phi\left(\frac{y}{x}\right) = k$$

$$(4) \phi\left(\frac{y}{x}\right) = ky$$

(1) $x\phi\left(\frac{y}{x}\right) = k$ (2) $\phi\left(\frac{y}{x}\right) = kx$ (3) $y\phi\left(\frac{y}{x}\right) = k$ (4) $\phi\left(\frac{y}{x}\right) = ky$ If $\sin x$ is the integrating factor of the linear differential equation $\frac{dy}{dx} + Py = Q$, then P is 18.

(1) $\log \sin x$

 $(2)\cos x$

(3) $\tan x$

The number of arbitrary constants in the general solutions of order n and n + 1 are 19. respectively

(1) n - 1, n

(2) n, n+1

(3) n + 1, n + 2

(4) n + 1, n

The number of arbitrary constants in the particular solution of a differential equation of third 20. order is

Integrating factor of the differential equation $\frac{dy}{dx} = \frac{x+y+1}{x+1}$ is

(1) $\frac{1}{x+1}$ (2) x+1 (3) $\frac{1}{\sqrt{x+1}}$ The population P in any year $t^{\frac{1}{2}}$ 21.

The population P in any year t is such that the rate of increase in the population is proportional 22. to the population. Then (2) $P = Ce^{-kt}$ (3) P = Ckt (4) P = C

 $(1) P = Ce^{kt}$

P is the amount of certain substance left in after time t. If the rate of evaporation of the 23. substance is proportional to the amount remaining, then

 $(2) P = Ce^{-kt}$

(1) $P = Ce^{kt}$ (2) $P = Ce^{-kt}$ (3) P = Ckt (4) Pt = C24. If the solution of the differential equation $\frac{dy}{dx} = \frac{ax+3}{2y+f}$ represents a circle, then the value of a is (1) 2 (2) -2 (3) 1 (4) -125. The slope at any point of a curve y = f(x) is given by $\frac{dy}{dx} = 3x^2$ and it passes through (-1,1). Then the equation of the curve is of the curve is **(1)** $y = x^3 + 2$ **(2)** $y = 3x^2 + 4$ **(3)** $y = 3x^3 + 4$ **(4)** $y = x^3 + 5$

CHAPTER 11 – PROBABILITY DISTRIBUTIONS

Choose the Correct or the most suitable answer from the given four alternatives:

Let X be random variable with probability density function $f(x) = \begin{cases} \frac{2}{x^3} & x \ge 1 \\ 0 & x < 1 \end{cases}$ Which of the 1. following statement is correct

(1) both mean and variance exist

(2) mean exists but variance does not exist

(3) both mean and variance do not exist (4) variance exists but Mean does not exist.

A rod of length $2\mathit{l}$ is broken into two pieces at random. The probability density function of the 2. shorter of the two pieces is $f(x) = \begin{cases} \frac{1}{l} & 0 < x < l \\ 0 & l < x < 2l \end{cases}$ The mean and variance of the shorter of the two pieces are respectively

	www.Padasalai.Net		www.TrbTnp	sc.com
	2 3	2 0	(3) $l, \frac{l^2}{12}$	4 14
3.	Consider a game where the player wins <i>Rs</i> 36, otherwis	se he loses $Rs k^2$, who	ere k is the face that c	
	$k = \{1, 2, 3, 4, 5\}$. The exp	ected amount to win a	at this game in <i>Rs</i> is	3
		(2) $-\frac{19}{6}$		$(4)-\frac{3}{2}$
4.	A pair of dice numbered 1, and the sum is determined elements in the inverse image.	. Let the random varia		
	(1) 1		(3) 3	(4) 4
5.	A random variable X has bi deviation of <i>X</i> is	nomial distribution w	with $n = 25$ and $p =$	
	(1) 6	(2) 4	(3) 3	(4) 2
6.	Let X represent the differer when a coin is tossed n tim	nce between the numl	ber of heads and the r	
	(1) i + 2n, i = 0,1,2	_	(2) $2i-n$, $i = 0, 1, 2$	2 n
	(3) n-i, i = 0,1,2		(4) 2i + 2n, i = 0,1	
7.	If the function $f(x) = \frac{1}{12}$ for			
	continuous random variab			
	(1) 0 and 12	(2) 5 and 17	(3) 7 and 19	(4) 16 and 24
8.	Four buses carrying 160 st			
	carry, respectively, 42, 36, 36 denote the number of stud			-
	One of the 4 bus drivers is			
	bus. Then E[X] and E[Y] res			
	(1) 50,40	-	(3) 40, 75, 40	(4) 41,41
9.	Two coins are to be flipped			_
	with Probability 0.5. Assur			lent, and let X equal the
	total number of heads that		(3) 11	(4) 1
10.	On a multiple-choice exam			
	probability that a student v	-		-
		$(2)\frac{3}{8}$		$(4)\frac{2}{243}$
11.	If $P\{X = 0\} = 1 - P\{X\}$	= 1). If $E[X] = 3Va$	$r(X)$, then $P\{X = 0\}$	
	If $P\{X = 0\} = 1 - P\{X\}$ $(1)\frac{2}{3}$	$(2)^{\frac{2}{5}}$	$(3)\frac{1}{5}$	$(4)\frac{1}{3}$
12.	If X is a binomial random v			
			$(3) \binom{10}{5} \left(\frac{3}{5}\right)^4 \left(\frac{2}{5}\right)^6$	
13.	The random variable X has	the probability densi	ity function $f(x) = \begin{cases} a \\ a \end{cases}$	0 , otherwise
	$E(X) = \frac{7}{12}$, then a and b			
	(1) 1 and $\frac{1}{2}$	$(2)\frac{1}{2}$ and 1	(3) 2 and 1	(4) 1 and 2
14.	Suppose that <i>X</i> takes on on $P(X = i - 1)$ for $i = 1,2$ a			tant k, P(X = i) = k
	(1) 1	(2) 2	(3) 3	(4) 4
15.	Which of the following is a			
		rs crossing a particula	_	momont
		o complete a telephor	o buy train tickets at a ne call	i iiiOiiiEiit.
	(1) <i>I and II</i>		(3) III only	(4) II and III

	www.Padas	salai.N	et			1	www.Tr	bTnpsc.	com	
16.	If $f(x) = \begin{cases} 2x & 0 < x < 0 \\ 0 & otherwise \end{cases}$	$\frac{1}{se}$ other	erwise	is a pr	obabil	ity den:	sity fund	ction of a	a random variabl	e, then
	the value of a is									
	(1) 1		2) 2			(3) 3		(4	4) 4	
17.	The probability functio	n of a r	andom	ı varia	ble is o	defined	as:			
		X	-2	-1	0	1	2			
		F(x)	k	2k	3k	4k	5			
	Then $E(X)$ is equal to:									
	$(1)^{\frac{1}{15}}$		$(2)\frac{1}{10}$			$(3)\frac{1}{3}$			4) $\frac{2}{3}$	
18.	Let <i>X</i> have a Bernoulli of			ith me	ean 0.4			-	-	
4.0	(1) 0.24		0.48	1.1.6	. 11	(3) 0.6		•	4) 0.96	
19.	If in 6 trials, <i>X</i> is a binor		iriate v	vhich f	ollows	the rel	lation 9	P(X=4)	P(X = 2), th	ien
	the probability of succe			_		(0) 0 0				
0.0	(1) 0.125	•	2) 0.25			(3) 0.3			4) 0.75	
20.	A computer salesperson			_	_				_	
	every twenty customer						t is the j	probabil	ity that he will se	II a
	computer to exactly tw								F.7	
	$(1)\frac{57}{20^3}$	(2	$(2)\frac{57}{20^2}$			$(3)\frac{19^3}{20^3}$			$(4)\frac{57}{20}$	
	CH 20		20			20	HEMA ⁻	TICS	20	
Choos	e the correct or the mo								ativos	
1.	A binary operation on a					i the gr	ven iou	aitein	atives.	
1.	$(1) S \to S$					(3) 5 =	+ (S × S	5) (4	$4) (S \times S) \rightarrow (S \times$	(2)
2.	Subtraction is not a bin	_		-		(3) 5	(6) (5)
	(1) \mathbb{R}		2) Z			(3) ℕ		(4	4) Q	
3.	Which one of the follow		,	v oper	ation			(-) &	
	(1) Subtraction					(3) Div	rision	(4	4) All the above .	
4.	In the set \mathbb{R} of real nun							•		oinarv
	operation on \mathbb{R} ?								J	,
	(1) a * b = min	(a.b))			(2) a *	b = n	ıax (а ,	<i>b</i>)	
	(3) a * b = a						b = a	•		
5.	The operation * defined	$1 \text{ by } a \Rightarrow$	$* b = \frac{1}{2}$	ab is no	ot a bi	narv on	eration	on		
	(1) Q ⁺		7	7		(3) ID		(/	1.) <i>(</i> C	
6.	In the set \mathbb{O} define \mathbb{O} h	, – a	. j	ah E	or who	(S) ™ at value	of v 3 ((0,0)	4) ℂ 5) − 72	
0.	(1) \mathbb{Q}^+ In the set \mathbb{Q} define $\odot b$ (1) $y = \frac{2}{3}$, – u		2	JI WIII	(2)	3		(3) = 7:	
							$= -\frac{1}{2}$	(4	4) y = 4	
7.	If $a * b = \sqrt{a^2 + b^2}$ or									
	(1) commutative									
						. ,		nmutati	ve nor associativ	9
8.	Which one of the follow			ts has	the tr	uth valı	ıeT ?			
	(1) $\sin x$ is an ev			_						
	(2) Every square			_		_	_		_	
	(3) The product		_		and it	s conju	gate is p	ourely in	naginary	
	(4) $\sqrt{5}$ is an irra	ationa	l numb	oer						
9.	Which one of the follow	zing sta	itemen	te hae	truth :	value F	7			
٧.	(1) Chennai is in	_				varue i	•			
						ان بیمام				
	(2) Chennai is in						ber			
	(3) Chennai is i									
	(4) Chennai is in									_
10.	If a compound statemen	nt invo	lves 3	simple	state	nents, t	then the	number	of rows in the tr	uth

MURALIRAJA,M.Sc.,B.Ed., 9786760672

table is

(2)8

(3)6

(4)3

11. Which one is the inverse of the statement $(p \lor q) \rightarrow (p \land q)$?

 $(1) (p \land q) \rightarrow (p \lor q)$

 $(2) \neg (p \lor q) \rightarrow (p \land q)$

 $(3) (\neg p \lor \neg q) \to (\neg p \land \neg q)$

 $(4) (\neg p \land \neg q) \rightarrow (\neg p \lor \neg q)$

12. Which one is the contrapositive of the statement $(p \lor q) \rightarrow r$?

$$(1) \neg r \rightarrow (\neg p \land \neg q)$$

$$(2) \neg r \rightarrow (p \lor q)$$

$$(3) r \to (p \land q)$$

$$(4) p \rightarrow (q \lor r)$$

13. The truth table for $(p \land q) \lor \neg q$ is given below

L.		• • • •	- 0
	p	q	$(p \land q) \lor \neg q$
	T	T	a
	T	F	b
	F	T	С
	F	F	d

Which one of the following is true?

(1) T T T T

(2) T F T T

(3) T T F T

14. In the last column of the truth table for $\neg (p \lor \neg q)$ the number of final outcomes of the truth valu 'F' are

(1) 1

(2) 2

(3) 3

(4)4

Which one of the following is incorrect? For any two propositions p and q, we have 15.

$$(1) \neg (p \lor q) \equiv \neg p \land \neg q$$

$$(2) \neg (p \land q) \equiv \neg p \lor \neg q$$

$$(3) \neg (p \lor q) \equiv \neg p \lor \neg q$$

$$(4) \neg (\neg p) \equiv p$$

16.

p	q	$(p \land q) \lor \neg p$
T	T	a
T	F	b
F	T	С
F	F	d

Which one of the following is correct for the truth value of $(p \land q) \lor \neg p$?

(1) T T T T

(2) F T T T

(3) F F T T

(4) T T T F

17. The dual of $\neg (p \lor q) \lor [(p \lor (p \land \neg r)]$ is

 $(1) \neg (p \land q) \lor [(p \lor (p \land \neg r)]$

(2) $(p \land q) \land [(p \land (p \lor \neg r)]$

 $(3) \neg (p \land q) \land [(p \land (p \land \neg r)]$

(4) $\neg (p \land q) \land [(p \land (p \lor \neg r)]$

18. The proposition $p \land (\neg p \lor q)$ is

(1) a tautology

(2) a contradiction

(3) logically equivalent to $p \wedge q$

(4) logically equivalent to $p \lor q$

19. Determine the truth value of each of the following statements:

(a) 4 + 2 = 5 and 6 + 3 = 9

(b) 3 + 2 = 5 and 6 + 1 = 7

(c) 4 + 5 = 9 and 1 + 2 = 4

(d) 3 + 2 = 5 and 4 + 7 = 11

(1) F T F T

(2) T F T F (3) T T F F (4) F F T T

20. Which one of the following is not true?

(1) Negation of a negation of a statement is the statement itself.

(2) If the last column of the truth table contains only T then it is a tautology.

(3) If the last column of its truth table contains only F then it is a contradiction

(4) If p and q are any two statements then $p \leftrightarrow q$ is a tautology.