Half－Yearly Examination－ 2023

PHYSICS
PART－I
$15 \times 1=15$
1．Choose the best answer
1．A short electric dipole has a dipole moment of $16 \times 10^{-9} \mathrm{~cm}$ ．The electric potentual due to the dipole at a point at a distance of 0.6 m from the centre of the dipole．situated on a line making an angle of 60° with the dipole axis is
$\frac{1}{4 \pi \varepsilon_{0}}=9 \times 10^{9} \mathrm{Nm}^{2} / \mathrm{C}^{2}$
a） 50 V
b） 200 V
c） 400 V
d）zero

2．What is the current drawn out from the battery？ $\begin{array}{llll}\text { a）} 1 A & \text { b）} 2 A & \text { c）} 3 A & \text { d）} 4 A\end{array}$

3．The magnetic field at the centre O of the following current loop is
a）$\frac{\mu_{0} 1}{4 r} \otimes$
b）$\frac{\mu_{0} I}{4 r} O$
C）$\frac{\mu_{0} \mathrm{I}}{2 \mathrm{r}} \otimes$
d）$\frac{\mu_{0} I}{2 r} \odot$

4．An indicator of inductance L ．O capacitor of capacitance C and a resistor of resistance＇R＇are connected in senes to an ac source of potential diffeence＇V＇volts as shown in figure． Potential difference across L，C and R is $40 \mathrm{~V}, 10 \mathrm{~V}$ and 40 V respectively．The amplitude of current flowing through LCR series circuit is $10 \sqrt{2} \mathrm{~A}$ ．The impedance of the circuit is
a） $5 / \sqrt{2} \Omega$
b） 4Ω
c） 5Ω
d） $4 \sqrt{2} \Omega$

5．In an electromagnetic wave travelling in free space the rms value of the electric field is $3 \mathrm{~V} \mathrm{~m}^{-1}$ The peak value of the magnetic field is． \qquad a） $1.414 \times 10^{-8} \mathrm{~T}$
b） $1.0 \times 10^{-6} \mathrm{~T}$
c） $2.828 \times 10^{-8} \mathrm{~T}$
d） $2.0 \times 10^{-6} \mathrm{~T}$
6．$\frac{20}{\pi^{2}} \mathrm{H}$ inductor is connected to capacitor ．．．．．．．．capacitance C ．The value of C in order to import maximum power at 50 Hz
is．
a） $50 \mu \mathrm{~F}$
b） $0.5 \mu \mathrm{~F}$
c） $500 \mu \mathrm{~F}$
d） $5 \mu \mathrm{~F}$

7．A ray of light travelling in a transparent medium of refractive index n falls，on a surface separating the medium from air at an angle of incidence of 45° ．The ray can undergo total internal reflection for the following n
a）$n=1.25$
b）$n=1.33$
c）$n=1.4$
d）$n=1.5$

8．The ratio of contributions made by the electric field and，magnetic field compond to the intensity of an electromagnetic wave is（ $C=$ speed of electromagnetic waves）
a） $\mathrm{c}: 1$
b） $1: 1$
c） 1 c
d） $1: \mathrm{c}^{2}$

9 Two point while dots are 1 mm apart on a black paper．They are viewed by an eye of pupil diameter 3 mm approximately The maximum distance at which these dots can be resolved by the eye is（Take $=500 \mathrm{~nm}$ ）
a） 1 m b） 5 m
c） 3 m
d） 6 m

10．An electromagnetic wave of wavelength＇λ＇is incident on a photosensitive surface of negligible work function．If＇In mass is of photoelectron emitted from the surface has de－Broglike wavelength λ_{4} then
a）$\lambda d=\left(\frac{2 m c}{h}\right) \lambda^{2}$
b）$i=\left(\frac{2 m c}{h}\right) i^{2}$
${ }^{2} \mathrm{c}$
$\lambda=\left(\frac{2 \mathrm{~h}}{\mathrm{mc}}\right) \lambda_{\mathrm{d}}^{2}$
d）$\lambda=\left(\frac{2 m}{h c}\right) \lambda^{2} \sigma$

11 The ratio of the wavelengths for the transition from $n=2$ to $n=1$ in $\mathrm{Li}^{*} \mathrm{He}^{*}$ and H is
a） 123
9
c） $3 \quad 2$
d） 49
36 ratio of their radit of their path $5 r_{H} \quad r_{n}$ will be a
$\begin{array}{lllll}\text { a) } 1 & 4 & \text { b) } 2.1 & \text { c) } 1 & 2\end{array}$ d) $4 \quad 1$
a) A^{-}
cleus is approximately s
$\begin{array}{lll}\text { b) } A^{4-1} & \text { c) } A^{\prime a} & \text { d) } A^{\prime \prime}\end{array}$
14 Which one of the following represents forward bios diode?
a) 0 V
 R-2V
b)

c)

d) -3 V

15 The particle which gives mass to protons and neutrons is \qquad
a) Higgs particle
b) Einstein particle
c) Nanoparticle
d) Bulk particle

PART - II
Answer any six questions. Question number 24 is compulsory.
16. State Gauss law.

17 Define magnetic dipole moment
18 How will you define Q-factor?
19 Why are e.m waves non-mechanical?
20. What is interference of light?
21. Define work function of a metal. Give its unit.

22 Calculate the number of nuclei of carbon-14 undecayed after 22,920 years if the initial number of carbon-14 atoms is 10.000 . The half life of carbon-14 is 5730 years.
23. Why are NOR and NAND gates called universal gates?
24. A cell supplies a current of 0.9 A through a 2Ω resistor and a current of 0.3 A through a 7Ω resistor. Calculate the internal resistance of the cel.

PART - III

Answer any six questions. Question Number 33 is compulsory.
$6 \times 3=18$
25. Obtain the expression for capacitive for a parallel plate capacitor
26. Explain the equivalent resistance of a parallel resistor network.
27. Write down the properties of electromagnetic waves.
28. What are critical angle and total internal reflection?
29. Discuss about Nicol prism
30. List out the characteristics of photons.
31. Discuss the beta (β^{*}) decay process with example
32. State and prove De Morgan's first and secon theorem.
33. Find the impedance of a series RLC circuit if the inductive reactance, capacitance reactance and resistance are 184Ω 144Ω and 30Ω respectively. Also calculate the phase angle between voltage and current

> PART - IV

Answer all the questions.
$5 \times 5=25$
34. a) Calculate the electric field due to a dipole on its axial line

(OR)

b) What is dispersion? Obtain the equation for dispersive power of a medium
35. a) Derive the expression for the force on a current-carrying conductor in a magnetic field
(OR)
b) Discuss the diffraction at single slit and obtain the condition for $n^{t h}$ minimum.

36 a) Explain the determination of unknown resistance using meter bridge
(OR)
b) Explain the construction and working of a full wave rectifier.

37 a) Assuming that the length of the solenoid is large when compared to its diameter, find the equation for its inductance (OR)
b) Write down Maxwells equation in integral form

38 a) Obtain Einstein's photoelectric equation with necessary explanation
(OR)
b) Explain the $J J$ Thomson experiment to determine the specific charge of electron

